

Welcome to Scenic’s documentation!

Scenic is a domain-specific probabilistic programming language for modeling the environments of cyber-physical systems like robots and autonomous cars.
A Scenic program defines a distribution over scenes, configurations of physical objects and agents; sampling from this distribution yields concrete scenes which can be simulated to produce training or testing data.
Scenic can also define (probabilistic) policies for dynamic agents, allowing modeling scenarios where agents take actions over time in response to the state of the world.

Scenic was designed and implemented by Daniel J. Fremont, Eric Vin, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia, with contributions from many others.
For a description of the language and some of its applications, see our journal paper [https://doi.org/10.1007/s10994-021-06120-5] on Scenic 2, which extends our PLDI 2019 paper [https://arxiv.org/abs/1809.09310] on Scenic 1; the new features in Scenic 3 are described in our CAV 2023 paper [https://arxiv.org/abs/2307.03325].
Our publications page lists additional papers using Scenic.

Note

The syntax of Scenic 3 is not completely backwards-compatible with earlier versions of Scenic, which were used in our papers prior to 2023.
See What’s New in Scenic for a list of syntax changes and new features.
Old code can likely be easily ported; you can also install older releases if necessary from
GitHub [https://github.com/BerkeleyLearnVerify/Scenic/releases].

If you have any problems using Scenic, please submit an issue to our GitHub repository [https://github.com/BerkeleyLearnVerify/Scenic] or contact Daniel at dfremont@ucsc.edu.

Table of Contents

Introduction

	Getting Started with Scenic

	Notes on Installing Scenic

	What’s New in Scenic

Tutorials

	Scenic Fundamentals

	Dynamic Scenarios

	Composing Scenarios

Language and Tool Reference

	Syntax Guide

	Language Reference

	Command-Line Options

	Using Scenic Programmatically

	Developing Scenic

	Scenic Internals

Libraries and Simulators

	Scenic Libraries

	Supported Simulators

	Interfacing to New Simulators

General Information

	Publications Using Scenic

	Credits

Indices and Tables

	Index

	Module Index

	Glossary

License

Scenic is distributed under the 3-Clause BSD License [https://opensource.org/licenses/BSD-3-Clause].

Getting Started with Scenic

Installation

Scenic requires Python 3.8 or newer.
Run python --version to make sure you have a new enough version; if not, you can install one from the Python website [https://www.python.org/downloads/] or using pyenv [https://github.com/pyenv/pyenv] (e.g. running pyenv install 3.11).
If the version of Python you want to use is called something different than just python on your system, e.g. python3.11, use that name in place of python when creating a virtual environment below.

There are two ways to install Scenic:

	from our repository, which has the very latest features but may not be stable. The repository also contains example scenarios such as those used in the instructions below and our tutorials.

	from the Python Package Index (PyPI), which will get you the latest official release of Scenic but will not include example scenarios, etc.

If this is your first time using Scenic, we suggest installing from the repository so that you can try out the example scenarios.

Once you’ve decided which method you want to use, follow the instructions below for your operating system.
If you encounter any errors, please see our Notes on Installing Scenic for suggestions.

macOSLinuxWindowsWSL
Activate the virtual environment [https://docs.python.org/3/tutorial/venv.html] in which you want to install Scenic.
To create and activate a new virtual environment called venv, you can run the following commands:

python3 -m venv venv
source venv/bin/activate

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

RepositoryPyPI
The following commands will clone the Scenic repository [https://github.com/BerkeleyLearnVerify/Scenic] into a folder called Scenic and install Scenic from there.
It is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development dependencies: see Developing Scenic.

The following command will install the latest full release of Scenic from PyPI [https://pypi.org/project/scenic/]:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions.
If you want to get the very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

Start by installing the Python-Tk interface.
You can likely use your system’s package manager; e.g. on Debian/Ubuntu run:

sudo apt-get install python3-tk

Activate the virtual environment [https://docs.python.org/3/tutorial/venv.html] in which you want to install Scenic.
To create and activate a new virtual environment called venv, you can run the following commands:

python3 -m venv venv
source venv/bin/activate

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

RepositoryPyPI
The following commands will clone the Scenic repository [https://github.com/BerkeleyLearnVerify/Scenic] into a folder called Scenic and install Scenic from there.
It is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development dependencies: see Developing Scenic.

The following command will install the latest full release of Scenic from PyPI [https://pypi.org/project/scenic/]:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions.
If you want to get the very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

These instructions cover installing Scenic natively on Windows; if you are using the Windows Subsystem for Linux [https://docs.microsoft.com/en-us/windows/wsl/install-win10] (on Windows 10 and newer), see the WSL tab instead.

Activate the virtual environment [https://docs.python.org/3/tutorial/venv.html] in which you want to install Scenic.
To create and activate a new virtual environment called venv, you can run the following commands:

python -m venv venv
venv\Scripts\activate.bat

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

RepositoryPyPI
The following commands will clone the Scenic repository [https://github.com/BerkeleyLearnVerify/Scenic] into a folder called Scenic and install Scenic from there.
It is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development dependencies: see Developing Scenic.

The following command will install the latest full release of Scenic from PyPI [https://pypi.org/project/scenic/]:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions.
If you want to get the very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

These instructions cover installing Scenic on the Windows Subsystem for Linux (WSL).

If you haven’t already installed WSL, you can do that by running wsl --install (in either Command Prompt or PowerShell) and restarting your computer.
Then open a WSL terminal and run the following commands to install Python and the Python-Tk interface:

sudo apt-get update
sudo apt-get install python3 python3-tk

Activate the virtual environment [https://docs.python.org/3/tutorial/venv.html] in which you want to install Scenic.
To create and activate a new virtual environment called venv, you can run the following commands:

python3 -m venv venv
source venv/bin/activate

If you get an error about needing a package like python3.10-venv, run

sudo apt-get install python3.10-venv

(putting in the appropriate Python version) and try the commands above again.

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

RepositoryPyPI
The following commands will clone the Scenic repository [https://github.com/BerkeleyLearnVerify/Scenic] into a folder called Scenic and install Scenic from there.
It is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development dependencies: see Developing Scenic.

The following command will install the latest full release of Scenic from PyPI [https://pypi.org/project/scenic/]:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions.
If you want to get the very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

You can now verify that Scenic is properly installed by running the command:

scenic --version

This should print out a message like Scenic 3.0.0 showing which version of Scenic is installed.
If you get an error (or got one earlier when following the instructions above), please see our Notes on Installing Scenic for suggestions.

Note

If a feature described in this documentation seems to be missing, your version of Scenic may be too old: take a look at What’s New in Scenic to see when the feature was added.

To help read Scenic code, we suggest you install a syntax highlighter plugin for your text editor.
Plugins for Sublime Text and Visual Studio Code can be installed from within those tools; for other editors supporting the TextMate grammar format, the grammar is available here [https://github.com/UCSCFormalMethods/Scenic-tmLanguage].

Trying Some Examples

The Scenic repository contains many example scenarios, found in the examples directory.
They are organized in various directories with the name of the simulator, abstract application domain, or visualizer they are written for. For example, gta and webots for the GTA and Webots simulators; the driving directory for the abstract driving domain; and the visualizer directory for the built in Scenic visualizer.

Each simulator has a specialized Scenic interface which requires additional setup (see Supported Simulators); however, for convenience Scenic provides an easy way to visualize scenarios without running a simulator.
Simply run scenic, giving a path to a Scenic file:

scenic examples/webots/vacuum/vacuum_simple.scenic

This will compile the Scenic program and sample from it (which may take several seconds), displaying a schematic of the resulting scene. Since this is a simple scenario designed to evaluate the performance of a robot vacuum, you should get something like this:

[image: _images/vacuumSimple.jpg]
The green cylinder is the vacuum, surrounded by various pieces of furniture in a room.
You can adjust the camera angle by clicking and dragging, and zoom in and out using the mouse wheel.
If you close the window or press q, Scenic will sample another scene from the same scenario and display it.
This will repeat until you kill the generator (Control-c in the terminal on Linux; Command-q in the viewer window on MacOS).

Some scenarios were written for older versions of Scenic, which were entirely 2D. Those scenarios should be run using the --2d command-line option, which will enable 2D backwards-compatibility mode. Information about whether or not the --2d flag should be used can be found in the README of each example directory.

One such scenario is the badly-parked car example from our GTA case study, which can be run with the following command:

scenic --2d examples/gta/badlyParkedCar2.scenic

This will open Scenic’s 2D viewer, and should look something like this:

[image: _images/badlyParkedCar2.png]
Here the circled rectangle is the ego car; its view cone extends to the right, where we see another car parked rather poorly at the side of the road (the white lines are curbs).
(Note that on MacOS, scene generation with the 2D viewer is stopped differently than with the 3D viewer: right-click on its icon in the Dock and select Quit.)

Scenarios for the other simulators can be viewed in the same way.
Here are a few for different simulators:

scenic --2d examples/driving/pedestrian.scenic
scenic examples/webots/mars/narrowGoal.scenic
scenic --2d examples/webots/road/crossing.scenic

[image: _images/pedestrian.png]
[image: _images/narrowGoal.jpg]
[image: _images/crossing.png]
The scenic command has options for setting the random seed, running dynamic
simulations, printing debugging information, etc.: see Command-Line Options.

Learning More

Depending on what you’d like to do with Scenic, different parts of the documentation may be helpful:

	If you want to start learning how to write Scenic programs, see Scenic Fundamentals.

	If you want to learn how to write dynamic scenarios in Scenic, see Dynamic Scenarios.

	If you want to use Scenic with a simulator, see Supported Simulators (which also describes how to interface Scenic to a new simulator, if the one you want isn’t listed).

	If you want to control Scenic from Python rather than using the command-line tool (for example if you want to collect data from the generated scenarios), see Using Scenic Programmatically.

	If you want to add a feature to the language or otherwise need to understand Scenic’s inner workings, see our pages on Developing Scenic and Scenic Internals.

Notes on Installing Scenic

This page describes common issues with installing Scenic and suggestions for fixing them.

All Platforms

Missing Python Version

If when running pip you get an error saying that your machine does not have a compatible version, this means that you do not have Python 3.8 or later on your PATH.
Install a newer version of Python, either directly from the Python website [https://www.python.org/downloads/] or using pyenv [https://github.com/pyenv/pyenv] (e.g. running pyenv install 3.10.4).
Then use that version of Python when creating a virtual environment before installing Scenic.

“setup.py” not found

This error indicates that you are using too old a version of pip: you need at least version 21.3.
Run python -m pip install --upgrade pip to upgrade.

Dependency Conflicts

If you install Scenic using pip, you might see an error message like the following:

ERROR: pip’s dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.

This error means that in order to install Scenic, pip had to break the dependency constraints of some package you had previously installed (the error message will indicate which one).
So while Scenic will work correctly, something else may now be broken.
This won’t happen if you install Scenic into a fresh virtual environment.

Cannot Find Scenic

If when running the scenic command you get a “command not found” error, or when trying to import the scenic module you get a ModuleNotFoundError [https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError], then Scenic has not been installed where your shell or Python respectively can find it.
The most likely problem is that you installed Scenic for one copy of Python but are now using a different one: for example, if you installed Scenic in a Python virtual environment (which we highly recommend), you may have forgotten to activate that environment, and so are using your system Python instead.
See the virtual environment tutorial [https://docs.python.org/3/tutorial/venv.html] for instructions.

Scene Schematics Don’t Appear (2D)

If no window appears when you ask Scenic to generate and display a scene using the --2d flag (as in the example commands in Getting Started with Scenic), this means that Matplotlib has no interactive backend [https://matplotlib.org/stable/users/explain/backends.html] installed.
On Linux, try installing the python3-tk package (e.g. sudo apt-get install python3-tk).

Missing SDL

If you get an error about SDL [https://www.libsdl.org/] being missing, you may need to install it.
On Linux (or Windows with WSL), install the libsdl2-dev package (e.g. sudo apt-get install libsdl2-dev); on macOS, if you use Homebrew [https://brew.sh/] you can run brew install sdl2.
For other platforms, see the SDL website.

Using a Local Scenic Version with VerifAI

If you are using Scenic as part of the VerifAI [https://github.com/BerkeleyLearnVerify/VerifAI] toolkit, the VerifAI installation process will automatically install Scenic from PyPI.
However, if you need to use your own fork of Scenic or some features which have not yet been released on PyPI, you will need to install Scenic manually in VerifAI’s virtual environment.
The easiest way to do this is as follows:

	Install VerifAI in a virtual environment of your choice.

	Activate the virtual environment.

	Change directory to your clone of the Scenic repository.

	Run pip install -e .

You can test that this process has worked correctly by going back to the VerifAI repo and running the Scenic part of its test suite with pytest tests/test_scenic.py.

Note

Installing Scenic in this way bypasses dependency resolution for VerifAI.
If your local version of Scenic requires different versions of some of VerifAI’s dependencies, you may get errors from pip about dependency conflicts.
Such errors do not actually prevent Scenic from being installed; however you may get unexpected behavior from VerifAI at runtime.
If you are developing forks of Scenic and VerifAI, a more stable approach would be to modify VerifAI’s pyproject.toml to point to your fork of Scenic instead of the scenic package on PyPI.

MacOS

Installing python-fcl on Apple silicon

If on an Apple-silicon machine you get an error related to pip being unable to install python-fcl, it can be installed manually using the following steps:

	Clone the python-fcl [https://github.com/BerkeleyAutomation/python-fcl] repository.

	Navigate to the repository.

	Install dependencies using Homebrew [https://brew.sh] with the following command: brew install fcl eigen octomap

	Activate your virtual environment if you haven’t already.

	Install the package using pip with the following command: CPATH=$(brew --prefix)/include:$(brew --prefix)/include/eigen3 LD_LIBRARY_PATH=$(brew --prefix)/lib python -m pip install .

Windows

Using WSL

For greatest ease of installation, we recommend using the Windows Subsystem for Linux [https://docs.microsoft.com/en-us/windows/wsl/install-win10] (WSL, a.k.a. “Bash on Windows”) on Windows 10 and newer.

Some WSL users have reported encountering the error no display name and no $DISPLAY environmental variable, but have had success applying the techniques outlined here [https://github.com/microsoft/WSL/issues/4106#issuecomment-876470388].

It is possible to run Scenic natively on Windows; however, in the past there have been issues with some of Scenic’s dependencies either not providing wheels for Windows or requiring manual installation of additional libraries.

Problems building Shapely

In the past, the shapely package did not install properly on Windows.
If you encounter this issue, try installing it manually following the instructions here [https://github.com/Toblerity/Shapely#built-distributions].

What’s New in Scenic

This page describes what new features have been added in each version of Scenic, as well as any syntax changes which break backwards compatibility.
Scenic uses semantic versioning, so a program written for Scenic 2.1 should also work in Scenic 2.5, but not necessarily in Scenic 3.0.
You can run scenic --version to see which version of Scenic you are using.

Scenic 3.x

The Scenic 3.x series adds native support for 3D geometry, precise modeling of the shapes of objects, and temporal requirements.
It also features a new parser enabling clearer error messages, greater language extensibility, and various improvements to the syntax.

See Porting to Scenic 3 for tools to help migrate existing 2D scenarios.

Scenic 3.0.0

Backwards-incompatible syntax changes:

	Objects must be explicitly created using the new keyword, e.g. new Object at (1, 2) instead of the old Object at (1, 2).
This removes an ambiguity in the Scenic grammar, and makes non-creation uses of class names like myClasses = [Car, Bicycle, Pedestrian] clearer.

	Monitor definitions must include a parenthesized list of arguments, like behaviors: you should write monitor MyMonitor(): for example instead of the old monitor MyMonitor:.
Furthermore, monitors are no longer automatically enforced in the scenario where they are defined: you must explicitly instantiate them with the new require monitor statement.

	As the heading property is now derived from the 3D orientation (see below), it can no longer be set directly.
Classes providing a default value for heading should instead provide a default value for parentOrientation.
Code like with heading 30 deg should be replaced with the more idiomatic facing 30 deg.

Backwards-incompatible semantics changes:

	Objects are no longer required to be visible from the ego by default.
(The requireVisible property is now False by default.)

	Visibility checks take occlusion into account by default (see below).
The visible regions of objects are now 3D regions.

	Checking containment of objects in regions is now precise (previously, Scenic only checked if all of the corners of the object were contained in the region).

	While evaluating a precondition or invariant of a behavior or scenario, code that would cause the simulation to be rejected (such as sampling from an empty list) is now considered as simply making the precondition/invariant false.

	The left of Object specifier and its variants now correctly take into account the dimensions of both the object being created and the given object (the implementation previously did not account for the latter, despite the documentation saying otherwise).

	The offset by specifier now optionally specifies parentOrientation.

	The visible and not visible specifiers now take into account occlusion and the shapes of objects. In previous versions, they only checked whether the center of the object was visible/not visible, ignoring occlusion.

Backwards-incompatible API changes:

	The maxIterations argument of Simulator.simulate now has default value 1, rather than 100.
A default value of 1 is the most reasonable in general since it means that when a simulation is rejected, a new scene will have to be generated (instead of trying many simulations from the same starting scene, which might well fail in the same way).

	For simulator interface writers: the Simulator.createSimulation and Simulation APIs have changed; initial creation of objects is now done automatically, and other initialization must be done in the new Simulation.setup method.
See scenic.core.simulators for details.

Major new features:

	Scenic uses 3D geometry.
Vectors now have 3 coordinates: if a third coordinate is not provided, it is assumed to be zero, so that scenarios taking place entirely in the z=0 plane will continue to work as before.
Orientations of objects in space are represented by a new orientation property (internally a quaternion), which is computed by applying intrinsic yaw, pitch, and roll rotations, given by new properties by those names.
These rotations are applied to the object’s parentOrientation, which by default aligns with the Scenic global coordinate system but is optionally specified by left of and similar specifiers; this makes it easy to orient an object with respect to another object.
See the relevant section of the tutorial for examples.

	Scenic models the precise shapes of objects, rather than simply using bounding boxes for collision detection and visibility checks.
Objects have a new shape property (an instance of the Shape class) representing their shape; shapes can be created from standard 3D mesh formats such as STL.

	Visibility checks now take occlusion into account as well as precise shapes of objects.
This is done using raytracing: the number of rays can be controlled on a per-object basis using viewRayDensity and related properties.

	The require statement accepts arbitrary properties in Linear Temporal Logic (not just the require always and require eventually forms previously allowed).

	Sampled Scene objects can now be serialized to short sequences of bytes and restored later.
Similarly, executed Simulation objects can be saved and replayed.
See Storing Scenes/Simulations for Later Use for details.

	Scenic syntax highlighters for Sublime Text, Visual Studio Code, and other TextMate-compatible editors are now available: see Getting Started with Scenic.
For users of Pygments [https://pygments.org/], the scenic package automatically installs a Pygments lexer (and associated style) for Scenic.

Minor new features:

	It is no longer necessary to define an ego object.
If no ego is defined, the egoObject attribute of a sampled Scene is None [https://docs.python.org/3/library/constants.html#None].

	Syntax errors should now always indicate the correct part of the source code.

Scenic 2.x

The Scenic 2.x series is a major new version of Scenic which adds native support for dynamic scenarios, scenario composition, and more.

Scenic 2.1.0

Major new features:

	Modular scenarios and ways to compose them together, introduced as a prototype in 2.0.0, are now finalized, with many fixes and improvements. See Composing Scenarios for an overview of the new syntax.

	The record statement for recording values at every step of dynamic simulations (or only at the start/end).

	A built-in Newtonian physics simulator for debugging dynamic scenarios without having to install an external simulator (see scenic.simulators.newtonian).

	The interface to the Webots simulator has been greatly generalized, and now supports dynamic scenarios (see scenic.simulators.webots).

Minor new features:

	You can now write require expr as name to give a name to a requirement; similarly for require always, termination conditions, etc.

	Compatibility with Python 3.7 is restored. Scenic 2 now supports all versions of Python from 3.7 to 3.11.

Scenic 2.0.0

Backwards-incompatible syntax changes:

	The interval notation (low, high) for uniform distributions has been removed: use Range(low, high) instead. As a result of this change, the usual Python syntax for tuples is now legal in Scenic.

	The height property of Object, measuring its extent along the Y axis, has been renamed length to better match its intended use. The name height will be used again in a future version of Scenic with native support for 3D geometry.

Major new features:

	Scenic now supports writing and executing dynamic scenarios, where agents take actions over time according to behaviors specified in Scenic. See Dynamic Scenarios for an overview of the new syntax.

	An abstract Driving Domain allowing traffic scenarios to be written in a platform-agnostic way and executed in multiple simulators (in particular, both CARLA and LGSVL).
This library includes functionality to parse road networks from standard formats (currently OpenDRIVE) and expose information about them for use in Scenic scenarios.

	A much generalized and improved interface to CARLA. (Many thanks to the CARLA team for contributing this.)

	An interface to the LGSVL driving simulator. (Many thanks to the LG team for helping develop this interface.)

Minor new features:

	Operators and specifiers which take vectors as arguments will now accept tuples and lists of length 2; for example, you can write Object at (1, 2). The old syntax Object at 1@2 is still supported.

	The model statement allows a scenario to specify which world model it uses, while being possible to override from the command line with the --model option.

	Global parameters can be overridden from the command line using the --param option (e.g. to specify a different map to use for a scenario).

	The unpacking operator * can now be used with Uniform to select a random element of a random list/tuple (e.g. lane = Uniform(*network.lanes); sec = Uniform(*lane.sections)).

	The Python built-in function filter [https://docs.python.org/3/library/functions.html#filter] is now supported, and can be used along with unpacking as above to select a random element of a random list satisfying a given condition (see filter for an example).

(Many other minor features didn’t make it into this list.)

Scenic Fundamentals

This tutorial motivates and illustrates the main features of Scenic, focusing on aspects
of the language that make it particularly well-suited for describing geometric scenarios.
We begin by walking through Scenic’s core features from first principles, using simple
toy examples displayed in Scenic’s built-in visualizer. We then consider discuss two case studies in depth: using Scenic to generate traffic scenes to test and train autonomous cars (as in [F22], [F19]),
and testing a motion planning algorithm for a Mars rover able to climb over rocks. These examples
show Scenic interfacing with actual simulators, and demonstrate how it can be applied to real problems.

We’ll focus here on the spatial aspects of scenarios; for adding temporal dynamics to a scenario, see our page on Dynamic Scenarios.

Objects, Geometry, and Specifiers

To start with, we’ll construct a very basic Scenic program:

1ego = new Object

Running this program should cause a window to pop up, looking like this:

[image: Simple scenario with an ego box, rendered with Scenic's built-in visualizer.]

You can rotate and move the camera of the visualizer around using the mouse. The only Object currently present is the one we created using the new keyword
(rendered as a green box). Since we assigned this object to the ego name, it has special significance to Scenic, as we’ll see later. For now it only has the effect of highlighting the
object green in Scenic’s visualizer. Pressing w will render all objects as wireframes, which will allow you to see the coordinate axes in the center of
the ego object (at the origin).

Since we didn’t provide any additional information to Scenic about this object, its properties like position, orientation, width, etc. were assigned default values from the object’s class: here, the built-in class Object, representing a physical object.
So we end up with a generic cube at the origin.
To define the properties of an object, Scenic provides a flexible system of specifiers based on the many ways one can describe the position and orientation of an object in natural language.
We can see a few of these specifiers in action in the following slightly more complex program (see the Syntax Guide for a summary of all the specifiers, and the Specifiers Reference for detailed definitions):

 1ego = new Object with shape ConeShape(),
 2 with width 2,
 3 with length 2,
 4 with height 1.5,
 5 facing (-90 deg, 45 deg, 0)
 6
 7chair = new Object at (4,0,2),
 8 with shape MeshShape.fromFile(localPath("meshes/chair.obj"),
 9 initial_rotation=(0,90 deg,0), dimensions=(1,1,1))
10
11plane_shape = MeshShape.fromFile(path=localPath("meshes/plane.obj"))
12
13plane = new Object left of chair by 1,
14 with shape plane_shape,
15 with width 2,
16 with length 2,
17 with height 1,
18 facing directly toward ego

This should generate the following scene:

[image: A slightly more complicated scenario showing the use of specifiers.]

The first object we create, the ego, has a cone shape. Scenic provides several built-in shapes like
this (see Shape for a list). We then set the object’s dimensions
using the with specifier, which can set any property (even properties not built into Scenic, which you might access in your own code or which a particular simulator might understand). Finally,
we set the object’s global orientation (its orientation property) using the facing specifier. The tuple after facing
contains the Euler angles of the desired orientation (yaw, pitch, roll).

The second object we create is first placed at a specific point in space using the at specifier (setting the object’s position property).
We then set its shape to one imported from a mesh file, using the MeshShape class, applying an initial rotation to tell Scenic which side of the chair is its front.
We also set default dimensions of the shape, which the object will then
automatically inherit.
If we hadn’t set these default dimensions, Scenic would automatically infer the dimensions
from the mesh file.

On line 11 we load a shape from a file, specifically to highlight that since Scenic is built on top of Python,
we can write arbitrary Python expressions in Scenic (with some exceptions).

For our third and final object, we use the left of specifier to place it to the left of chair (the second object) by 1 unit.
We set its shape and dimensions, similar to before, and then orient it to face directly toward the ego object using the facing directly toward specifier.
This gives a first hint of the power of specifiers, with Scenic automatically working out how to compute the object’s orientation so that it faces the ego regardless of how we specified its position (in fact, we could move the left of specifier to be after the facing directly toward and the code would still work).

Scenic will automatically reject scenarios that don’t make physical sense, for instance when objects intersect each other [1].
For an example of this, try changing the code above to have a much larger ego object, to the point where it would intersect
with the plane. While this isn’t too important in the scenarios we’ve seen so far, it becomes very useful when we start constructing
random scenarios.

Randomness and Regions

So far all of our Scenic programs have defined concrete scenes, i.e. they uniquely define all the aspects of a scene, so every time we run the program we’ll get the same scene.
This is because so far we haven’t introduced any randomness. Scenic is a probabilistic programming language,
meaning a single Scenic program can in fact define a probability distribution over many possible scenes.

Let’s look at a simple Scenic program with some random elements:

1ego = new Object with shape Uniform(BoxShape(), SpheroidShape(), ConeShape()),
2 with width Range(1,2),
3 with length Range(1,2),
4 with height Range(1,3),
5 facing (Range(0,360) deg, Range(0,360) deg, Range(0,360) deg)

This will generate an object with a shape that is either a box, a spheroid, or a cone (each with equal probability).
It will have a random width, length, and height within the ranges specified, and uniformly random rotation angles.
Some examples:

[image: ../_images/simple_random_1.jpg]
[image: ../_images/simple_random_2.jpg]
[image: ../_images/simple_random_3.jpg]
Random values can be used almost everywhere in Scenic; the major exception is that control flow (e.g. if [https://docs.python.org/3/reference/compound_stmts.html#if] statements and for [https://docs.python.org/3/reference/compound_stmts.html#for] loops) cannot depend on random values.
This restriction enables more efficient sampling (see [F19]) and can often be worked around: for example it is still possible to select random elements satisfying desired criteria from lists (see filter).

Another key construct in Scenic is a Region, which represents a set of points in space.
Having defined a region of interest, for example a lane of a road, you can then sample points from it, check whether objects are contained in it, etc.
You can also use a region to define the workspace, a designated region which all objects in the scenario must be contained in (useful, for example, if the simulated world has fixed obstacles that Scenic objects should not intersect).
For example, the following code:

1region = RectangularRegion((0,0,0), 0, 10, 10)
2workspace = Workspace(region)
3
4new Object in region, with shape SpheroidShape()
5new Object in region, with shape SpheroidShape()
6new Object in region, with shape SpheroidShape()

should generate a scene similar to this:

[image: Three spheres in a rectangular region]

Note that in this scene the coordinate axes in the center are displayed due to the --axes flag, which can help clarify orientation.

We first create a 10-unit square RectangularRegion, and set it as the scenario’s workspace. RectangularRegion is a 2D region,
meaning it does not have a volume and therefore can’t really contain objects.
It is still a valid workspace, however, since for containment checks involving 2D regions, Scenic automatically uses the region’s footprint, which extends infinitely in the positive and negative Z directions.
We then create 3 spherical objects and place them using the in specifier, which sets the position
of an object (its center) to a uniformly-random point in the given region.

Similarly, we can use the on specifier to place the base of an object uniformly at random in a region,
where the base is by default the center of the bottom side of its bounding box.
The on specifier is also overloaded
to work on objects, by default extracting the top surface of the object’s mesh and placing the object on that.
This can lead to very compact syntax for randomly placing objects on others, as seen in the following example:

1workspace = Workspace(RectangularRegion((0,0,0), 0, 4, 4))
2floor = workspace
3
4chair = new Object on floor,
5 with shape MeshShape.fromFile(path=localPath("meshes/chair.obj"),
6 dimensions=(1,1,1), initial_rotation=(0, 90 deg, 0))
7
8ego = new Object on chair,
9 with shape ConeShape(dimensions=(0.25,0.25,0.25))

which might generate something like this:

[image: A cone on a chair]

Orientations in Depth

Notice how in the last example the cone is oriented to be tangent with the curved surface of the chair, even though we
never set an orientation with facing. To explain this behavior, we need to look deeper into Scenic’s orientation
system. All objects have an orientation property, which is their orientation in global coordinates [2].
If you just want to set the orientation by giving explicit angles in global coordinates, you can use the facing specifier as we saw above.
However, it’s often useful to specify the orientation of an object in terms of some other coordinate system, for instance that of another object.
To support such use cases, Scenic does not allow directly setting the value of orientation using with: instead, its value is derived from the values of 4 other properties, parentOrientation, yaw, pitch, and roll.
The parentOrientation property defines the parent orientation of the object, which is the orientation with respect to which the (intrinsic Euler) angles yaw, pitch, and roll are interpreted.
Specifically, orientation is obtained as follows:

	start from parentOrientation;

	apply a yaw (a CCW rotation around the positive Z axis) of yaw;

	apply a pitch (a CCW rotation around the resulting positive X axis) of pitch;

	apply a roll (a CCW rotation around the resulting positive Y axis) of roll.

By default, parentOrientation is aligned with the global coordinate system, so that yaw for example is just the angle by which to rotate the object around the Z axis (this corresponds to the heading property in older versions of Scenic).
But by setting parentOrientation to the orientation of another object, we can easily compose rotations together: “face the same way as the plane, but upside-down” could be implemented with parentOrientation plane.orientation, with roll 180 deg.

In fact it is often unnecessary to set parentOrientation yourself, since many of Scenic’s specifiers do so automatically when there is a natural choice of orientation to use.
This includes all specifiers which position one object in terms of another: if we write new Object ahead of plane by 100, the ahead of specifier specifies position to be 100 meters ahead of the plane but also specifies parentOrientation to be plane.orientation.
So by default the new object will be oriented the same way as the plane; to implement the “upside-down” part, we could simply write new Object ahead of plane by 100, with roll 180 deg.
Importantly, the ahead of specifier here only specifies parentOrientation optionally, giving it a new default value: if you want a different value, you can override that default by explicitly writing with parentOrientation value.
(We’ll return to how Scenic manages default values and “optional” specifications later.)

Another case where a specifier sets parentOrientation automatically is our cone-on-a-chair example above: in the code new Object on chair, the on specifier not only specifies position to be a random point on the top surface of the chair but also specifies parentOrientation to be an orientation tangent to the surface at that point.
Thus the cone lies flat on the surface by default without our needing to specify its orientation; we could even add code like with roll 45 deg to rotate the cone while keeping it tangent with the surface.

In general, the on region specifier specifies parentOrientation whenever the region in question has a preferred orientation: a Vector Field (another primitive Scenic type) which defines an orientation at each point in the region.
The class MeshSurfaceRegion, used to represent surfaces of an object, has a default preferred orientation which is tangent to the surface, allowing us to easily place objects on irregular surfaces as we’ve seen.
Preferred orientations can also be convenient for modeling the nominal driving direction on roads, for example (we’ll return to this use case below).

Points, Oriented Points, and Classes

We’ve seen that Scenic has a built-in class Object for representing physical objects, and that individual objects are instantiated using the new keyword.
Object is actually the bottom class in a hierarchy of built-in Scenic classes that support this syntax: its superclass is OrientedPoint, whose superclass in turn is Point.
The base class Point provides the position property, while its subclass OrientedPoint adds orientation (plus parentOrientation, yaw, etc.).
These two classes do not represent physical objects and aren’t included in scenes generated by Scenic, but they provide a convenient way to use specifier syntax to construct positions and orientations for later use without creating actual objects.
A Point can be used anywhere where a vector is expected (e.g. at point), and an OrientedPoint can also be used anywhere where an orientation is expected.
With both a position and an orientation, an OrientedPoint defines a local coordinate system, and so can be used with specifiers like ahead of to position objects:

spot = new OrientedPoint on curb
new Object left of spot by 0.25

Here, suppose curb is a region with a preferred orientation aligned with the plane of the road and along the curb; then the first line creates an OrientedPoint at a uniformly-random position on the curb, oriented along the curb.
So the second line then creates an Object offset 0.25 meters into the road, regardless of which direction the road happens to run in the global coordinate system.

Scenic also allows users to define their own classes.
In our earlier example placing spheres in a region, we explicitly wrote out the specifiers for each object we created even though they were all identical.
Such repetition can often be avoided by using functions and loops, and by defining a class of object providing new default values for properties of interest.
Our example could be equivalently written:

1workspace = Workspace(RectangularRegion((0,0,0), 0, 10, 10))
2
3class SphereObject:
4 position: new Point in workspace
5 shape: SpheroidShape()
6
7for i in range(3):
8 new SphereObject

Here we define the SphereObject class, providing new default values for the position and shape properties, overriding those inherited from Object (the default superclass if none is explicitly given).
So for example the default position for a SphereObject is the expression new Point in workspace, which creates a Point that can be automatically interpreted as a position. This gives us a way to get the convenience of specifiers in class definitions. Note that this is a random expression, and it is evaluated independently each time a SphereObject is defined; so the loop creates 3 objects which will all have different positions (and as usual Scenic will ensure they do not overlap).
We can still override the default value as needed: adding the line new SphereObject at (0,0,5) would create a SphereObject which still used the default value of shape but whose position is exactly (0,0,5).

In addition to the special syntax seen above for defining properties of a class and instantiating an instance of a class, Scenic classes support inheritance and methods in the same way as Python:

class Vehicle:
 pass
class Taxicab(Vehicle):
 magicNumber: 42

 def myMethod(self, x):
 return self.width + self.magicNumber + x

ego = new Taxicab with magicNumber 1729
y = ego.myMethod(3.14)

Models and Simulators

For the next part of this tutorial, we’ll move beyond the internal Scenic visualizer to an actual simulator.
Specifically, we will consider examples from our case study using Scenic to generate traffic scenes in GTA V to test and train autonomous cars ([F19], [F22]).

To start, suppose we want scenes of one car viewed from another on the road. We can write
this very concisely in Scenic:

1from scenic.simulators.gta.model import Car
2ego = new Car
3new Car

Line 1 imports the GTA world model, a Scenic library defining everything specific to our
GTA interface. This includes the definition of the class Car, as well as information
about the road geometry that we’ll see later. We’ll suppress this import statement in
subsequent examples.

Line 2 then creates a Car and assigns it to the special variable ego specifying the
ego object, which we’ve seen before. This is the reference point for the scenario: our simulator interfaces
typically use it as the viewpoint for rendering images, and many of Scenic’s geometric
operators use ego by default when a position is left implicit [3].

Finally, line 3 creates a second Car. Compiling this scenario with Scenic, sampling a
scene from it, and importing the scene into GTA V yields an image like this:

[image: Simple car scenario image.]

A scene sampled from the simple car scenario, rendered in GTA V.

Note that both the ego car (where the camera is located) and the second car are both
located on the road and facing along it, despite the fact that the code above does not
specify the position or any other properties of the two cars. This is because reasonable default values for these properties have already
been defined in the Car definition (shown here slightly simplified):

1class Car:
2 position: new Point on road
3 heading: roadDirection at self.position # note: can only set `heading` in 2D mode
4 width: self.model.width
5 length: self.model.length
6 model: CarModel.defaultModel() # a distribution over several car models
7 requireVisible: True # so all cars appear in the rendered images

Here road is a region defined in the gta model to specify which points in the workspace
are on a road. Similarly, roadDirection is a Vector Field specifying the nominal traffic direction
at such points. The operator F at X simply gets the direction of the field F at point X, so line 3
sets a Car’s default heading to be the road direction at its position. The default
position, in turn, is a new Point on road, which means a uniformly random point on the road.
Thus, in our simple scenario above both cars will be placed on the road facing a reasonable direction, without our having to
specify this explicitly.

One further point of interest in the code above is that the default value for heading depends on the value of position, and the default values of width and length depend on model.
Scenic allows default value expressions to use the special syntax self.property to refer to the value of another property of the object being defined: Scenic tracks the resulting dependencies and evaluates the expressions in an appropriate order (or raises an error if there are any cyclic dependencies).
This capability is also frequently used by specifiers, as we explain next.

Specifiers in Depth

Why Specifiers?

The syntax left of X and facing Y for specifying positions and
orientations may seem unusual compared to typical constructors in object-oriented
languages. There are two reasons why Scenic uses this kind of syntax: first, readability.
The second is more subtle and based on the fact that in natural language there are many
ways to specify positions and other properties, some of which interact with each other.
Consider the following ways one might describe the location of a car:

	“is at position X” (an absolute position)

	“is just left of position X” (a position based on orientation)

	“is 3 m West of the taxi” (a relative position)

	“is 3 m left of the taxi” (a local coordinate system)

	“is one lane left of the taxi” (another local coordinate system)

	“appears to be 10 m behind the taxi” (relative to the line of sight)

	“is 10 m along the road from the taxi” (following a potentially-curving vector
field)

These are all fundamentally different from each other: for example, (4) and (5) differ if
the taxi is not parallel to the lane.

Furthermore, these specifications combine other properties of the object in different
ways: to place the object “just left of” a position, we must first know the object’s
orientation; whereas if we wanted to face the object “towards” a location, we must
instead know its position. There can be chains of such dependencies: for example,
the description “the car is 0.5 m left of the curb” means that the right edge of the
car is 0.5 m away from the curb, not its center, which is what the car’s position
property stores. So the car’s position depends on its width, which in turn
depends on its model. In a typical object-oriented language, these dependencies might
be handled by first computing values for position and all other properties, then
passing them to a constructor. For “a car is 0.5 m left of the curb” we might write
something like:

hypothetical Python-like language (not Scenic)
model = Car.defaultModelDistribution.sample()
pos = curb.offsetLeft(0.5 + model.width / 2)
car = Car(pos, model=model)

Notice how model must be used twice, because model determines both the model of
the car and (indirectly) its position. This is inelegant, and breaks encapsulation
because the default model distribution is used outside of the Car constructor. The
latter problem could be fixed by having a specialized constructor or factory function:

hypothetical Python-like language (not Scenic)
car = CarLeftOfBy(curb, 0.5)

However, such functions would proliferate since we would need to handle all possible
combinations of ways to specify different properties (e.g. do we want to require a
specific model? Are we overriding the width provided by the model for this specific
car?). Instead of having a multitude of such monolithic constructors, Scenic uses specifiers to factor the
definition of objects into potentially-interacting but syntactically-independent parts:

new Car left of curb by 0.5,
 with model CarModel.models['BUS']

Here the specifiers left of X by D and with model M do not
have an order, but together specify the properties of the car. Scenic works out
the dependencies between properties (here, position is provided by left of, which
depends on width, whose default value depends on model) and evaluates them in the
correct order. To use the default model distribution we would simply omit line 2; keeping
it affects the position of the car appropriately without having to specify BUS
more than once.

Dependencies and Modifying Specifiers

In addition to explicit dependencies when one specifier uses a property defined by another, Scenic also tracks dependencies which arise when an expression implicitly refers to the properties of the object being defined.
For example, suppose we wanted to elaborate the scenario above by saying the car is oriented up to 5° off of the nominal traffic direction.
We can write this using the roadDirection vector field and Scenic’s general operator
X relative to Y, which can interpret vectors and orientations as being in a
variety of local coordinate systems:

new Car left of curb by 0.5,
 facing Range(-5, 5) deg relative to roadDirection

Notice that since roadDirection is a vector field, it defines a different local
coordinate system at each point in space: at different points on the map, roads point
different directions! Thus an expression like 15 deg relative to field does not
define a unique heading. The example above works because Scenic knows that the
expression Range(-5, 5) deg relative to roadDirection depends on a reference
position, and automatically uses the position of the Car being defined.

Another kind of dependency arises from modifying specifiers, which are specifiers that can take an already-specified value for a property and modify it (thereby in a sense both depending on that property and specifying it).
The main example is the on region specifier, which in addition to the usage we saw above for placing an object randomly within a region, also can be used as a modifying specifier: if the position property has already been specified, then on region projects that position onto the region.
So for example the code new Object ahead of plane by 100, on ground does not raise an error even though both ahead of and on specify position: Scenic first computes a position 100 m ahead of the plane, and then projects that position down onto the ground.

Specifier Priorities

As we’ve discussed previously, specifiers can specify multiple properties, and they can specify some properties optionally, allowing other specifiers to override them.
In fact, when a specifier specifies a property it does so with a priority represented by a positive integer.
A property specified with priority 1 cannot be overridden; increasingly large integers represent lower priorities, so a priority-2 specifier overrides one with priority 3.
This system enables more-specific specifiers to naturally take precedence over more general specifiers while reducing the amount of boilerplate code you need to write.
Consider for example the following sequence of object creations, where we provide progressively more information about the object:

	In new Object ahead of plane by 100, the ahead of specifier specifies parentOrientation with priority 3, so that the new object is aligned with the plane (a reasonable default since we’re positioning the object with respect to the plane).

	In new Object ahead of plane by 100, on ground, the on ground specifies parentOrientation with priority 2, so it takes precedence and the object is aligned with the ground rather than the plane (which makes more sense since “on ground” implies the object likely lies flat on the ground).

	Finally, in new Object ahead of plane by 100, on ground, with parentOrientation (0, 90 deg, 0), the with specifier specifies parentOrientation with priority 1, so it takes precedence and Scenic uses the explicit orientation the user provided.

As these examples show, specifier priorities enable concise specifications of objects to have intuitive default behavior when no explicit information is given, while at the same time overriding this behavior remains straightforward.

For a more thorough look at the specifier system, including which specifiers specify which properties and at which priorities, consult the Specifiers Reference.

Declarative Hard and Soft Constraints

Notice that in the scenarios above we never explicitly ensured that two cars will not
intersect each other. Despite this, Scenic will never generate such scenes. This is
because Scenic enforces several default requirements, as mentioned above:

	All objects must be contained in the workspace, or a particular specified region (its container).
For example, we can define the Car class so that all of its instances must be
contained in the region road by default.

	Objects must not intersect each other (unless explicitly allowed).

Scenic also allows the user to define custom requirements checking arbitrary conditions
built from various geometric predicates. For example, the following scenario produces a
car headed roughly towards the camera, while still facing the nominal road direction:

ego = new Car on road
car2 = new Car offset by (Range(-10, 10), Range(20, 40)), with viewAngle 30 deg
require car2 can see ego

Here we have used the X can see Y predicate, which in this case is checking
that the ego car is inside the 30° view cone of the second car.

Requirements, called observations in other probabilistic programming languages, are
very convenient for defining scenarios because they make it easy to restrict attention to
particular cases of interest. Note how difficult it would be to write the scenario above
without the require statement: when defining the ego car, we would have to somehow
specify those positions where it is possible to put a roughly-oncoming car 20–40 meters
ahead (for example, this is not possible on a one-way road). Instead, we can simply place
ego uniformly over all roads and let Scenic work out how to condition the
distribution so that the requirement is satisfied [4]. As this example illustrates,
the ability to declaratively impose constraints gives Scenic greater versatility than
purely-generative formalisms. Requirements also improve encapsulation by allowing us to
restrict an existing scenario without altering it. For example:

from myScenarioLib import genericTaxiScenario # import another Scenic scenario
fifthAvenue = ... # extract a Region from a map here
require genericTaxiScenario.taxi in fifthAvenue

The constraints in our examples above are hard requirements which must always be
satisfied. Scenic also allows imposing soft requirements that need only be true with
some minimum probability:

require[0.5] car2 can see ego # condition only needs to hold with prob. >= 0.5

Such requirements can be useful, for example, in ensuring adequate representation of a
particular condition when generating a training set: for instance, we could require that
at least 90% of generated images have a car driving on the right side of the road.

Mutations

A common testing paradigm is to randomly generate variations of existing tests. Scenic
supports this paradigm by providing syntax for performing mutations in a compositional
manner, adding variety to a scenario without changing its code. For example, given a
complex scenario involving a taxi, we can add one additional line:

from bigScenario import taxi
mutate taxi

The mutate statement will add Gaussian noise to the position and orientation
properties of taxi, while still enforcing all built-in and custom requirements. The
standard deviation of the noise can be scaled by writing, for example,
mutate taxi by 2 (which adds twice as much noise), and in fact can be controlled
separately for position and orientation (see scenic.core.object_types.Mutator).

A Worked Example

We conclude with a larger example of a Scenic program which also illustrates the
language’s utility across domains and simulators. Specifically, we consider the problem
of testing a motion planning algorithm for a Mars rover able to climb over hills and rocks. Such
robots can have very complex dynamics, with the feasibility of a motion plan depending on
exact details of the robot’s hardware and the geometry of the terrain. We can use Scenic
to write a scenario generating challenging cases for a planner to solve in simulation.
Some of the specifiers and operators we’ll use have not been discussed before in the tutorial;
as usual, information about them can be found in the Syntax Guide.

We will write a scenario representing a hilly field of rocks and pipes with a
bottleneck between the rover and its goal that forces the path planner to consider
climbing over a rock. First, we import a small Scenic library for the Webots robotics
simulator and a mars specific library which defines the (empty) workspace and several types of objects:
the Rover itself, the Goal (represented by a flag), the MarsGround and MarsHill
classes which are used to create the hilly terrain, and debris classes Rock, BigRock,
and Pipe. Rock and BigRock have fixed sizes, and
the rover can climb over them; Pipe cannot be climbed over, and can represent a pipe of
arbitrary length, controlled by the length property (which corresponds to Scenic’s
Y axis).

1model scenic.simulators.webots.mars.model
2from mars_lib import *

Here we’ve used the model statement to select the world model for the scenario: it is equivalent to from scenic.simulators.webots.model import * except that the choice of model can be overridden from the command line when compiling the scenario (using the --model option).
This is useful for scenarios that use one of Scenic’s Abstract Domains: the scenario can be written once in a simulator-agnostic manner, then used with different simulators by selecting the appropriate simulator-specific world model.

Now we can start to create objects. The first object we will create will be the hilly ground. To do this, we use the MarsGround which has a terrain property which should be set to a collection of MarsHill classes, each of which adds a gaussian hill to the ground. Note that the MarsGround object has allowCollisions set to True, allowing objects to intersect and be slightly embedded in the ground. In the following code we create a ground object with 60 small hills (which are allowed to stack on top of each other):

5ground = new MarsGround on (0,0,0), with terrain [new MarsHill for _ in range(60)]

We next create the rover at a fixed position and the goal at a random position on the
other side of the workspace, ensuring both are on the ground:

8ego = new Rover at (0, -3), on ground, with controller 'sojourner'
9goal = new Goal at (Range(-2, 2), Range(2, 3)), on ground, facing (0,0,0)

Next we pick a position for the bottleneck, requiring it to lie roughly on the way from
the robot to its goal, and place a rock there. Here we use the simple form of facing which takes a scalar argument, effectively setting the yaw of the object in the global coordinate system (so that 0 deg is due North, for example, and 90 deg is due West).

15bottleneck = new OrientedPoint at ego offset by Range(-1.5, 1.5) @ Range(0.5, 1.5), facing Range(-30, 30) deg
16require abs((angle to goal) - (angle to bottleneck)) <= 10 deg
17new BigRock at bottleneck, on ground

Note how we define bottleneck as an OrientedPoint, with a range of possible
orientations: this is to set up a local coordinate system for positioning the pipes
making up the bottleneck. Specifically, we position two pipes of varying lengths on
either side of the bottleneck, projected onto the ground, with their ends far enough apart for the robot to be able
to pass between. Note that we explicitly specify parentOrientation to be the global coordinate system, which
prevents the pipes from lying tangent to the ground as we want them flat and partially embedded in the ground.

16gap = 1.2 * ego.width
17halfGap = gap / 2
18
19leftEdge = new OrientedPoint left of bottleneck by halfGap,
20 facing Range(60, 120) deg relative to bottleneck.heading
21rightEdge = new OrientedPoint right of bottleneck by halfGap,
22 facing Range(-120, -60) deg relative to bottleneck.heading
23
24new Pipe ahead of leftEdge, with length Range(1, 2), on ground, facing leftEdge, with parentOrientation 0
25new Pipe ahead of rightEdge, with length Range(1, 2), on ground, facing rightEdge, with parentOrientation 0

Finally, to make the scenario slightly more interesting, we add several additional
obstacles, positioned either on the far side of the bottleneck or anywhere at random
(recalling that Scenic automatically ensures that no objects will overlap).

29new Pipe on ground, with parentOrientation 0
30new BigRock beyond bottleneck by Range(0.25, 0.75) @ Range(0.75, 1), on ground
31new BigRock beyond bottleneck by Range(-0.75, -0.25) @ Range(0.75, 1), on ground
32new Rock on ground
33new Rock on ground
34new Rock on ground

This completes the scenario, which can also be found in the Scenic repository under
examples/webots/mars/narrowGoal.scenic. Scenes generated from the
scenario, and visualized in Scenic’s internal visualizer and Webots, are shown below.

[image: Mars rover scenario image, rendered in Scenic's internal visualizer.]

A scene sampled from the Mars rover scenario, rendered in Scenic’s internal visualizer.

[image: Mars rover scenario image, rendered in Webots.]

A scene sampled from the Mars rover scenario, rendered in Webots.

Further Reading

This tutorial illustrated the syntax of Scenic through several simple examples. Much more
complex scenarios are possible, such as the platoon and bumper-to-bumper traffic GTA V
scenarios shown below. For many further examples using a variety of simulators, see the
examples folder, as well as the links in the Supported Simulators page.

[image: ../_images/platoon2.jpg]
[image: ../_images/platoon3.jpg]
[image: ../_images/platoon4.jpg]
[image: ../_images/btb1.jpg]
[image: ../_images/btb3.jpg]
[image: ../_images/btb4.jpg]
Our tutorial on Dynamic Scenarios describes how to define scenarios
with dynamic agents that move or take other actions over time.
We also have a tutorial on Composing Scenarios: defining scenarios in a modular, reusable way and combining them to build up more complex scenarios.

For a comprehensive overview of Scenic’s syntax, including details on all specifiers,
operators, distributions, statements, and built-in classes, see the
Language Reference. Our Syntax Guide summarizes all of these language
constructs in convenient tables with links to the detailed documentation.

Footnotes

[1]
Although collisions can be allowed on a per-object basis: see the allowCollisions property of Object.

[2]
Represented as an instance of the Orientation class, which internally uses
quaternions (although you shouldn’t need to worry about that). In the rare case where
you need to manipulate orientations beyond what Scenic’s operators provide, see the
documentation for Orientation.

[3]
In fact, since ego is a variable and can be reassigned, we can set ego to
one object, build a part of the scene around it, then reassign ego and build
another part of the scene.

[4]
On the other hand, Scenic may have to work hard to satisfy difficult
constraints. Ultimately Scenic falls back on rejection sampling, which in the worst
case will run forever if the constraints are inconsistent (although we impose a limit
on the number of iterations: see Scenario.generate).

References

[F22]
(1,2)
Fremont et al., Scenic: A Language for Scenario Specification and Data Generation, Machine Learning, 2022. [Online] [https://doi.org/10.1007/s10994-021-06120-5]

[F19]
(1,2,3)
Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.

Dynamic Scenarios

The Scenic Fundamentals described how Scenic can model scenarios like “a badly-parked car” by defining spatial relationships between objects.
Here, we’ll cover how to model temporal aspects of scenarios: for a scenario like “a badly-parked car, which pulls into the road as the ego car approaches”, we need to specify not only the initial position of the car but how it behaves over time.

Agents, Actions, and Behaviors

In Scenic, we call objects which take actions over time dynamic agents, or simply
agents. These are ordinary Scenic objects, so we can still use all of Scenic’s syntax
for describing their initial positions, orientations, etc. In addition, we specify their
dynamic behavior using a built-in property called behavior. Here’s an example using
one of the built-in behaviors from the Driving Domain:

model scenic.domains.driving.model
new Car with behavior FollowLaneBehavior

A behavior defines a sequence of actions for the agent to take, which need not be fixed
but can be probabilistic and depend on the state of the agent or other objects. In
Scenic, an action is an instantaneous operation executed by an agent, like
setting the steering angle of a car or turning on its headlights. Most actions are
specific to particular application domains, and so different sets of actions are provided
by different simulator interfaces. For example, the Driving Domain defines a
SetThrottleAction for cars.

To define a behavior, we write a function which runs over the course of the scenario,
periodically issuing actions. Scenic uses a discrete notion of time, so at each time
step the function specifies zero or more actions for the agent to take. For example, here
is a very simplified version of the FollowLaneBehavior above:

behavior FollowLaneBehavior():
 while True:
 throttle, steering = ... # compute controls
 take SetThrottleAction(throttle), SetSteerAction(steering)

We intend this behavior to run for the entire scenario, so we use an infinite loop. In
each step of the loop, we compute appropriate throttle and steering controls, then use
the take statement to take the corresponding actions. When that statement is
executed, Scenic pauses the behavior until the next time step of the simulation, when the
function resumes and the loop repeats.

When there are multiple agents, all of their behaviors run in parallel; each time step,
Scenic sends their selected actions to the simulator to be executed and advances the
simulation by one step. It then reads back the state of the simulation, updating the
positions and other dynamic properties of the objects.

[image: Diagram showing interaction between Scenic and a simulator.]

Behaviors can access the current state of the world to decide what actions to take:

behavior WaitUntilClose(threshold=15):
 while (distance from self to ego) > threshold:
 wait
 do FollowLaneBehavior()

Here, we repeatedly query the distance from the agent running the behavior (self)
to the ego car; as long as it is above a threshold, we wait, which means take no
actions. Once the threshold is met, we start driving by invoking the FollowLaneBehavior
we saw above using the do statement. Since FollowLaneBehavior runs forever, we will
never return to the WaitUntilClose behavior.

The example above also shows how behaviors may take arguments, like any Scenic function.
Here, threshold is an argument to the behavior which has default value 15 but can be
customized, so we could write for example:

ego = new Car
car2 = new Car visible, with behavior WaitUntilClose
car3 = new Car visible, with behavior WaitUntilClose(20)

Both car2 and car3 will use the WaitUntilClose behavior, but independent
copies of it with thresholds of 15 and 20 respectively.

Unlike ordinary Scenic code, control flow constructs such as if and while are
allowed to depend on random variables inside a behavior. Any distributions defined inside
a behavior are sampled at simulation time, not during scene sampling. Consider the
following behavior:

1behavior Foo():
2 threshold = Range(4, 7)
3 while True:
4 if self.distanceToClosest(Pedestrian) < threshold:
5 strength = TruncatedNormal(0.8, 0.02, 0.5, 1)
6 take SetBrakeAction(strength), SetThrottleAction(0)
7 else:
8 take SetThrottleAction(0.5), SetBrakeAction(0)

Here, the value of threshold is sampled only once, at the beginning of the scenario
when the behavior starts running. The value strength, on the other hand, is sampled
every time control reaches line 5, so that every time step when the car is braking we use
a slightly different braking strength (0.8 on average, but with Gaussian noise added with
standard deviation 0.02, truncating the possible values to between 0.5 and 1).

Interrupts

It is frequently useful to take an existing behavior and add a complication to it; for
example, suppose we want a car that follows a lane, stopping whenever it encounters an
obstacle. Scenic provides a concept of interrupts which allows us to reuse the basic
FollowLaneBehavior without having to modify it:

behavior FollowAvoidingObstacles():
 try:
 do FollowLaneBehavior()
 interrupt when self.distanceToClosest(Object) < 5:
 take SetBrakeAction(1)

This try-interrupt statement has similar syntax to the Python
try statement [https://docs.python.org/3/reference/compound_stmts.html#try] (and in fact allows except clauses just as in
Python), and begins in the same way: at first, the code block after the try: (the
body) is executed. At the start of every time step during its execution, the condition
from each interrupt clause is checked; if any are true, execution of the body is
suspended and we instead begin to execute the corresponding interrupt handler. In the
example above, there is only one interrupt, which fires when we come within 5 meters of
any object. When that happens, FollowLaneBehavior is paused and we instead apply full
braking for one time step. In the next step, we will resume FollowLaneBehavior wherever
it left off, unless we are still within 5 meters of an object, in which case the
interrupt will fire again.

If there are multiple interrupt clauses, successive clauses take precedence over
those which precede them. Furthermore, such higher-priority interrupts can fire even
during the execution of an earlier interrupt handler. This makes it easy to model a
hierarchy of behaviors with different priorities; for example, we could implement a car
which drives along a lane, passing slow cars and avoiding collisions, along the
following lines:

behavior Drive():
 try:
 do FollowLaneBehavior()
 interrupt when self.distanceToNextObstacle() < 20:
 do PassingBehavior()
 interrupt when self.timeToCollision() < 5:
 do CollisionAvoidance()

Here, the car begins by lane following, switching to passing if there is a car or other
obstacle too close ahead. During either of those two sub-behaviors, if the time to
collision gets too low, we switch to collision avoidance. Once the CollisionAvoidance
behavior completes, we will resume whichever behavior was interrupted earlier. If we were
in the middle of PassingBehavior, it will run to completion (possibly being
interrupted again) before we finally resume FollowLaneBehavior.

As this example illustrates, when an interrupt handler completes, by default we resume
execution of the interrupted code. If this is undesired, the abort statement can be
used to cause the entire try-interrupt statement to exit. For example, to run a behavior
until a condition is met without resuming it afterward, we can write:

behavior ApproachAndTurnLeft():
 try:
 do FollowLaneBehavior()
 interrupt when (distance from self to intersection) < 10:
 abort # cancel lane following
 do WaitForTrafficLightBehavior()
 do TurnLeftBehavior()

This is a common enough use case of interrupts that Scenic provides a shorthand notation:

behavior ApproachAndTurnLeft():
 do FollowLaneBehavior() until (distance from self to intersection) < 10
 do WaitForTrafficLightBehavior()
 do TurnLeftBehavior()

Scenic also provides a shorthand for interrupting a behavior after a certain period of
time:

behavior DriveForAWhile():
 do FollowLaneBehavior() for 30 seconds

The alternative form do behavior for n steps uses time steps instead of real
simulation time.

Finally, note that when try-interrupt statements are nested, interrupts of the outer
statement take precedence. This makes it easy to build up complex behaviors in a modular
way. For example, the behavior Drive we wrote above is relatively complicated, using
interrupts to switch between several different sub-behaviors. We would like to be able to
put it in a library and reuse it in many different scenarios without modification.
Interrupts make this straightforward; for example, if for a particular scenario we want a
car that drives normally but suddenly brakes for 5 seconds when it reaches a certain
area, we can write:

behavior DriveWithSuddenBrake():
 haveBraked = False
 try:
 do Drive()
 interrupt when self in targetRegion and not haveBraked:
 do StopBehavior() for 5 seconds
 haveBraked = True

With this behavior, Drive operates as it did before, interrupts firing as appropriate
to switch between lane following, passing, and collision avoidance. But during any of
these sub-behaviors, if the car enters the targetRegion it will immediately brake for
5 seconds, then pick up where it left off.

Stateful Behaviors

As the last example shows, behaviors can use local variables to maintain state, which is
useful when implementing behaviors which depend on actions taken in the past. To
elaborate on that example, suppose we want a car which usually follows the Drive
behavior, but every 15-30 seconds stops for 5 seconds. We can implement this behavior as
follows:

behavior DriveWithRandomStops():
 delay = Range(15, 30) seconds
 last_stop = 0
 try:
 do Drive()
 interrupt when simulation().currentTime - last_stop > delay:
 do StopBehavior() for 5 seconds
 delay = Range(15, 30) seconds
 last_stop = simulation().currentTime

Here delay is the randomly-chosen amount of time to run Drive for,
and last_stop keeps track of the time when we last started to run it. When the time
elapsed since last_stop exceeds delay, we interrupt Drive and
stop for 5 seconds. Afterwards, we pick a new delay before the next stop, and save
the current time in last_stop, effectively resetting our timer to zero.

Note

It is possible to change global state from within a behavior by using the Python
global statement [https://docs.python.org/3/reference/simple_stmts.html#global], for instance to communicate between
behaviors. If using this ability, keep in mind that the order in which behaviors of
different agents is executed within a single time step could affect your results. The
default order is the order in which the agents were defined, but it can be adjusted
by overriding the Simulation.scheduleForAgents method.

Requirements and Monitors

Just as you can declare spatial constraints on scenes using the require statement,
you can also impose constraints on dynamic scenarios. For example, if we don’t want to
generate any simulations where car1 and car2 are simultaneously visible from the
ego car, we could write:

require always not ((ego can see car1) and (ego can see car2))

Here, always condition is a temporal operator which can only be used inside a requirement, and which evaluates to true if and only if the condition is true at every time step of the scenario.
So if the condition above is ever false during a simulation, the requirement will be violated, causing Scenic to
reject that simulation and sample a new one. Similarly, we can require that a condition
hold at some time during the scenario using the eventually operator:

require eventually ego in intersection

It is also possible to relate conditions at different time steps.
For example, to require that car1 enters the intersection no later than when car2 does, we can use the until operator:

require car2 not in intersection until car1 in intersection
require eventually car2 in intersection

Temporal operators can be combined with Boolean operators to build up more complex requirements [1], e.g.:

require (always car.speed < 30) implies (always distance to car > 10)

See Temporal Operators for a complete list of the available operators and their semantics.

You can also use the ordinary require statement inside a behavior to require that a
given condition hold at a certain point during the execution of the behavior. For
example, here is a simple elaboration of the WaitUntilClose behavior we saw above which requires that no pedestrian comes close to self until the ego does (after which we place no further restrictions):

behavior WaitUntilClose(threshold=15):
 while distance from self to ego > threshold:
 require self.distanceToClosest(Pedestrian) > threshold
 wait
 do FollowLaneBehavior()

If you want to enforce a complex requirement that isn’t conveniently expressible either using the temporal operators built into Scenic or by modifying a behavior, you can define a monitor.
Like behaviors, monitors are functions which run in parallel
with the scenario, but they are not associated with any agent and any actions they take
are ignored (so you might as well only use the wait statement). Here is a monitor
for requiring that a given car spends at most a certain amount of time in the intersection:

1monitor LimitTimeInIntersection(car, limit=100):
2 stepsInIntersection = 0
3 while True:
4 require stepsInIntersection <= limit
5 if car in intersection:
6 stepsInIntersection += 1
7 wait

We use the variable stepsInIntersection to remember how many time steps car has spent in the intersection; if it ever exceeds the limit, the requirement on line 4 will fail and we will reject the simulation.
Note the necessity of the wait statement on line 7: if we omitted it, the
loop could run forever without any time actually passing in the simulation.

Like behaviors, monitors can take parameters, allowing a monitor defined in a library to
be reused in various situations. To instantiate a monitor in a scenario, use the
require monitor statement:

require monitor LimitTimeInIntersection(ego)
require monitor LimitTimeInIntersection(taxi, limit=200)

Preconditions and Invariants

Even general behaviors designed to be used in multiple scenarios may not operate
correctly from all possible starting states: for example, FollowLaneBehavior assumes
that the agent is actually in a lane rather than, say, on a sidewalk. To model such
assumptions, Scenic provides a notion of guards for behaviors. Most simply, we can
specify one or more preconditions:

behavior MergeInto(newLane):
 precondition: self.lane is not newLane and self.road is newLane.road
 ...

Here, the precondition requires that whenever the MergeInto behavior is executed by
an agent, the agent must not already be in the destination lane but should be on the same
road. We can add any number of such preconditions; like ordinary requirements, violating
any precondition causes the simulation to be rejected.

Since behaviors can be interrupted, it is possible for a behavior to resume execution in
a state it doesn’t expect: imagine a car which is lane following, but then swerves onto
the shoulder to avoid an accident; naïvely resuming lane following, we find we are no
longer in a lane. To catch such situations, Scenic allows us to define invariants which
are checked at every time step during the execution of a behavior, not just when it
begins running. These are written similarly to preconditions:

behavior FollowLaneBehavior():
 invariant: self in road
 ...

While the default behavior for guard violations is to reject the simulation, in some
cases it may be possible to recover from a violation by taking some additional actions.
To enable this kind of design, Scenic signals guard violations by raising a
GuardViolation exception which can be caught like any other exception; the simulation
is only rejected if the exception propagates out to the top level. So to model the
lane-following-with-collision-avoidance behavior suggested above, we could write code
like this:

behavior Drive():
 while True:
 try:
 do FollowLaneBehavior()
 interrupt when self.distanceToClosest(Object) < 5:
 do CollisionAvoidance()
 except InvariantViolation: # FollowLaneBehavior has failed
 do GetBackOntoRoad()

When any object comes within 5 meters, we suspend lane following and switch to collision
avoidance. When the CollisionAvoidance behavior completes, FollowLaneBehavior
will be resumed; if its invariant fails because we are no longer on the road, we catch
the resulting InvariantViolation exception and run a GetBackOntoRoad behavior to
restore the invariant. The whole try statement then completes, so the outermost loop
iterates and we begin lane following once again.

Terminating the Scenario

By default, scenarios run forever, unless the --time option is used to impose a
time limit. However, scenarios can also define termination criteria using the
terminate when statement; for example, we could decide to end a scenario as soon as
the ego car travels at least a certain distance:

start = new Point on road
ego = new Car at start
terminate when (distance to start) >= 50

Additionally, the terminate statement can be used inside behaviors and monitors: if
it is ever executed, the scenario ends. For example, we can use a monitor to terminate
the scenario once the ego spends 30 time steps in an intersection:

monitor StopAfterTimeInIntersection:
 totalTime = 0
 while totalTime < 30:
 if ego in intersection:
 totalTime += 1
 wait
 terminate

Note

In order to make sure that requirements are not violated, termination criteria are
only checked after all requirements. So if in the same time step a monitor uses the
terminate statement but another behavior uses require with a false condition,
the simulation will be rejected rather than terminated.

Trying Some Examples

You can see all of the above syntax in action by running some of our examples of dynamic
scenarios. We have examples written for the CARLA and LGSVL driving simulators, and those
in examples/driving in particular are designed to use Scenic’s abstract
driving domain and so work in either of these simulators, as well
as Scenic’s built-in Newtonian physics simulator. The Newtonian simulator is convenient
for testing and simple experiments; you can find details on how to install the more
realistic simulators in our Supported Simulators page (they should work on both Linux and
Windows, but not macOS, at the moment).

Let’s try running
examples/driving/badlyParkedCarPullingIn.scenic, which implements the “a
badly-parked car, which pulls into the road as the ego car approaches” scenario we
mentioned above. To start out, you can run it like any other Scenic scenario to get the
usual schematic diagram of the generated scenes:

$ scenic examples/driving/badlyParkedCarPullingIn.scenic --2d

To run dynamic simulations, add the --simulate option (-S for short).
Since this scenario is not written for a particular simulator, you’ll need to specify
which one you want by using the --model option (-m for short) to
select the corresponding Scenic world model: for example, to use the Newtonian simulator we could add
--model scenic.simulators.newtonian.driving_model. It’s also a good idea to put a time bound on
the simulations, which we can do using the --time option.

$ scenic examples/driving/badlyParkedCarPullingIn.scenic \
 --2d \
 --simulate \
 --model scenic.simulators.newtonian.driving_model \
 --time 200

Running the scenario in CARLA is exactly the same, except we use the
--model scenic.simulators.carla.model option instead (make sure to start CARLA
running first). For LGSVL, the one difference is that this scenario
specifies a map which LGSVL doesn’t have built in; fortunately, it’s easy to switch to a
different map. For scenarios using the driving domain, the map
file is specified by defining a global parameter map, and for the LGSVL interface we
use another parameter lgsvl_map to specify the name of the map in LGSVL (the CARLA
interface likewise uses a parameter carla_map). These parameters can be set at the
command line using the --param option (-p for short); for example,
let’s pick the “BorregasAve” LGSVL map, an OpenDRIVE file for which is included in the
Scenic repository. We can then run a simulation by starting LGSVL in “API Only” mode and
invoking Scenic as follows:

$ scenic examples/driving/badlyParkedCarPullingIn.scenic \
 --2d \
 --simulate \
 --model scenic.simulators.lgsvl.model \
 --time 200 \
 --param map assets/maps/LGSVL/borregasave.xodr \
 --param lgsvl_map BorregasAve

Try playing around with different example scenarios and different choices of maps (making
sure that you keep the map and lgsvl_map/carla_map parameters consistent).
For both CARLA and LGSVL, you don’t have to restart the simulator between scenarios: just
kill Scenic [2] and restart it with different arguments.

Further Reading

This tutorial illustrated most of Scenic’s core syntax for dynamic scenarios. As with the
rest of Scenic’s syntax, these constructs are summarized in our Syntax Guide, with
links to detailed documentation in the Language Reference. You may also be interested
in some other sections of the documentation:

	Composing Scenarios
	Building more complex scenarios out of simpler ones in a modular way.

	Supported Simulators
	Details on which simulator interfaces support dynamic scenarios.

	Execution of Dynamic Scenarios
	The gory details of exactly how behaviors run, monitors are checked, etc. (probably not worth reading unless you’re having a subtle timing issue).

Footnotes

[1]
For those familiar with temporal logic, you can encode any formula of Linear Temporal Logic.

[2]
Or use the --count option to have Scenic automatically terminate after
a desired number of simulations.

Composing Scenarios

Scenic provides facilities for defining multiple scenarios in a single program and composing them in various ways.
This enables writing a library of scenarios which can be repeatedly used as building blocks to construct more complex scenarios.

Modular Scenarios

The scenario statement defines a named, reusable scenario, optionally with tunable parameters: what we call a modular scenario.
For example, here is a scenario which creates a parked car on the shoulder of the ego’s current lane (assuming there is one), using some APIs from the Driving Domain:

scenario ParkedCar(gap=0.25):
 precondition: ego.laneGroup._shoulder != None
 setup:
 spot = new OrientedPoint on visible ego.laneGroup.curb
 parkedCar = new Car left of spot by gap

The setup block contains Scenic code which executes when the scenario is instantiated, and which can define classes, create objects, declare requirements, etc. as in any ordinary Scenic scenario.
Additionally, we can define preconditions and invariants, which operate in the same way as for dynamic behaviors.

Having now defined the ParkedCar scenario, we can use it in a more complex scenario, potentially multiple times:

scenario Main():
 setup:
 ego = new Car
 compose:
 do ParkedCar(), ParkedCar(0.5)

Here our Main scenario itself only creates the ego car; then its compose block orchestrates how to run other modular scenarios.
In this case, we invoke two copies of the ParkedCar scenario in parallel, specifying in one case that the gap between the parked car and the curb should be 0.5 m instead of the default 0.25.
So the scenario will involve three cars in total, and as usual Scenic will automatically ensure that they are all on the road and do not intersect.

Parallel and Sequential Composition

The scenario above is an example of parallel composition, where we use the do statement to run two scenarios at the same time.
We can also use sequential composition, where one scenario begins after another ends.
This is done the same way as in behaviors: in fact, the compose block of a scenario is executed in the same way as a monitor, and allows all the same control-flow constructs.
For example, we could write a compose block as follows:

1while True:
2 do ParkedCar(gap=0.25) for 30 seconds
3 do ParkedCar(gap=0.5) for 30 seconds

Here, a new parked car is created every 30 seconds, [1] with the distance to the curb alternating between 0.25 and 0.5 m.
Note that without the for 30 seconds qualifier, we would never get past line 2, since the ParkedCar scenario does not define any termination conditions using terminate when (or terminate in a compose block) and so runs forever by default.
If instead we want to create a new car only when the ego has passed the current one, we can use a do-until statement:

while True:
 subScenario = ParkedCar(gap=0.25)
 do subScenario until (distance past subScenario.parkedCar) > 10

Note how we can refer to the parkedCar variable created in the ParkedCar scenario as a property of the scenario.
Combined with the ability to pass objects as parameters of scenarios, this is convenient for reusing objects across scenarios.

Interrupts, Overriding, and Initial Scenarios

The try-interrupt statement used in behaviors can also be used in compose blocks to switch between scenarios.
For example, suppose we already have a scenario where the ego is following a leadCar, and want to elaborate it by adding a parked car which suddenly pulls in front of the lead car.
We could write a compose block as follows:

1following = FollowingScenario()
2try:
3 do following
4interrupt when (distance to following.leadCar) < 10:
5 do ParkedCarPullingAheadOf(following.leadCar)

If the ParkedCarPullingAheadOf scenario is defined to end shortly after the parked car finishes entering the lane, the interrupt handler will complete and Scenic will resume executing FollowingScenario on line 3 (unless the ego is still within 10 m of the lead car).

Suppose that we want the lead car to behave differently while the parked car scenario is running; for example, perhaps the behavior for the lead car defined in FollowingScenario does not handle a parked car suddenly pulling in.
To enable changing the behavior or other properties of an object in a sub-scenario, Scenic provides the override statement, which we can use as follows:

scenario ParkedCarPullingAheadOf(target):
 setup:
 override target with behavior FollowLaneAvoidingCollisions
 parkedCar = new Car left of ...

Here we override the behavior property of target for the duration of the scenario, reverting it back to its original value (and thereby continuing to execute the old behavior) when the scenario terminates.
The override object specifier, ... statement takes a comma-separated list of specifiers like an instance creation, and can specify any properties of the object except for dynamic properties like position or speed which can only be indirectly controlled by taking actions.

In order to allow writing scenarios which can both stand on their own and be invoked during another scenario, Scenic provides a special conditional statement testing whether we are inside the initial scenario, i.e., the very first scenario to run.
For instance:

scenario TwoLanePedestrianScenario():
 setup:
 if initial scenario: # create ego on random 2-lane road
 roads = filter(lambda r: len(r.lanes) == 2, network.roads)
 road = Uniform(*roads) # pick uniformly from list
 ego = new Car on road
 else: # use existing ego car; require it is on a 2-lane road
 require len(ego.road.lanes) == 2
 road = ego.road
 new Pedestrian on visible road.sidewalkRegion, with behavior ...

Random Selection of Scenarios

For very general scenarios, like “driving through a city, encountering typical human traffic”, we may want a variety of different events and interactions to be possible.
We saw in the Dynamic Scenarios tutorial how we can write behaviors for individual agents which choose randomly between possible actions; Scenic allows us to do the same with entire scenarios.
Most simply, since scenarios are first-class objects, we can write functions which operate on them, perhaps choosing a scenario from a list of options based on some complex criterion:

chosenScenario = pickNextScenario(ego.position, ...)
do chosenScenario

However, some scenarios may only make sense in certain contexts; for example, a red light runner scenario can take place only at an intersection.
To facilitate modeling such situations, Scenic provides variants of the do statement which randomly choose scenarios to run amongst only those whose preconditions are satisfied:

1do choose RedLightRunner, Jaywalker, ParkedCar(gap=0.5)
2do choose {RedLightRunner: 2, Jaywalker: 1, ParkedCar(gap=0.5): 1}
3do shuffle RedLightRunner, Jaywalker, ParkedCar

Here, line 1 checks the preconditions of the three given scenarios, then executes one (and only one) of the enabled scenarios. If for example the current road has no shoulder, then ParkedCar will be disabled and we will have a 50/50 chance of executing either RedLightRunner or Jaywalker (assuming their preconditions are satisfied).
If none of the three scenarios are enabled, Scenic will reject the simulation.
Line 2 shows a non-uniform variant, where RedLightRunner is twice as likely to be chosen as each of the other scenarios (so if only ParkedCar is disabled, we will pick RedLightRunner with probability 2/3; if none are disabled, 2/4).
Finally, line 3 is a shuffled variant, where all three scenarios will be executed, but in random order. [2]

Footnotes

[1]
In a real implementation, we would probably want to require that the parked car is not initially visible from the ego, to avoid the sudden appearance of cars out of nowhere.

[2]
Respecting preconditions, so in particular the simulation will be rejected if at some point none of the remaining scenarios to execute are enabled.

Syntax Guide

This page summarizes the syntax of Scenic, excluding the basic syntax of variable assignments, functions, loops, etc., which is identical to Python (see the Python Tutorial [https://docs.python.org/3/tutorial/] for an introduction).
For more details, click the links for individual language constructs to go to the corresponding section of the Language Reference.

Primitive Data Types

	Booleans

	expressing truth values

	Scalars

	representing distances, angles, etc. as floating-point numbers

	Vectors

	representing positions and offsets in space

	Headings

	representing 2D orientations in the XY plane

	Orientations

	representing 3D orientations in space

	Vector Fields

	associating an orientation to each point in space

	Regions

	representing sets of points in space

	Shapes

	representing shapes (regions modulo similarity)

Distributions

	Range(low, high)

	uniformly-distributed real number in the interval

	DiscreteRange(low, high)

	uniformly-distributed integer in the (fixed) interval

	Normal(mean, stdDev)

	normal distribution with the given mean and standard deviation

	TruncatedNormal(mean, stdDev, low, high)

	normal distribution truncated to the given window

	Uniform(value, ...)

	uniform over a finite set of values

	Discrete({value: weight, ...})

	discrete with given values and weights

	new Point in region

	uniformly-distributed Point in a region

Statements

Compound Statements

	Syntax

	Meaning

	class name[(superclass)]:

	Defines a Scenic class.

	behavior name(arguments):

	Defines a dynamic behavior.

	monitor name(arguments):

	Defines a monitor.

	scenario name(arguments):

	Defines a modular scenario.

	try: ... interrupt when boolean:

	Run code with interrupts inside a dynamic behavior or modular scenario.

Simple Statements

	Syntax

	Meaning

	model name

	Select the world model.

	import module

	Import a Scenic or Python module.

	param name = value, ...

	Define global parameters of the scenario.

	require boolean

	Define a hard requirement.

	require[number] boolean

	Define a soft requirement.

	require LTL formula

	Define a dynamic hard requirement.

	require monitor monitor

	Define a dynamic requirement using a monitor.

	terminate when boolean

	Define a termination condition.

	terminate after scalar (seconds | steps)

	Set the scenario to terminate after a given amount of time.

	mutate identifier, ... [by number]

	Enable mutation of the given list of objects.

	record [initial | final] value as name

	Save a value at every time step or only at the start/end of the simulation.

Dynamic Statements

These statements can only be used inside a dynamic behavior, monitor, or compose block of a modular scenario.

	Syntax

	Meaning

	take action, ...

	Take the action(s) specified.

	wait

	Take no actions this time step.

	terminate

	Immediately end the scenario.

	terminate simulation

	Immediately end the entire simulation.

	do behavior/scenario, ...

	Run one or more sub-behaviors/sub-scenarios until they complete.

	do behavior/scenario, ... until boolean

	Run sub-behaviors/scenarios until they complete or a condition is met.

	do behavior/scenario, ... for scalar (seconds | steps)

	Run sub-behaviors/scenarios for (at most) a specified period of time.

	do choose behavior/scenario, ...

	Run one choice of sub-behavior/scenario whose preconditions are satisfied.

	do shuffle behavior/scenario, ...

	Run several sub-behaviors/scenarios in a random order, satisfying preconditions.

	abort

	Break out of the current try-interrupt statement.

	override object specifier, ...

	Override properties of an object for the duration of the current scenario.

Objects

The syntax new class specifier, ... creates an instance of a Scenic class.

The Scenic class Point provides the basic position properties in the first table below; its subclass OrientedPoint adds the orientation properties in the second table.
Finally, the class Object, which represents physical objects and is the default superclass of user-defined Scenic classes, adds the properties in the third table.
See the Objects and Classes Reference for details.

	Property

	Default

	Meaning

	position [1]

	(0, 0, 0)

	position in global coordinates

	visibleDistance

	50

	distance for the ‘can see’ operator

	viewRayDensity

	5

	determines ray count (if ray count is not provided)

	viewRayDistanceScaling

	False

	whether to scale number of rays with distance (if ray count is not provided)

	viewRayCount

	None

	tuple of number of rays to send in each dimension.

	mutationScale

	0

	overall scale of mutations

	positionStdDev

	(1,1,0)

	mutation standard deviation for position

Properties added by OrientedPoint:

	Property

	Default

	Meaning

	yaw [1]

	0

	yaw in local coordinates

	pitch [1]

	0

	pitch in local coordinates

	roll [1]

	0

	roll in local coordinates

	parentOrientation

	global

	basis for local coordinate system

	viewAngles

	(2π, π)

	angles for visibility calculations

	orientationStdDev

	(5°, 0, 0)

	mutation standard deviation for orientation

Properties added by Object:

	Property

	Default

	Meaning

	width

	1

	width of bounding box (X axis)

	length

	1

	length of bounding box (Y axis)

	height

	1

	height of bounding box (Z axis)

	shape

	BoxShape

	shape of the object

	allowCollisions

	False [https://docs.python.org/3/library/constants.html#False]

	whether collisions are allowed

	regionContainedIn

	workspace

	Region the object must lie within

	baseOffset

	(0, 0, -self.height/2)

	offset determining the base of the object

	contactTolerance

	1e-4

	max distance to be considered on a surface

	sideComponentThresholds

	(-0.5, 0.5) per side

	thresholds to determine side surfaces

	cameraOffset

	(0, 0, 0)

	position of camera for can see

	requireVisible

	False [https://docs.python.org/3/library/constants.html#False]

	whether object must be visible from ego

	occluding

	True [https://docs.python.org/3/library/constants.html#True]

	whether object occludes visibility

	showVisibleRegion

	False [https://docs.python.org/3/library/constants.html#False]

	whether to display the visible region

	color

	None

	color of object

	velocity [1]

	from speed

	initial (instantaneous) velocity

	speed [1]

	0

	initial (later, instantaneous) speed

	angularVelocity [1]

	(0, 0, 0)

	initial (instantaneous) angular velocity

	angularSpeed [1]

	0

	angular speed (change in heading/time)

	behavior

	None [https://docs.python.org/3/library/constants.html#None]

	dynamic behavior, if any

	lastActions

	None [https://docs.python.org/3/library/constants.html#None]

	tuple of actions taken in last timestamp

[1]
(1,2,3,4,5,6,7,8)
These are dynamic properties, updated automatically every time step during
dynamic simulations.

Specifiers

The with property value specifier can specify any property, including new properties not built into Scenic.
Additional specifiers for the position and orientation properties are listed below.

[image: Diagram illustrating several specifiers.]

Illustration of the beyond, behind, and offset by specifiers.
Each OrientedPoint (e.g. P) is shown as a bold arrow.

	Specifier for position

	Meaning

	at vector

	Positions the object at the given global coordinates

	in region

	Positions the object uniformly at random in the given Region

	contained in region

	Positions the object uniformly at random entirely contained in the given Region

	on vector

	Positions the base of the object at the given global coordinates

	on (region | Object)

	Positions the object uniformly at random or modifies the position so that base of the Object is in the given Region/on the given Object.

	offset by vector

	Positions the object at the given coordinates in the local coordinate system of ego (which must already be defined)

	offset along direction by vector

	Positions the object at the given coordinates, in a local coordinate system centered at ego and oriented along the given direction

	beyond vector by (vector | scalar) [from (vector | OrientedPoint)]

	Positions the object with respect to the line of sight from a point or the ego

	visible [from (Point | OrientedPoint)]

	Ensures the object is visible from the ego, or from the given Point/OrientedPoint if given, while optionally specifying position to be uniformly random over all positions that result in a visible object.

	not visible [from (Point | OrientedPoint)]

	Ensures the object is not visible from the ego, or from the given Point/OrientedPoint if given, while optionally specifying position to be uniformly random over all positions that result in a non-visible object.

	(left | right) of (vector | OrientedPoint | Object) [by scalar]

	Positions the object to the left/right by the given scalar distance.

	(ahead of | behind) (vector | OrientedPoint | Object) [by scalar]

	Positions the object to the front/back by the given scalar distance

	(above | below) (vector | OrientedPoint | Object) [by scalar]

	Positions the object above/below by the given scalar distance

	following vectorField [from vector] for scalar

	Position by following the given vector field for the given distance starting from ego or the given vector

	Specifier for orientation

	Meaning

	facing orientation

	Orients the object along the given orientation in global coordinates

	facing vectorField

	Orients the object along the given vector field at the object’s position

	facing (toward | away from) vector

	Orients the object toward/away from the given position (thereby depending on the object’s position)

	facing directly (toward | away from) vector

	Orients the object directly toward/away from the given position (thereby depending on the object’s position)

	apparently facing heading [from vector]

	Orients the object so that it has the given heading with respect to the line of sight from ego (or the given vector)

Operators

In the following tables, operators are grouped by the type of value they return.

[image: Diagram illustrating several operators.]

Illustration of several operators.
Each OrientedPoint (e.g. P) is shown as a bold arrow.

	Scalar Operators

	Meaning

	relative heading of heading [from heading]

	The relative heading of the given heading with respect to ego (or the from heading)

	apparent heading of OrientedPoint [from vector]

	The apparent heading of the OrientedPoint, with respect to the line of sight from ego (or the given vector)

	distance [from vector] to vector

	The distance to the given position from ego (or the from vector)

	angle [from vector] to vector

	The heading (azimuth) to the given position from ego (or the from vector)

	altitude [from vector] to vector

	The altitude to the given position from ego (or the from vector)

	Boolean Operators

	Meaning

	(Point | OrientedPoint) can see (vector | Object)

	Whether or not a position or Object is visible from a Point or OrientedPoint

	(vector | Object) in region

	Whether a position or Object lies in the region

	(Object | region) intersects (Object | region)

	Whether an Object/Region intersects an Object/Region.

	Orientation Operators

	Meaning

	scalar deg

	The given angle, interpreted as being in degrees

	vectorField at vector

	The orientation specified by the vector field at the given position

	direction relative to direction

	The first direction (a heading, orientation, or vector field), interpreted as an offset relative to the second direction

	Vector Operators

	Meaning

	vector (relative to | offset by) vector

	The first vector, interpreted as an offset relative to the second vector (or vice versa)

	vector offset along direction by vector

	The second vector, interpreted in a local coordinate system centered at the first vector and oriented along the given direction

	Region Operators

	Meaning

	visible region

	The part of the given region visible from ego

	not visible region

	The part of the given region not visible from ego

	region visible from (Point | OrientedPoint)

	The part of the given region visible from the given Point or OrientedPoint.

	region not visible from (Point | OrientedPoint)

	The part of the given region not visible from the given Point or OrientedPoint.

	OrientedPoint Operators

	Meaning

	vector relative to OrientedPoint

	The given vector, interpreted in the local coordinate system of the OrientedPoint

	OrientedPoint offset by vector

	Equivalent to vector relative to OrientedPoint above

	(front | back | left | right) of Object

	The midpoint of the corresponding side of the bounding box of the Object, inheriting the Object’s orientation.

	(front | back) (left | right) of Object

	The midpoint of the corresponding edge of the bounding box of the Object, inheriting the Object’s orientation.

	(front | back) (left | right) of Object

	The midpoint of the corresponding edge of the bounding box of the Object, inheriting the Object’s orientation.

	(top | bottom) (front | back) (left | right) of Object

	The corresponding corner of the bounding box of the Object, inheriting the Object’s orientation.

	Temporal Operators

	Meaning

	always condition

	Require the condition to hold at every time step.

	eventually condition

	Require the condition to hold at some time step.

	next condition

	Require the condition to hold in the next time step.

	condition until condition

	Require the first condition to hold until the second becomes true.

	condition implies condition

	Require the second condition to hold if the first condition holds.

Built-in Functions

	Function

	Description

	Misc Python functions

	Various Python functions including min, max, open, etc.

	filter

	Filter a possibly-random list (allowing limited randomized control flow).

	resample

	Sample a new value from a distribution.

	localPath

	Convert a relative path to an absolute path, based on the current directory.

	verbosePrint

	Like print [https://docs.python.org/3/library/functions.html#print], but silent at low-enough verbosity levels.

	simulation

	Get the the current simulation object.

Language Reference

Language Constructs

These pages describe the syntax of Scenic in detail.
For a one-page summary of Scenic’s syntax, see the Syntax Guide.
For details on the syntax for functions, loops, etc. inherited from Python, see the Python Language Reference [https://docs.python.org/3/reference/index.html].

	General Notes on Syntax

	Data Types Reference

	Region Types Reference

	Distributions Reference

	Statements Reference

	Objects and Classes Reference

	Specifiers Reference

	Operators Reference

	Built-in Functions Reference

	Visibility System

Semantics and Scenario Generation

The pages above describe the semantics of each of Scenic’s constructs individually; the following pages cover the semantics of entire Scenic programs, and how scenes and simulations are generated from them.

	Scene Generation

	Execution of Dynamic Scenarios

General Notes on Syntax

Keywords

Keywords

The following words are reserved by Scenic and cannot be used as identifiers (i.e. as names of variables, functions, classes, properties, etc.).

False break except lambda require
None by finally new return
True class for nonlocal to
and continue from not try
as def global of until
assert del if on while
async do import or with
at elif in pass yield
await else is raise

Soft Keywords

The following words have special meanings in Scenic in certain contexts, but are still available for use as identifiers.
Users should take care not to use these names when doing so would introduce ambiguity.
For example, consider the following code:

distance = 5 # not a good variable name to use here
new Object beyond A by distance from B

This might appear to use the three-argument form of the beyond specifier, creating the new object at distance 5 beyond A from the point of view of B.
But in fact Scenic parses the code as beyond A by (distance from B), because the interpretation of distance as being part of the distance from operator takes precedence.

To avoid confusion, we recommend not using distance, angle, offset, altitude, or visible as identifiers in code that uses Scenic operators or specifiers (inside pure-Python helper functions is fine).

_ below follow not simulation
abort beyond following of simulator
above bottom from offset steps
additive can front override take
after case heading param terminate
ahead choose implies past top
along compose initial position toward
altitude contained interrupt precondition type
always deg intersects record visible
angle directly invariant relative wait
apparent distance left right when
apparently dynamic match scenario workspace
away ego model seconds
back eventually monitor see
behavior facing mutate setup
behind final next shuffle

Data Types Reference

This page describes the primitive data types built into Scenic.
In addition to these types, Scenic provides a class hierarchy for points, oriented points, and objects: see the Objects and Classes Reference.

Boolean

Booleans represent truth values, and can be True [https://docs.python.org/3/library/constants.html#True] or False [https://docs.python.org/3/library/constants.html#False].

Note

These are equivalent to the Python bool [https://docs.python.org/3/library/functions.html#bool] type.

Scalar

Scalars represent distances, angles, etc. as floating-point numbers, which can be sampled from various distributions.

Note

These are equivalent to the Python float [https://docs.python.org/3/library/functions.html#float] type; however, any context which accepts a scalar will also allow an int [https://docs.python.org/3/library/functions.html#int] or a NumPy numeric type such as numpy.single [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.single] (to be precise, any instance of numbers.Real [https://docs.python.org/3/library/numbers.html#numbers.Real] is legal).

Vector

Vectors represent positions and offsets in space.
They are constructed from coordinates using a length-3 list or tuple ([X, Y, Z] or (X, Y, Z). Alternatively, they can be constructed with the syntax X @ Y (inspired by Smalltalk [http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf]) or a length-2 list or tuple, with an implied z value of 0.
By convention, coordinates are in meters, although the semantics of Scenic does not depend on this.

For convenience, instances of Point can be used in any context where a vector is expected: so for example if P is a Point, then P offset by (1, 2) is equivalent to P.position offset by (1, 2).

Changed in version 3.0: Vectors are now 3 dimensional.

Heading

Headings represent yaw in the global XY plane.
Scenic represents headings in radians, measured anticlockwise from North, so that a heading of 0 is due North and a heading of π/2 is due West.
We use the convention that the heading of a local coordinate system is the heading of its Y-axis, so that, for example, the vector -2 @ 3 means 2 meters left and 3 ahead.

For convenience, instances of OrientedPoint can be used in any context where a heading is expected: so for example if OP is an OrientedPoint, then relative heading of OP is equivalent to relative heading of OP.heading.
Since OrientedPoint is a subclass of Point, expressions involving two oriented points like OP1 relative to OP2 can be ambiguous: the polymorphic operator relative to accepts both vectors and headings, and either version could be meant here.
Scenic rejects such expressions as being ambiguous: more explicit syntax like OP1.position relative to OP2 must be used instead.

Orientation

Orientations represent orientations in 3D space.
Scenic represents orientations internally using quaternions, though for convenience they can be created using Euler angles. Scenic follows the right hand rule with the Z,X,Y order of rotations. In other words, Euler angles are given as (Yaw, Pitch, Roll), in radians, and applied in that order. To help visualize, one can consider their right hand with fingers extended orthogonally. The index finger points along positive X, the middle finger bends left along positive Y, and the thumb ends up pointing along positive Z. For rotations, align your right thumb with a positive axis and the way your fingers curl is a positive rotation.

New in version 3.0.

Vector Field

Vector fields associate an orientation to each point in space.
For example, a vector field could represent the shortest paths to a destination, or the nominal traffic direction on a road (e.g. scenic.domains.driving.model.roadDirection).

Changed in version 3.0: Vector fields now return an Orientation instead of a scalar heading.

Region

Regions represent sets of points in space.
Scenic provides a variety of ways to define regions in 2D and 3D space: meshes, rectangles, circular sectors, line segments, polygons, occupancy grids, and explicit lists of points, among others.

Regions can have an associated vector field giving points in the region preferred orientations.
For example, a region representing a lane of traffic could have a preferred orientation aligned with the lane, so that we can easily talk about distances along the lane, even if it curves.
Another possible use of preferred orientations is to give the surface of an object normal vectors, so that other objects placed on the surface face outward by default.

The main operations available for use with all regions are:

	the (vector | Object) in region operator to test containment within a region;

	the visible region operator to get the part of a region which is visible from the ego;

	the in region specifier to choose a position uniformly at random inside a region;

	the on region specifier to choose a position like in region or to project an existing position onto the region’s surface.

If you need to perform more complex operations on regions, or are writing a world model and need to define your own regions, you will have to work with the Region class (which regions are instances of) and its subclasses for particular types of regions. These are listed in the Regions Types reference. If you are working on Scenic’s internals, see the scenic.core.regions module for full details.

Shape

Shapes represent the shape of an object, i.e., the volume it occupies modulo translation, rotation, and scaling.
Shapes are represented by meshes, automatically converted to unit size and centered; Scenic considers the side of the shape facing the positive Y axis to be its front.

Shapes can be created from an arbitrary mesh or using one of the geometric primitives below.
For convenience, a shape created with specified dimensions will set the default dimensions for any Object created with that shape.
When creating a MeshShape, if no dimensions are provided then dimensions will be inferred from the mesh.
MeshShape also takes an optional initial_rotation parameter, which allows directions other than the positive Y axis to be considered the front of the shape.

	
class MeshShape(mesh, dimensions=None, scale=1, initial_rotation=None)

	A Shape subclass defined by a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object.

The mesh passed must be a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object that represents a well defined
volume (i.e. the is_volume property must be true), meaning the mesh must be watertight,
have consistent winding and have outward facing normals.

	Parameters:

	
	mesh – A mesh object.

	dimensions – The raw (before scaling) dimensions of the shape. If dimensions
and scale are both specified the dimensions are first set by dimensions, and then
scaled by scale.

	scale – Scales all the dimensions of the shape by a multiplicative factor.
If dimensions and scale are both specified the dimensions are first set by dimensions,
and then scaled by scale.

	initial_rotation – A 3-tuple containing the yaw, pitch, and roll respectively to apply when loading
the mesh. Note the initial_rotation must be fixed.

	
classmethod fromFile(path, unify=True, **kwargs)

	Load a mesh shape from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file.
“foo.obj” is assumed to be an uncompressed .obj file. “foo” is an
unknown filetype, so unless a filetype is provided an exception will be raised.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file to import.

	filetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load [https://trimesh.org/trimesh.html#trimesh.load].

	compressed (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not this file is compressed (with bz2). This will be inferred
if not provided.

	binary (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to open the file as a binary file.

	unify (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to attempt to unify this mesh.

	kwargs – Additional arguments to the MeshShape initializer.

	
class BoxShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)

	A box shape with all dimensions 1 by default.

	
class CylinderShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None, sections=24)

	A cylinder shape with all dimensions 1 by default.

	
class ConeShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)

	A cone shape with all dimensions 1 by default.

	
class SpheroidShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)

	A spheroid shape with all dimensions 1 by default.

Region Types Reference

This page covers the scenic.core.regions.Region class and its subclasses; for an introduction to the concept of regions in Scenic and the basic operations available for them, see Region.

	Abstract Regions

	Point Sets and Lines

	2D Regions

	3D Regions

	Niche Regions

Abstract Regions

	
class Region(name, *dependencies, orientation=None)

	An abstract base class for Scenic Regions

	
intersects(other)

	Check if this Region intersects another.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
intersect(other, triedReversed=False)

	Get a Region representing the intersection of this one with another.

If both regions have a preferred orientation, the one of self
is inherited by the intersection.

	Return type:

	Region

	
union(other, triedReversed=False)

	Get a Region representing the union of this one with another.

Not supported by all region types.

	Return type:

	Region

Point Sets and Lines

	
class PointSetRegion(name, points, kdTree=None, orientation=None, tolerance=1e-06)

	Region consisting of a set of discrete points.

No Object can be contained in a PointSetRegion, since the latter is discrete.
(This may not be true for subclasses, e.g. GridRegion.)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging

	points (arraylike) – set of points comprising the region

	kdTree (scipy.spatial.KDTree [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree], optional) – k-D tree for the points (one will
be computed if none is provided)

	orientation (Vector Field; optional) – preferred orientation for the
region

	tolerance (float; optional) – distance tolerance for checking whether a point lies
in the region

	
class PolylineRegion(points=None, polyline=None, orientation=True, name=None)

	Region given by one or more polylines (chain of line segments).

The region may be specified by giving either a sequence of points or shapely
polylines (a LineString or MultiLineString).

	Parameters:

	
	points – sequence of points making up the polyline (or None [https://docs.python.org/3/library/constants.html#None] if using the
polyline argument instead).

	polyline – shapely polyline or collection of polylines (or None [https://docs.python.org/3/library/constants.html#None] if using
the points argument instead).

	orientation (optional) – preferred orientation to use, or True [https://docs.python.org/3/library/constants.html#True] to use an
orientation aligned with the direction of the polyline (the default).

	name (str; optional) – name for debugging.

	
property start

	Get an OrientedPoint at the start of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if
there is one (the default orientation pointing along the polyline).

	
property end

	Get an OrientedPoint at the end of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if
there is one (the default orientation pointing along the polyline).

	
signedDistanceTo(point)

	Compute the signed distance of the PolylineRegion to a point.

The distance is positive if the point is left of the nearest segment,
and negative otherwise.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
pointAlongBy(distance, normalized=False)

	Find the point a given distance along the polyline from its start.

If normalized is true, then distance should be between 0 and 1, and
is interpreted as a fraction of the length of the polyline. So for example
pointAlongBy(0.5, normalized=True) returns the polyline’s midpoint.

	Return type:

	Vector

	
__getitem__(i)

	Get the ith point along this polyline.

If the region consists of multiple polylines, this order is linear
along each polyline but arbitrary across different polylines.

	Return type:

	Vector

	
__len__()

	Get the number of vertices of the polyline.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
class PathRegion(points=None, polylines=None, tolerance=1e-08, orientation=True, name=None)

	A region composed of multiple polylines in 3D space.

One of points or polylines should be provided.

	Parameters:

	
	points – A list of points defining a single polyline.

	polylines – A list of list of points, defining multiple polylines.

	orientation (optional) – preferred orientation to use, or True [https://docs.python.org/3/library/constants.html#True] to use an
orientation aligned with the direction of the path (the default).

	tolerance – Tolerance used internally.

2D Regions

2D regions represent a 2D shape parallel to the XY plane, at a certain elevation in space. All 2D regions inherit from PolygonalRegion.

Unlike the more PolygonalRegion, the simple geometric shapes are allowed to depend on random values: for example, the visible region of an Object is a SectorRegion based at the object’s position, which might not be fixed.

Since 2D regions cannot contain an Object (which must be 3D), they define a footprint for convenience.
Footprints are always a PolygonalFootprintRegion, which represents a 2D polygon extruded infinitely in the positive and negative vertical direction.
When checking containment of an Object in a 2D region, Scenic will atuomatically use the footprint.

	
class PolygonalRegion(points=None, polygon=None, z=0, orientation=None, name=None, additionalDeps=[])

	Region given by one or more polygons (possibly with holes) at a fixed z coordinate.

The region may be specified by giving either a sequence of points defining the
boundary of the polygon, or a collection of shapely polygons (a Polygon
or MultiPolygon).

	Parameters:

	
	points – sequence of points making up the boundary of the polygon (or None [https://docs.python.org/3/library/constants.html#None] if
using the polygon argument instead).

	polygon – shapely polygon or collection of polygons (or None [https://docs.python.org/3/library/constants.html#None] if using
the points argument instead).

	z – The z coordinate the polygon is located at.

	orientation (Vector Field; optional) – preferred orientation to use.

	name (str; optional) – name for debugging.

	
property boundary: PolylineRegion

	Get the boundary of this region as a PolylineRegion.

	
class CircularRegion(center, radius, resolution=32, name=None)

	A circular region with a possibly-random center and radius.

	Parameters:

	
	center (Vector) – center of the disc.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – radius of the disc.

	resolution (int; optional) – number of vertices to use when approximating this region as a
polygon.

	name (str; optional) – name for debugging.

	
class SectorRegion(center, radius, heading, angle, resolution=32, name=None)

	A sector of a CircularRegion.

This region consists of a sector of a disc, i.e. the part of a disc subtended by a
given arc.

	Parameters:

	
	center (Vector) – center of the corresponding disc.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – radius of the disc.

	heading (float [https://docs.python.org/3/library/functions.html#float]) – heading of the centerline of the sector.

	angle (float [https://docs.python.org/3/library/functions.html#float]) – angle subtended by the sector.

	resolution (int; optional) – number of vertices to use when approximating this region as a
polygon.

	name (str; optional) – name for debugging.

	
class RectangularRegion(position, heading, width, length, name=None)

	A rectangular region with a possibly-random position, heading, and size.

	Parameters:

	
	position (Vector) – center of the rectangle.

	heading (float [https://docs.python.org/3/library/functions.html#float]) – the heading of the length axis of the rectangle.

	width (float [https://docs.python.org/3/library/functions.html#float]) – width of the rectangle.

	length (float [https://docs.python.org/3/library/functions.html#float]) – length of the rectangle.

	name (str; optional) – name for debugging.

3D Regions

3D regions represent points in 3D space.

Most 3D regions inherit from either MeshVolumeRegion or MeshSurfaceRegion, which represent the volume (of a watertight mesh) and the surface of a mesh respectively. Various region classes are also provided to create primitive shapes. MeshVolumeRegion can be converted to MeshSurfaceRegion (and vice versa) using the the getSurfaceRegion and getVolumeRegion methods.

PolygonalFootprintRegions represent the footprint of a 2D region. See 2D Regions for more details.

	
class MeshVolumeRegion(*args, **kwargs)

	Bases: MeshRegion

A region representing the volume of a mesh.

The mesh passed must be a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object that represents a well defined
volume (i.e. the is_volume property must be true), meaning the mesh must be watertight,
have consistent winding and have outward facing normals.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False).
The mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon,
and then rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note
that scaling and rotation transformations may not behave as expected, since they are performed around the origin.

	Parameters:

	
	mesh – The base mesh for this region.

	name – An optional name to help with debugging.

	dimensions – An optional 3-tuple, with the values representing width, length, height
respectively. The mesh will be scaled such that the bounding box for the mesh has
these dimensions.

	position – An optional position, which determines where the center of the region will be.

	rotation – An optional Orientation object which determines the rotation of the object in space.

	orientation – An optional vector field describing the preferred orientation at every point in
the region.

	tolerance – Tolerance for internal computations.

	centerMesh – Whether or not to center the mesh after copying and before transformations.

	onDirection – The direction to use if an object being placed on this region doesn’t specify one.

	
getSurfaceRegion()

	Return a region equivalent to this one, except as a MeshSurfaceRegion

	
classmethod fromFile(path, unify=True, **kwargs)

	Load a mesh region from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file.
“foo.obj” is assumed to be an uncompressed .obj file. “foo” is an
unknown filetype, so unless a filetype is provided an exception will be raised.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file to import.

	filetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load [https://trimesh.org/trimesh.html#trimesh.load].

	compressed (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not this file is compressed (with bz2). This will be inferred
if not provided.

	binary (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to open the file as a binary file.

	unify (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to attempt to unify this mesh.

	kwargs – Additional arguments to the MeshRegion initializer.

	
class MeshSurfaceRegion(*args, orientation=True, **kwargs)

	Bases: MeshRegion

A region representing the surface of a mesh.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False).
The mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon,
and then rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note
that scaling and rotation transformations may not behave as expected, since they are performed around the origin.

If an orientation is not passed to this mesh, a default orientation is provided which provides an orientation
that aligns an object’s z axis with the normal vector of the face containing that point, and has a yaw aligned
with a yaw of 0 in the global coordinate system.

	Parameters:

	
	mesh – The base mesh for this region.

	name – An optional name to help with debugging.

	dimensions – An optional 3-tuple, with the values representing width, length, height respectively.
The mesh will be scaled such that the bounding box for the mesh has these dimensions.

	position – An optional position, which determines where the center of the region will be.

	rotation – An optional Orientation object which determines the rotation of the object in space.

	orientation – An optional vector field describing the preferred orientation at every point in
the region.

	tolerance – Tolerance for internal computations.

	centerMesh – Whether or not to center the mesh after copying and before transformations.

	onDirection – The direction to use if an object being placed on this region doesn’t specify one.

	
getVolumeRegion()

	Return a region equivalent to this one, except as a MeshVolumeRegion

	
classmethod fromFile(path, unify=True, **kwargs)

	Load a mesh region from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file.
“foo.obj” is assumed to be an uncompressed .obj file. “foo” is an
unknown filetype, so unless a filetype is provided an exception will be raised.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file to import.

	filetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load [https://trimesh.org/trimesh.html#trimesh.load].

	compressed (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not this file is compressed (with bz2). This will be inferred
if not provided.

	binary (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to open the file as a binary file.

	unify (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to attempt to unify this mesh.

	kwargs – Additional arguments to the MeshRegion initializer.

	
class BoxRegion(*args, **kwargs)

	Region in the shape of a rectangular cuboid, i.e. a box.

By default the unit box centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh
parameter which is excluded.

	
class SpheroidRegion(*args, **kwargs)

	Region in the shape of a spheroid.

By default the unit sphere centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh
parameter which is excluded.

	
class PolygonalFootprintRegion(polygon, name=None)

	Region that contains all points in a polygonal footprint, regardless of their z value.

This region cannot be sampled from, as it has infinite height and therefore infinite volume.

	Parameters:

	
	polygon – A shapely Polygon or MultiPolygon, that defines the footprint of this region.

	name – An optional name to help with debugging.

Niche Regions

	
class GridRegion(name, grid, Ax, Ay, Bx, By, orientation=None)

	Bases: PointSetRegion

A Region given by an obstacle grid.

A point is considered to be in a GridRegion if the nearest grid point is
not an obstacle.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging

	grid – 2D list, tuple, or NumPy array of 0s and 1s, where 1 indicates an obstacle
and 0 indicates free space

	Ax (float [https://docs.python.org/3/library/functions.html#float]) – spacing between grid points along X axis

	Ay (float [https://docs.python.org/3/library/functions.html#float]) – spacing between grid points along Y axis

	Bx (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of leftmost grid column

	By (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of lowest grid row

	orientation (Vector Field; optional) – orientation of region

Distributions Reference

Scenic provides functions for sampling from various types of probability distributions, and it is also possible to define custom types of distributions.

If you want to sample multiple times from the same distribution (for example if the distribution is passed as an argument to a helper function), you can use the resample function.

Built-in Distributions

Range(low, high)

Uniformly-distributed real number in the interval.

DiscreteRange(low, high)

Uniformly-distributed integer in the (fixed) interval.

Normal(mean, stdDev)

Normal distribution with the given mean and standard deviation.

TruncatedNormal(mean, stdDev, low, high)

Normal distribution as above, but truncated to the given window.

Uniform(value, …)

Uniform over a finite set of values. The Uniform distribution can also be used to uniformly select over a list of unknown length. This can be done using the unpacking operator (which supports distributions over lists) as follows: Uniform(*list).

Discrete({value: weight, … })

Discrete distribution over a finite set of values, with weights (which need not add up to 1).
Each value is sampled with probability proportional to its weight.

Uniform Distribution over a Region

Scenic can also sample points uniformly at random from a Region, using the in region and on region specifiers.
Most subclasses of Region support random sampling.
A few regions, such as the everywhere region representing all space, cannot be sampled from since a uniform distribution over them does not exist.

Defining Custom Distributions

If necessary, custom distributions may be implemented by subclassing the Distribution class.
New subclasses must implement the sampleGiven method, which computes a random sample from the distribution given values for its dependencies (if any).
See Range (the implementation of the uniform distribution over a range of real numbers) for a simple example of how to define a subclass.
Additional functionality can be enabled by implementing the optional clone, bucket, and supportInterval methods; see their documentation for details.

Statements Reference

Compound Statements

Class Definition

class <name>[(<superclass>)]:
 [<property>: <value>]*

Defines a Scenic class.
If a superclass is not explicitly specified, Object is used (see Objects and Classes Reference).
The body of the class defines a set of properties its objects have, together with default values for each property.
Properties are inherited from superclasses, and their default values may be overridden in a subclass.
Default values may also use the special syntax self.property to refer to one of the other properties of the same object, which is then a dependency of the default value.
The order in which to evaluate properties satisfying all dependencies is computed (and cyclic dependencies detected) during Specifier Resolution.

Scenic classes may also define attributes and methods in the same way as Python classes.

Behavior Definition

behavior <name>(<arguments>):
 [precondition: <boolean>]*
 [invariant: <boolean>]*
 <statement>+

Defines a dynamic behavior, which can be assigned to a Scenic object by setting its behavior property using the with behavior behavior specifier; this makes the object an agent.
See our tutorial on Dynamic Scenarios for examples of how to write behaviors.

Behavior definitions have the same form as function definitions, with an argument list and a body consisting of one or more statements; the body may additionally begin with definitions of preconditions and invariants.
Preconditions are checked when a behavior is started, and invariants are checked at every time step of the simulation while the behavior is executing (including time step zero, like preconditions, but not including time spent inside sub-behaviors: this allows sub-behaviors to break and restore invariants before they return).

The body of a behavior executes in parallel with the simulation: in each time step, it must either take specified action(s) or wait and perform no actions.
After each take or wait statement, the behavior’s execution is suspended, the simulation advances one step, and the behavior is then resumed.
It is thus an error for a behavior to enter an infinite loop which contains no take or wait statements (or do statements invoking a sub-behavior; see below): the behavior will never yield control to the simulator and the simulation will stall.

Behaviors end naturally when their body finishes executing (or if they return): if this happens, the agent performing the behavior will take no actions for the rest of the scenario.
Behaviors may also terminate the current scenario, ending it immediately.

Behaviors may invoke sub-behaviors, optionally for a limited time or until a desired condition is met, using do statements.
It is also possible to (temporarily) interrupt the execution of a sub-behavior under certain conditions and resume it later, using try-interrupt [https://docs.python.org/3/reference/compound_stmts.html#try] statements.

Monitor Definition

monitor <name>(<arguments>):
 <statement>+

Defines a type of monitor, which can be run in parallel with the simulation like a dynamic behavior.
Monitors are not associated with an Object and cannot take actions, but can wait to wait for the next time step (or use terminate or terminate simulation to end the scenario/simulation).
A monitor can be instantiated in a scenario with the require monitor statement.

The main purpose of monitors is to evaluate complex temporal properties that are not expressible using the temporal operators available for require LTL formula statements.
They can maintain state and use require to enforce requirements depending on that state.
For examples of monitors, see our tutorial on Dynamic Scenarios.

Changed in version 3.0: Monitors may take arguments, and must be explicitly instantiated using a require monitor statement.

Modular Scenario Definition

scenario <name>(<arguments>):
 [precondition: <boolean>]*
 [invariant: <boolean>]*
 [setup:
 <statement>+]
 [compose:
 <statement>+]

scenario <name>(<arguments>):
 <statement>+

Defines a Scenic modular scenario.
Scenario definitions, like behavior definitions, may include preconditions and invariants.
The body of a scenario consists of two optional parts: a setup block and a compose block.
The setup block contains code that runs once when the scenario begins to execute, and is a list of statements like a top-level Scenic program (so it may create objects, define requirements, etc.).
The compose block orchestrates the execution of sub-scenarios during a dynamic scenario, and may use do and any of the other statements allowed inside behaviors (except take, which only makes sense for an individual agent).
If a modular scenario does not use preconditions, invariants, or sub-scenarios (i.e., it only needs a setup block) it may be written in the second form above, where the entire body of the scenario comprises the setup block.

See also

Our tutorial on Composing Scenarios gives many examples of how to use modular scenarios.

Try-Interrupt Statement

try:
 <statement>+
[interrupt when <boolean>:
 <statement>+]*
[except <exception> [as <name>]:
 <statement>+]*

A try-interrupt statement can be placed inside a behavior (or compose block of a modular scenario) to run a series of statements, including invoking sub-behaviors with do, while being able to interrupt at any point if given conditions are met.
When a try-interrupt statement is encountered, the statements in the try block are executed.
If at any time step one of the interrupt conditions is met, the corresponding interrupt block (its handler) is entered and run.
Once the interrupt handler is complete, control is returned to the statement that was being executed under the try block.

If there are multiple interrupt clauses, successive clauses take precedence over those which precede them; furthermore, during execution of an interrupt handler, successive interrupt clauses continue to be checked and can interrupt the handler.
Likewise, if try-interrupt statements are nested, the outermost statement takes precedence and can interrupt the inner statement at any time.
When one handler interrupts another and then completes, the original handler is resumed (and it may even be interrupted again before control finally returns to the try block).

The try-interrupt statement may conclude with any number of except blocks, which function identically to their Python counterparts [https://docs.python.org/3/reference/compound_stmts.html#except] (though Scenic does not allow except* blocks).

Simple Statements

The following statements can occur throughout a Scenic program unless otherwise stated.

model name

Select a world model to use for this scenario.
The statement model X is equivalent to from X import * except that X can be replaced using the --model command-line option or the model keyword argument to the top-level APIs.
When writing simulator-agnostic scenarios, using the model statement is preferred to a simple import since a more specific world model for a particular simulator can then be selected at compile time.

import module

Import a Scenic or Python module. This statement behaves as in Python, but when importing a Scenic module it also imports any objects created and requirements imposed in that module.
Scenic also supports the form from module import identifier, ... , which as in Python imports the module plus one or more identifiers from its namespace.

param name = value, …

Defines one or more global parameters of the scenario.
These have no semantics in Scenic, simply having their values included as part of the generated Scene, but provide a general-purpose way to encode arbitrary global information.

If multiple param statements define parameters with the same name, the last statement takes precedence, except that Scenic world models imported using the model statement do not override existing values for global parameters.
This allows models to define default values for parameters which can be overridden by particular scenarios.
Global parameters can also be overridden at the command line using the --param option, or from the top-level API using the params argument to scenic.scenarioFromFile.

To access global parameters within the scenario itself, you can read the corresponding attribute of the globalParameters object.
For example, if you declare param weather = 'SUNNY', you could then access this parameter later in the program via globalParameters.weather.
If the parameter was not overridden, this would evaluate to 'SUNNY'; if Scenic was run with the command-line option --param weather SNOW, it would evaluate to 'SNOW' instead.

Some simulators provide global parameters whose names are not valid identifiers in Scenic.
To support giving values to such parameters without renaming them, Scenic allows the names of global parameters to be quoted strings, as in this example taken from an X-Plane scenario:

param simulation_length = 30
param 'sim/weather/cloud_type[0]' = DiscreteRange(0, 5)
param 'sim/weather/rain_percent' = 0

require boolean

Defines a hard requirement, requiring that the given condition hold in all instantiations of the scenario.
This is equivalent to an “observe” statement in other probabilistic programming languages.

require[number] boolean

Defines a soft requirement; like require above but enforced only with the given probability, thereby requiring that the given condition hold with at least that probability (which must be a literal number, not an expression).
For example, require[0.75] ego in parking_lot would require that the ego be in the parking lot at least 75% percent of the time.

require LTL formula

Defines a temporal requirement, requiring that the given Linear Temporal Logic formula hold in a dynamic scenario.
See Temporal Operators for the list of supported LTL operators.

Note that an expression that does not use any temporal operators is evaluated only in the current time step.
So for example:

	require A and always B will only require that A hold at time step zero, while B must hold at every time step (note that this is the same behavior you would get if you wrote require A and require always B separately);

	require (always A) implies B requires that if A is true at every time step, then B must be true at time step zero;

	require always A implies B requires that in every time step when A is true, B must also be true (since B is within the scope of the always operator).

require monitor monitor

Require a condition encoded by a monitor hold during the scenario.
See Monitor Definition for how to define types of monitors.

It is legal to create multiple instances of a monitor with varying parameters.
For example:

monitor ReachesBefore(obj1, region, obj2):
 reached = False
 while not reached:
 if obj1 in region:
 reached = True
 else:
 require obj2 not in region
 wait

require monitor ReachesBefore(ego, goal, racecar2)
require monitor ReachesBefore(ego, goal, racecar3)

terminate when boolean

Terminates the scenario when the provided condition becomes true.
If this statement is used in a modular scenario which was invoked from another scenario, only the current scenario will end, not the entire simulation.

terminate simulation when boolean

The same as terminate when, except terminates the entire simulation even when used inside a sub-scenario (so there is no difference between the two statements when used at the top level).

terminate after scalar (seconds | steps)

Like terminate when above, but terminates the scenario after the given amount of time.
The time limit can be an expression, but must be a non-random value.

mutate identifier, … [by scalar]

Enables mutation of the given list of objects (any Point, OrientedPoint, or Object), with an optional scale factor (default 1).
If no objects are specified, mutation applies to every Object already created.

The default mutation system adds Gaussian noise to the position and heading properties, with standard deviations equal to the scale factor times the positionStdDev and headingStdDev properties.

Note

User-defined classes may specify custom mutators to allow mutation to apply to properties other than position and heading.
This is done by providing a value for the mutator property, which should be an instance of Mutator.
Mutators inherited from superclasses (such as the default position and heading mutators from Point and OrientedPoint) will still be applied unless the new mutator disables them; see Mutator for details.

record [initial | final] value [as name]

Record the value of an expression during each simulation.
The value can be recorded at the start of the simulation (initial), at the end of the simulation (final), or at every time step (if neither initial nor final is specified).
The recorded values are available in the records dictionary of SimulationResult: its keys are the given names of the records (or synthesized names if not provided), and the corresponding values are either the value of the recorded expression or a tuple giving its value at each time step as appropriate.
For debugging, the records can also be printed out using the --show-records command-line option.

Dynamic Statements

The following statements are valid only in dynamic behaviors, monitors, and compose blocks.

take action, …

Takes the action(s) specified and pass control to the simulator until the next time step.
Unlike wait, this statement may not be used in monitors or modular scenarios, since these do not take actions.

wait

Take no actions this time step.

terminate

Immediately end the scenario.
As for terminate when, if this statement is used in a modular scenario which was invoked from another scenario, only the current scenario will end, not the entire simulation.
Inside a behavior being run by an agent, the “current scenario” for this purpose is the scenario which created the agent.

terminate simulation

Immediately end the entire simulation.

do behavior/scenario, …

Run one or more sub-behaviors or sub-scenarios in parallel.
This statement does not return until all invoked sub-behaviors/scenarios have completed.

do behavior/scenario, … until boolean

As above, except the sub-behaviors/scenarios will terminate when the condition is met.

do behavior/scenario for scalar (seconds | steps)

Run sub-behaviors/scenarios for a set number of simulation seconds/time steps.
This statement can return before that time if all the given sub-behaviors/scenarios complete.

do choose behavior/scenario, …

Randomly pick one of the given behaviors/scenarios whose preconditions are satisfied, and run it.
If no choices are available, the simulation is rejected.

This statement also allows the more general form do choose { behaviorOrScenario: weight, ... }, giving weights for each choice (which need not add up to 1).
Among all choices whose preconditions are satisfied, this picks a choice with probability proportional to its weight.

do shuffle behavior/scenario, …

Like do choose above, except that when the chosen sub-behavior/scenario completes, a different one whose preconditions are satisfied is chosen to run next, and this repeats until all the sub-behaviors/scenarios have run once.
If at any point there is no available choice to run (i.e. we have a deadlock), the simulation is rejected.

This statement also allows the more general form do shuffle { behaviorOrScenario: weight, ... }, giving weights for each choice (which need not add up to 1).
Each time a new sub-behavior/scenario needs to be selected, this statement finds all choices whose preconditions are satisfied and picks one with probability proportional to its weight.

abort

Used in an interrupt handler to terminate the current try-interrupt statement.

override object specifier, …

Override one or more properties of an object, e.g. its behavior, for the duration of the current scenario.
The properties will revert to their previous values when the current scenario terminates.
It is illegal to override dynamic properties, since they are set by the simulator each time step and cannot be mutated manually.

Objects and Classes Reference

This page describes the classes built into Scenic, representing points, oriented points, and physical objects, and how they are instantiated to create objects.

Note

The documentation given here describes only the public properties and methods provided by the built-in classes.
If you are working on Scenic’s internals, you can find more complete documentation in the scenic.core.object_types module.

Instance Creation

new <class> [<specifier> [, <specifier>]*]

Instantiates a Scenic object from a Scenic class.
The properties of the object are determined by the given set of zero or more specifiers.
For details on the available specifiers and how they interact, see the Specifiers Reference.

Instantiating an instance of Object has a side effect: the object is added to the scenario being defined.

Changed in version 3.0: Instance creation now requires the new keyword. As a result, Scenic classes can be referred to without creating an instance.

Built-in Classes

Point

Locations in space.
This class provides the fundamental property position and several associated properties.

	
class Point <specifiers>

	The Scenic base class Point.

The default mutator for Point adds Gaussian noise to position with
a standard deviation given by the positionStdDev property.

	Properties:

	
	position (Vector; dynamic) – Position of the point. Default value is the origin (0,0,0).

	width (float) – Default value 0 (only provided for compatibility with
operators that expect an Object).

	length (float) – Default value 0.

	height (float) – Default value 0.

	baseOffset (Vector) – Only provided for compatibility with the on (region | Object | vector) specifier.
Default value is (0,0,0).

	contactTolerance (float) – Only provided for compatibility with the specifiers
that expect an Object. Default value 0.

	onDirection (Vector) – The direction used to determine where to place
this Point on a region, when using the modifying on specifier.
See the on region page for more details. Default value is None,
indicating the direction will be inferred from the region this object is being placed on.

	visibleDistance (float) – Distance used to determine the visible range of this object.
Default value 50.

	viewRayDensity (float) – By default determines the number of rays used during visibility checks.
This value is the density of rays per degree of visible range in one dimension. The total
number of rays sent will be this value squared per square degree of this object’s view angles.
This value determines the default value for viewRayCount, so if viewRayCount is overwritten
this value is ignored. Default value 5.

	viewRayCount (None | tuple[float, float]) – The total number of horizontal and vertical view angles
to be sent, or None if this value should be computed automatically. Default value None.

	viewRayDistanceScaling (bool) – Whether or not the number of rays should scale with the distance to the
object. Ignored if viewRayCount is passed. Default value False.

	mutationScale (float) – Overall scale of mutations, as set by the
mutate statement. Default value 0 (mutations disabled).

	positionStdDev (tuple[float, float, float]) – Standard deviation of Gaussian noise
for each dimension (x,y,z) to be added to this object’s position
when mutation is enabled with scale 1. Default value (1,1,0), mutating only the x,y values
of the point.

	
property visibleRegion

	The visible region of this object.

The visible region of a Point is a sphere centered at its position with
radius visibleDistance.

OrientedPoint

A location along with an orientation, defining a local coordinate system.
This class subclasses Point, adding the fundamental property orientation and several associated properties.

	
class OrientedPoint <specifiers>

	The Scenic class OrientedPoint.

The default mutator for OrientedPoint adds Gaussian noise to yaw, pitch
and roll, using the three standard deviations (for yaw/pitch/roll respectively)
given by the orientationStdDev property. It then also applies the mutator for Point.
By default the standard deviations for pitch and roll are zero so that, by
default, only yaw is mutated.

	Properties:

	
	yaw (float; dynamic) – Yaw of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

	pitch (float; dynamic) – Pitch of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

	roll (float; dynamic) – Roll of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

	parentOrientation (Orientation) – The local coordinate system that the OrientedPoint’s
yaw, pitch, and roll are interpreted in. Default
value is the global coordinate system, where an object is flat in the XY plane,
facing North.

	orientation (Orientation; dynamic; final) – The orientation of the OrientedPoint relative
to the global coordinate system. Derived from the yaw, pitch,
roll, and parentOrientation of this OrientedPoint and non-overridable.

	heading (float; dynamic; final) – Yaw value of this OrientedPoint in the global coordinate
system. Derived from orientation and non-overridable.

	viewAngles (tuple[float,float]) – Horizontal and vertical view angles of this OrientedPoint
in radians. Horizontal view angle can be up to 2π and vertical view angle can be
up to π. Values greater than these will be truncated. Default value is (2π, π)

	orientationStdDev (tuple[float,float,float]) – Standard deviation of Gaussian noise to add to this
object’s Euler angles (yaw, pitch, roll) when mutation is enabled with scale 1.
Default value (5°, 0, 0), mutating only the yaw of this OrientedPoint.

	
property visibleRegion

	The visible region of this object.

The visible region of an OrientedPoint restricts that of Point (a sphere with
radius visibleDistance) based on the value of viewAngles. In
general, it is a capped rectangular pyramid subtending an angle of
viewAngles[0] horizontally and viewAngles[1] vertically, as
long as those angles are less than π/2; larger angles yield various kinds of
wrap-around regions. See ViewRegion for details.

Object

A physical object.
This class subclasses OrientedPoint, adding a variety of properties including:

	width, length, and height to define the dimensions of the object;

	shape to define the Shape of the object;

	allowCollisions, requireVisible, and regionContainedIn to control the built-in requirements that apply to the object;

	behavior, specifying the object’s dynamic behavior if any;

	speed, velocity, and other properties capturing the dynamic state of the object during simulations.

The built-in requirements applying to each object are:

	The object must be completely contained within its container, the region specified as its regionContainedIn property (by default the entire workspace).

	The object must be visible from the ego object if the requireVisible property is set to True [https://docs.python.org/3/library/constants.html#True] (default value False [https://docs.python.org/3/library/constants.html#False]).

	The object must not intersect another object (i.e., their bounding boxes must not overlap), unless either of the two objects has their allowCollisions property set to True [https://docs.python.org/3/library/constants.html#True].

Changed in version 3.0: requireVisible is now False [https://docs.python.org/3/library/constants.html#False] by default.

	
class Object <specifiers>

	The Scenic class Object.

This is the default base class for Scenic classes.

	Properties:

	
	width (float) – Width of the object, i.e. extent along its X axis.
Default value of 1 inherited from the object’s shape.

	length (float) – Length of the object, i.e. extent along its Y axis.
Default value of 1 inherited from the object’s shape.

	height (float) – Height of the object, i.e. extent along its Z axis.
Default value of 1 inherited from the object’s shape.

	shape (Shape) – The shape of the object, which must be an instance of Shape.
The default shape is a box, with default unit dimensions.

	allowCollisions (bool) – Whether the object is allowed to intersect
other objects. Default value False.

	regionContainedIn (Region or None) – A Region the object is
required to be contained in. If None, the object need only be
contained in the scenario’s workspace.

	baseOffset (Vector) – An offset from the position of the Object
to the base of the object, used by the on (region | Object | vector) specifier. Default value
is (0, 0, -self.height/2), placing the base of the Object at the bottom
center of the Object’s bounding box.

	contactTolerance (float) – The maximum distance this object can be away from a
surface to be considered on the surface. Objects are placed at half this
distance away from a point when the on (region | Object | vector) specifier or a directional specifier
like (left | right) of Object [by scalar] is used. Default value 1e-4.

	sideComponentThresholds (DimensionLimits) – Used to determine the
various sides of an object (when using the default implementation).
The three interior 2-tuples represent the maximum and minimum bounds
for each dimension’s (x,y,z) surface. See defaultSideSurface for details.
Default value ((-0.5, 0.5), (-0.5, 0.5), (-0.5, 0.5)).

	cameraOffset (Vector) – Position of the camera for the can see
operator, relative to the object’s position. Default (0, 0, 0).

	requireVisible (bool) – Whether the object is required to be visible
from the ego object. Default value False.

	occluding (bool) – Whether or not this object can occlude other objects. Default
value True.

	showVisibleRegion (bool) – Whether or not to display the visible region in the
Scenic internal visualizer.

	color (tuple[float, float, float, float] or tuple[float, float, float] or None [https://docs.python.org/3/library/constants.html#None]) – An optional color (with optional alpha) property that is used by the internal
visualizer, or possibly simulators. All values should be between 0 and 1.
Default value None

	velocity (Vector; dynamic) – Velocity in dynamic simulations. Default value is
the velocity determined by speed and orientation.

	speed (float; dynamic) – Speed in dynamic simulations. Default value 0.

	angularVelocity (Vector; dynamic)

	angularSpeed (float; dynamic) – Angular speed in dynamic simulations. Default
value 0.

	behavior – Behavior for dynamic agents, if any (see Dynamic Scenarios). Default
value None.

	lastActions – Tuple of actions taken by this agent in the last time step
(or None [https://docs.python.org/3/library/constants.html#None] if the object is not an agent or this is the first time step).

	
startDynamicSimulation()

	Hook called when the object is created in a dynamic simulation.

Does nothing by default; provided for objects to do simulator-specific
initialization as needed.

Changed in version 3.0: This method is called on objects created in the middle of dynamic
simulations, not only objects present in the initial scene.

	
property visibleRegion

	The visible region of this object.

The visible region of an Object is the same as that of an OrientedPoint (see
OrientedPoint.visibleRegion) except that it is offset by the value of
cameraOffset (which is the zero vector by default).

Specifiers Reference

Specifiers are used to define the properties of an object when a Scenic class is instantiated.
This page describes all the specifiers built into Scenic, and the procedure used to resolve a set of specifiers into an assignment of values to properties.

Each specifier assigns values to one or more properties of an object, as a function of the arguments of the specifier and possibly other properties of the object assigned by other specifiers.
For example, the left of X by Y specifier assigns the position property of the object being defined so that the object is a distance Y to the left of X: this requires knowing the width of the object first, so we say the left of specifier specifies the position property and depends on the width property.

In fact, the left of specifier also specifies the parentOrientation property (to be the orientation of X), but it does this with a lower priority.
Multiple specifiers can specify the same property, but only the specifier that specifies the property with the highest priority is used.
If a property is specified multiple times with the same priority, an ambiguity error is raised.
We represent priorities as integers, with priority 1 being the highest and larger integers having progressively lower priorities (e.g. priority 2 supersedes priority 3).
When a specifier specifies a property with a priority lower than 1, we say it optionally specifies the property, since it can be overridden (for example using the with specifier), whereas a specifier specifying the property with priority 1 cannot be overridden.

Certain specifiers can also modify already-specified values.
These modifying specifiers do not cause an ambiguity error as above if another specifier specifies the same property with the same priority: they take the already-specified value and manipulate it in some way (potentially also specifying other properties as usual).
Note that no property can be modified twice.
The only modifying specifier currently in Scenic is on region, which can be used either as a standard specifier or a modifying specifier (the modifying version projects the already-specified position onto the given region – see below).

The Specifier Resolution process works out which specifier determines each property of an object, as well as an appropriate order in which to evaluate the specifiers so that dependencies have already been computed when needed.

General Specifiers

with property value

Specifies:

	the given property, with priority 1

Dependencies: None

Assigns the given property to the given value.
This is currently the only specifier available for properties other than position and orientation.

Position Specifiers

[image: Diagram illustrating several specifiers.]

Illustration of the beyond, behind, and offset by specifiers.
Each OrientedPoint (e.g. P) is shown as a bold arrow.

at vector

Specifies:

	position with priority 1

Dependencies: None

Positions the object at the given global coordinates.

in region

Specifies:

	position with priority 1

	parentOrientation with priority 3 (if the region has a preferred orientation)

Dependencies: None

Positions the object uniformly at random in the given Region.
If the Region has a preferred orientation (a vector field), also specifies parentOrientation to be equal to that orientation at the object’s position.

contained in region

Specifies:

	position with priority 1

	regionContainedIn with priority 1

	parentOrientation with priority 3 (if the region has a preferred orientation)

Dependencies: None

Like in region, but also enforces that the object be entirely contained in the given Region.

on (region | Object | vector)

Specifies:

	position with priority 1; modifies existing value, if any

	parentOrientation with priority 2 (if the region has a preferred orientation)

Dependencies: baseOffset • contactTolerance • onDirection

If position is not already specified with priority 1, positions the base of the object uniformly at random in the given Region, on the onSurface of the given Object, or with the base of the object at the given vector. The position is always offset by half of contactTolerance (to avoid a collision).
The base of the object is determined by adding the object’s baseOffset to its position.

If instead position has already been specified with priority 1, then its value is modified by projecting it onto the given region (or the onSurface of the given object). Note that this modifying version of the specifier does not accept a vector.
More precisely, we find the closest point in the region along onDirection (or its negation [1]), and place the base of the object at that point. If onDirection is not specified, a default value is inferred from the region. A region can either specify a default value to be used, or for volumes straight up is used and for surfaces the mean of the face normal values is used (weighted by the area of the faces).

If the region has a preferred orientation (a vector field), parentOrientation is specified to be equal to that orientation at the object’s position (whether or not this specifier is being used as a modifying specifier).
Note that this is done with higher priority than all other specifiers which optionally specify parentOrientation, and in particular the ahead of specifier and its variants: therefore the code new Object ahead of taxi by 100, on road aligns the new object with the road at the point 100 m ahead of the taxi rather than with the taxi itself (while also using projection to ensure the new object is on the surface of the road rather than under or over it if the road isn’t flat).

[1]
This allows for natural projection even when an object is below the desired surface, such as placing a car, ahead of another car, on an uphill road.

offset by vector

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: None

Positions the object at the given coordinates in the local coordinate system of ego (which must already be defined).
Also specifies parentOrientation to be equal to the ego’s orientation.

New in version 3.0: offset by now specifies parentOrientation, whereas previously it did not optionally specify heading.

offset along direction by vector

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: None

Positions the object at the given coordinates in a local coordinate system centered at ego and oriented along the given direction (which can be a Heading, an Orientation, or a Vector Field).
Also specifies parentOrientation to be equal to the ego’s orientation.

beyond vector by (vector | scalar) [from (vector | OrientedPoint)]

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: None

Positions the object at coordinates given by the second vector, in a local coordinate system centered at the first vector and oriented along the line of sight from the third vector (i.e. an orientation of (0,0,0) in the local coordinate system faces directly away from the third vector).
If the second argument is a scalar D instead of a vector, it is interpreted as the vector (0, D, 0): thus beyond X by D from Y places the new object a distance of D behind X from the perspective of Y.
If no third argument is provided, it is assumed to be the ego.

The value of parentOrientation is specified to be the orientation of the third argument if it is an OrientedPoint (including Object such as ego); otherwise the global coordinate system is used.
For example, beyond taxi by (1, 3, 0) means 3 meters behind the taxi and one meter to the right as viewed by the ego.

visible [from (Point | OrientedPoint)]

Specifies:

	position with priority 3

	also adds a requirement (see below)

Dependencies: regionContainedIn

Requires that this object is visible from the ego or the given Point/OrientedPoint. See the Visibility System reference for a discussion of the visibility model.

Also optionally specifies position to be uniformly random over all points that could result in a visible object (note that the above requirement will ensure the object is in fact visible).

Changed in version 3.0: This specifier now specifies position uniformly randomly over all points that could result in a visible object. This allows for objects whose position might be out of the visible region, but which have a portion of their occupied space visible (e.g. a corner that is visible). With the previous semantics, such configurations would never be generated because the center of the object was required to be visible.

Note

As an implementation detail, position is initially set to be sampled from everywhere (or the workspace if one has been set). Scenic will then attempt to further restrict the sample region via various pruning techniques, but sometimes this is not possible. If this occurs and Scenic has not been able to further restrict the sampled region from everywhere, an error will be raised at compile time. The simplest way to remedy this is by setting a workspace or specifying position with a higher priority using a different specifier.

not visible [from (Point | OrientedPoint)]

Specifies:

	position with priority 3

	also adds a requirement (see below)

Dependencies: regionContainedIn

Requires that this object is not visible from the ego or the given Point/OrientedPoint.

Similarly to visible [from (Point | OrientedPoint)], this specifier can optionally position the object uniformly at random over all points that could result in a non-visible object (note that the above requirement will ensure the object is in fact not visible).

Changed in version 3.0: This specifier now specifies position uniformly randomly over all points that could result in a non-visible object. This disallows objects whose position is out of the visible region, but which have a portion of their occupied space visible (e.g. a corner that is visible). With the previous semantics, such configurations would sometimes be generated because only the center of the object was required to be non-visible.

(left | right) of (vector) [by scalar]

Specifies:

	position with priority 1

Dependencies: width • orientation

Without the optional by scalar, positions the object immediately to the left/right of the given position; i.e., so that the midpoint of the right/left side of the object’s bounding box is at that position.
If by scalar is used, the object is placed further to the left/right by the given distance.

(left | right) of OrientedPoint [by scalar]

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: width

Positions the object to the left/right of the given OrientedPoint.
Also inherits parentOrientation from the given OrientedPoint.

(left | right) of Object [by scalar]

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: width • contactTolerance

Positions the object to the left/right of the given Object.
This accounts for both objects’ dimensions, placing them so that the distance between their bounding boxes is exactly the desired scalar distance (or contactTolerance if by scalar is not used).
Also inherits parentOrientation from the given OrientedPoint.

(ahead of | behind) vector [by scalar]

Specifies:

	position with priority 1

Dependencies: length • orientation

Without the optional by scalar, positions the object immediately ahead of/behind the given position; i.e., so that the midpoint of the front/back side of the object’s bounding box is at that position.
If by scalar is used, the object is placed further ahead/behind by the given distance.

(ahead of | behind) OrientedPoint [by scalar]

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: length

Positions the object ahead of/behind the given OrientedPoint.
Also inherits parentOrientation from the given OrientedPoint.

(ahead of | behind) Object [by scalar]

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: length • contactTolerance

Positions the object ahead of/behind the given Object.
This accounts for both objects’ dimensions, placing them so that the distance between their bounding boxes is exactly the desired scalar distance (or contactTolerance if by scalar is not used).
Also inherits parentOrientation from the given OrientedPoint.

(above | below) vector [by scalar]

Specifies:

	position with priority 1

Dependencies: height • orientation

Without the optional by scalar, positions the object immediately above/below the given position; i.e., so that the midpoint of the top/bottom side of the object’s bounding box is at that position.
If by scalar is used, the object is placed further above/below by the given distance.

(above | below) OrientedPoint [by scalar]

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: height

Positions the object above/below the given OrientedPoint.
Also inherits parentOrientation from the given OrientedPoint.

(above | below) Object [by scalar]

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: height • contactTolerance

Positions the object above/below the given Object.
This accounts for both objects’ dimensions, placing them so that the distance between their bounding boxes is exactly the desired scalar distance (or contactTolerance if by scalar is not used).
Also inherits parentOrientation from the given OrientedPoint.

following vectorField [from vector] for scalar

Specifies:

	position with priority 1

	parentOrientation with priority 3

Dependencies: None

Positions the object at a point obtained by following the given Vector Field for the given distance starting from ego (or the position optionally provided with from vector).
Specifies parentOrientation to be the orientation of the vector field at the resulting point.

Note

This specifier uses a forward Euler approximation of the continuous vector field.
The choice of step size can be customized for individual fields: see the documentation
of Vector Field. If necessary, you can also call the underlying method
VectorField.followFrom directly.

Orientation Specifiers

facing orientation

Specifies:

	yaw with priority 1

	pitch with priority 1

	roll with priority 1

Dependencies: parentOrientation

Sets the object’s yaw, pitch, and roll so that its orientation in global coordinates is equal to the given orientation.
If a single scalar is given, it is interpreted as a Heading: so for example facing 45 deg orients the object in the XY plane, facing northwest.
If a triple of scalars is given, it is interpreted as a triple of global Euler angles: so for example facing (45 deg, 90 deg, 0) would orient the object to face northwest as above but then apply a 90° pitch upwards.

facing vectorField

Specifies:

	yaw with priority 1

	pitch with priority 1

	roll with priority 1

Dependencies: position • parentOrientation

Sets the object’s yaw, pitch, and roll so that its orientation in global coordinates is equal to the orientation provided by the given Vector Field at the object’s position.

facing (toward | away from) vector

Specifies:

	yaw with priority 1

Dependencies: position • parentOrientation

Sets the object’s yaw so that it faces toward/away from the given position (thereby depending on the object’s position).

facing directly (toward | away from) vector

Specifies:

	yaw with priority 1

	pitch with priority 1

Dependencies: position • parentOrientation

Sets the object’s yaw and pitch so that it faces directly toward/away from the given position (thereby depending on the object’s position).

apparently facing heading [from vector]

Specifies:

	yaw with priority 1

Dependencies: position • parentOrientation

Sets the yaw of the object so that it has the given heading with respect to the line of sight from ego (or the from vector).
For example, if the ego is in the XY plane, then apparently facing 90 deg orients the new object so that the ego’s camera views its left side head-on.

Specifier Resolution

Specifier resolution is the process of determining, given the set of specifiers used to define an object, which properties each specifier should determine and what order to evaluate the specifiers in.
As each specifier can specify multiple properties with various priorities, and can depend on the results of other specifiers, this process is somewhat non-trivial.
Assuming there are no cyclic dependencies or conflicts, the process will conclude with each property being determined by its unique highest-priority specifier if one exists (possibly modified by a modifying specifier), and otherwise by its default value, with default values from subclasses overriding those in superclasses.

The full procedure, given a set of specifiers S used to define an instance of class C, works as follows:

	If a property is specified at the same priority level by multiple specifiers in S, an ambiguity error is raised.

	The set of properties P for the new object is found by combining the properties specified by all members of S with the properties inherited from the class C.

	Default value specifiers from C (or if not overridden, from its superclasses) are added to S as needed so that each property in P is paired with a unique non-modifying specifier in S specifying it (taking the highest-priority specifier, if there are multiple), plus up to one modifying specifier modifying it.

	The dependency graph of the specifiers S is constructed (with edges from each specifier to the others which depend on its results). If it is cyclic, an error is raised.

	The graph is topologically sorted and the specifiers are evaluated in this order to determine the values of all properties P of the new object.

Operators Reference

[image: Diagram illustrating several operators.]

Illustration of several operators.
Each OrientedPoint (e.g. P) is shown as a bold arrow.

Scalar Operators

relative heading of heading [from heading]

The relative heading of the given heading with respect to ego (or the heading provided with the optional from heading)

apparent heading of OrientedPoint [from vector]

The apparent heading of the OrientedPoint, with respect to the line of sight from ego (or the position provided with the optional from vector)

distance [from vector] to vector

The distance to the given position from ego (or the position provided with the optional from vector)

angle [from vector] to vector

The heading (azimuth) to the given position from ego (or the position provided with the optional from vector). For example, if angle to taxi is zero, then taxi is due North of ego

altitude [from vector] to vector

The altitude to the given position from ego (or the position provided with the optional from vector). For example, if altitude to plane is π, then plane is directly above ego.

Boolean Operators

(Point | OrientedPoint) can see (vector | Object)

Whether or not a position or Object is visible from a Point or OrientedPoint, accounting for occlusion.

See the Visibility System reference for a discussion of the visibility model.

(vector | Object) in region

Whether a position or Object lies in the Region; for the latter, the object must be completely contained in the region.

(Object | region) intersects (Object | region)

Whether an Object/Region intersects another Object/Region, i.e. whether any portion of the occupied spaces intersect.

When working with 2D regions, it can be useful to check intersection with the footprint of a region, e.g. when checking whether a car intersects a given lane. In this case, one would write car intersects lane.footprint instead of car intersects lane. For more details, see footprint.

Orientation Operators

scalar deg

The given angle, interpreted as being in degrees. For example 90 deg evaluates to π/2

vectorField at vector

The orientation specified by the vector field at the given position

(direction) relative to (direction)

The orientation obtained by starting in the second direction and then rotating according to the first direction. For example, -5 deg relative to 90 deg is simply 85 degrees. If either direction is a vector field, then this operator yields an expression depending on the position property of the object being specified. Both operator values must be of type Heading, Orientation, or Vector Field, not tuples, as tuples are by default intepreted as Vector objects.

Note

This operator is not necessarily commutative, for example, when composing two 3D orientations.

Vector Operators

vector (relative to | offset by) vector

The first vector, interpreted as an offset relative to the second vector (or vice versa).
For example, (5, 5, 5) relative to (100, 200, 300) is (105, 205, 305).
Note that this polymorphic operator has a specialized version for instances of OrientedPoint, defined below: so for example (-3, 0, 0) relative to taxi will not use the version of this operator for vectors (even though the Object taxi can be coerced to a vector).

vector offset along direction by vector

The second vector, interpreted in a local coordinate system centered at the first vector and oriented along the given direction (which, if a vector field, is evaluated at the first vector to obtain an orientation)

Region Operators

visible region

The part of the given region which is visible from the ego object (i.e. the intersection of the given region with the visible region of the ego).

not visible region

The part of the given region which is not visible from the ego object (as above, based on the ego’s visible region).

region visible from (Point | OrientedPoint)

The part of the given region visible from the given Point or OrientedPoint (like visible region but from an arbitrary Point/OrientedPoint).

region not visible from (Point | OrientedPoint)

The part of the given region not visible from the given Point or OrientedPoint (like not visible region but from an arbitrary Point/OrientedPoint).

OrientedPoint Operators

vector relative to OrientedPoint

The given vector, interpreted in the local coordinate system of the OrientedPoint. So for example (1, 2, 0) relative to ego is 1 meter to the right and 2 meters ahead of ego.

OrientedPoint offset by vector

Equivalent to vector relative to OrientedPoint above

(front | back | left | right | top | bottom) of Object

The midpoint of the corresponding side of the bounding box of the Object, inheriting the Object’s orientation.

(front | back) (left | right) of Object

The midpoint of the corresponding edge of the Object’s bounding box, inheriting the Object’s orientation.

(top | bottom) (front | back) (left | right) of Object

The corresponding corner of the Object’s bounding box, inheriting the Object’s orientation.

Temporal Operators

Temporal operators can be used inside require statements to constrain how a dynamic scenario evolves over time.
The semantics of these operators are taken from Linear Temporal Logic (specifically, we use RV-LTL [B10] to properly model the finite length of Scenic simulations).

always condition

Require the given condition to hold throughout the execution of the dynamic scenario.

eventually condition

Require the given condition to hold at some point during the execution of the dynamic scenario.

next condition

Require the given condition to hold at the next time step of the dynamic scenario.

For example, while require X requires that X hold at time step 0 (the start of the simulation), require next X requires that X hold at time step 1.
The requirement require always (X implies next X) says that for every time step \(N\), if X is true at that time step then it is also true at step \(N+1\); equivalently, if X ever becomes true, it must remain true for the rest of the simulation.

condition until condition

Require the second condition to hold at some point, and the first condition to hold at every time step before then (after which it is unconstrained).

Note that this is the so-called strong until, since it requires the second condition to eventually become true.
For the weak until, which allows the second condition to never hold (in which case the first condition must always hold), you can write require (X until Y) or (always X and not Y).

hypothesis implies conclusion

Require the conclusion to hold if the hypothesis holds.

This is syntactic sugar for not hypothesis or conclusion.
It is mainly useful in making requirements that constrain multiple time steps easier to read: for example, require always X implies Y requires that at every time step when X holds, Y must also hold.

References

[B10]
Bauer et al., Comparing LTL Semantics for Runtime Verification. Journal of Logic and Computation, 2010. [Online] [https://doi.org/10.1093/logcom/exn075]

Built-in Functions Reference

These functions are built into Scenic and may be used without needing to import any modules.

Miscellaneous Python Functions

The following functions work in the same way as their Python counterparts except that they accept random values:

	sin [https://docs.python.org/3/library/math.html#math.sin], cos [https://docs.python.org/3/library/math.html#math.cos], hypot [https://docs.python.org/3/library/math.html#math.hypot] (from the Python math [https://docs.python.org/3/library/math.html#module-math] module)

	len [https://docs.python.org/3/library/functions.html#len], max [https://docs.python.org/3/library/functions.html#max], min [https://docs.python.org/3/library/functions.html#min], round [https://docs.python.org/3/library/functions.html#round]

	float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]

The other Python built-in functions (e.g. enumerate [https://www.sphinx-doc.org/en/master/usage/quickstart.html#enumerate], range [https://docs.python.org/3/library/stdtypes.html#range], open [https://docs.python.org/3/library/functions.html#open]) are available but do not accept random arguments.

Note

If in the definition of a scene you would like to pass random values into some other function from the Python standard library (or any other Python package), you will need to wrap the function with the distributionFunction decorator. This is not necessary when calling external functions inside requirements or dynamic behaviors.

filter

The filter [https://docs.python.org/3/library/functions.html#filter] function works as in Python except it is now able to operate over random lists.
This feature can be used to work around Scenic’s lack of support for randomized control flow in certain cases.
In particular, Scenic does not allow iterating over a random list, but it is still possible to select a random element satisfying a desired criterion using filter [https://docs.python.org/3/library/functions.html#filter]:

mylist = Uniform([-1, 1, 2], [-3, 4]) # pick one of these lists 50/50
filtered = filter(lambda e: e > 0, y) # extract only the positive elements
x = Uniform(*filtered) # pick one of them at random

In the last line, we use Python’s unpacking operator * [https://docs.python.org/3.6/reference/expressions.html#expression-lists] to use the elements of the chosen list which pass the filter as arguments to Uniform; thus x is sampled as a uniformly-random choice among such elements. [1]

For an example of this idiom in a realistic scenario, see examples/driving/OAS_scenarios/oas_scenario_28.scenic.

resample

The resample function takes a distribution and samples a new value from it, conditioned on the values of its parameters, if any.
This is useful in cases where you have a complicated distribution that you want multiple samples from.

For example, in the program

x = Uniform(0, 5)
y = Range(x, x+1)
z = resample(y)

with probability 1/2 both y and z are independent uniform samples from the interval \((0, 1)\), and with probability 1/2 they are independent uniform samples from \((5, 6)\).
It is never the case that \(y \in (0, 1)\) and \(z \in (5, 6)\) or vice versa, which would require inconsistent assignments to x.

Note

This function can only be applied to the basic built-in distributions (see the Distributions Reference).
Resampling a more complex expression like x + y where x and y are distributions would be ambiguous (what if x and y are used elsewhere?) and so is not allowed.

localPath

The localPath function takes a relative path with respect to the directory containing the .scenic file where it is used, and converts it to an absolute path. Note that the path is returned as a pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] object.

verbosePrint

The verbosePrint function operates like print [https://docs.python.org/3/library/functions.html#print] except that it you can specify at what verbosity level (see --verbosity) it should actually print.
If no level is specified, it prints at all levels except verbosity 0.

Scenic libraries intended for general use should use this function instead of print [https://docs.python.org/3/library/functions.html#print] so that all non-error messages from Scenic can be silenced by setting verbosity 0.

simulation

The simulation function, available for use in dynamic behaviors and scenarios, returns the currently-running Simulation.
This allows access to global information about the simulation, e.g. simulation().currentTime to find the current time step; however, it is provided primarily so that scenarios written for a specific simulator may use simulator-specific functionality (by calling custom methods provided by that simulator’s subclass of Simulation).

[1]
If there are no such elements, i.e., the filtered list is empty, then Scenic will reject the scenario and try sampling again.

Visibility System

The Scenic visibility system is composed of two main parts: visible regions and visibility checks, which are described in detail below. An object is defined to be visible (modulo occlusion) if it lies within the horizontal and vertical viewAngles of the object and is within it’s visibleDistance, i.e. if it lies in the visible region of the object. This is not how Scenic actually checks visibility though, instead relying on visibility checks which internally use ray tracing and can account for occlusion.

Visible Regions

All Scenic objects define a visible region, a Region that is “visible” from a given Object. This region is defined by two groups of properties: spatial ones like position and orientation, and visibility specific ones:

	viewAngles : The horizontal and vertical angles (in radians) of the object’s field of view. The horizontal view angle must be between 0 and 2π and the vertical view angle must be between 0 and π.

	visibleDistance: Distance used to determine the visible range of the object.

	cameraOffset: Position of the camera relative to the object’s position.

While visible regions do in fact define what an object can see, Scenic does not directly use them to determine if something is visible from an object: instead they serve an accessory role (e.g. making sampling more efficient). The visible region of a Point is a sphere, while that of an OrientedPoint or Object can be a variety of shapes (see ViewRegion for details). An object’s visible region is used by various specifiers and operators, such as the visible {region} operator, the visible specifier, etc. Note that an object’s visible region is represented by a mesh and so is not exact, and that while Scenic takes occlusion by other objects into account when testing visibility, the visible region itself ignores occlusion.

Visibility Checks

It is often useful to determine whether something is actually visible from another object, i.e. a visibility check. Scenic performs such checks using ray tracing, allowing it to account for other objects occluding visibility. Something is considered visible if any ray (within viewAngles) collides with it (within visibleDistance), without colliding with an occluding object first. Since Scenic sends a finite number of rays, it is possible for false negatives to occur, though this can be tuned using the properties below. Visibility checks are used by various specifiers and operators, such as the can see operator, the visible specifier, etc.

Various object properties directly affect how Scenic performs visibility checks (including those listed above for visible regions):

	viewRayDensity: By default determines the number of rays used during visibility checks. This value is the density of rays per
degree of visible range in one dimension. The total number of rays sent will be this value squared per square degree of this object’s
view angles. This value determines the default value for viewRayCount, so if viewRayCount is overwritten this value is ignored.

	viewRayCount: The total number of horizontal and vertical view angles to be sent, or None if this value should be computed
automatically.

	viewRayDistanceScaling: Whether or not the number of rays should scale with the distance to the object. Ignored if
viewRayCount is passed.

	occluding: Whether or not this object occludes visibility.

Scenic uses several internal heuristics to speed up visibility checks, such as only sending rays where an object might actually be visible. Even with these heuristics, certain types of checks, such as those where an object is fully occluded but would otherwise be visible, can be very expensive. We recommend tuning viewRayDensity if runtimes are problematic, though note this may increase the risk of false negatives. Setting viewRayDistanceScaling to True can also help, especially in situations where objects can be very far away or very close, but one wishes to avoid setting viewRayDensity to a higher value. If one is seeking to emulate a specific camera resolution, one might instead wish to directly set viewRayCount (e.g. setting it to (1920, 1080) to emulate a full HD camera).

Scene Generation

The “output” of a Scenic program has two parts: a scene describing a configuration of physical objects, and a policy defining how those objects behave over time.
The latter is relevant only for running dynamic simulations from a Scenic program, and is discussed in our page on Execution of Dynamic Scenarios.
In this page, we describe how scenes are generated from a Scenic program.

In Scenic, a scene consists of the following data:

	a set of objects present in the scene (one of which may be designated the ego object);

	concrete values for all of the properties of these objects, such as position, heading, etc.;

	concrete values for each global parameter.

A Scenic program defines a probability distribution over such scenes in the usual way for imperative probabilistic programming languages with constraints (often called observations).
Running the program ignoring any require statements and making random choices whenever a distribution is evaluated yields a distribution over possible executions of the program and therefore over generated scenes.
Then any executions which violate a require condition are discarded, normalizing the probabilities of the remaining executions.

The Scenic tool samples from this distribution using rejection sampling: repeatedly sampling scenes until one is found which satisfies the requirements.
This approach has the advantage of allowing arbitrarily-complex requirements and sampling from the exact distribution we want.
However, if the requirements have a low probability of being satisfied, it may take many iterations to find a valid scene: in the worst case, if the requirements cannot be satisfied, rejection sampling will run forever (although the Scenario.generate function imposes a finite limit on the number of iterations by default).
To reduce the number of iterations required in some common cases, Scenic applies several “pruning” techniques to exclude parts of the scene space which violate the requirements ahead of time (this is done during compilation; see our paper for details).
The scene generation procedure then works as follows:

	Decide which user-defined requirements will be enforced for this sample (soft requirements have only some probability of being required).

	Invoke the external sampler to sample any external parameters.

	Sample values for all distributions defined in the scene (all expressions which have random values, represented internally as Distribution objects).

	Check if the sampled values satisfy the built-in and user-defined requirements: if not, reject the sample and repeat from step (2).

Execution of Dynamic Scenarios

As described in our tutorial on Dynamic Scenarios, Scenic scenarios can specify the behavior of agents over time, defining a policy which chooses actions for each agent at each time step.
Having sampled an initial scene from a Scenic program (see Scene Generation), we can run a dynamic simulation by setting up the scene in a simulator and running the policy in parallel to control the agents.
The API for running dynamic simulations is described in Using Scenic Programmatically (mainly the Simulator.simulate method); this page details how Scenic executes such simulations.

The policy for each agent is given by its dynamic behavior, which is a coroutine that usually executes like an ordinary function, but is suspended when it takes an action (using take or wait) and resumed after the simulation has advanced by one time step.
As a result, behaviors effectively run in parallel with the simulation.
Behaviors are also suspended when they invoke a sub-behavior using do, and are not resumed until the sub-behavior terminates.

When a behavior is first invoked, its preconditions are checked, and if any are not satisfied, the simulation is rejected, requiring a new simulation to be sampled. [1]
The behavior’s invariants are handled similarly, except that they are also checked whenever the behavior is resumed (i.e. after taking an action and after a sub-behavior terminates).

Monitors and compose blocks of modular scenarios execute in the same way as behaviors, with compose blocks also including additional checks to see if any of their terminate when conditions have been met or their temporal requirements violated.

In detail, a single time step of a dynamic simulation is executed according to the following procedure:

	Execute all currently-running modular scenarios for one time step.
Specifically, for each such scenario:

	Check if any of its temporal requirements have already been violated [2]; if so, reject the simulation.

	Check if the scenario’s time limit (if terminate after has been used) has been reached; if so, go to step (e) below to stop the scenario.

	If the scenario is not currently running a sub-scenario (with do), check its invariants; if any are violated, reject the simulation. [1]

	If the scenario has a compose block, run it for one time step (i.e. resume it until it or a subscenario it is currently running using do executes wait).
If the block executes a require statement with a false condition, reject the simulation.
If it executes terminate or terminate simulation, or finishes executing, go to step (e) below to stop the scenario.

	If the scenario is stopping for one of the reasons above, first recursively stop any sub-scenarios it is running, then revert the effects of any override statements it executed.
Next, check if any of its temporal requirements were not satisfied: if so, reject the simulation.
Otherwise, the scenario returns to its parent scenario if it was invoked using do; if it was the top-level scenario, or if it executed terminate simulation, we set a flag indicating the top-level scenario has terminated.
(We do not terminate immediately since we still need to check monitors in the next step.)

	Save the values of all record statements, as well as record initial statements if it is time step 0.

	Run each monitor instantiated in the currently-running scenarios for one time step (i.e. resume it until it executes wait).
If it executes a require statement with a false condition, reject the simulation.
If it executes terminate, stop the scenario which instantiated it as in step (1e) above.
If it executes terminate simulation, set the termination flag (and continue running any other monitors).

	If the termination flag is set, any of the terminate simulation when conditions are satisfied, or a time limit passed to Simulator.simulate has been reached, go to step (10) to terminate the simulation.

	Execute the dynamic behavior of each agent to select its action(s) for the time step.
Specifically, for each agent’s behavior:

	If the behavior is not currently running a sub-behavior (with do), check its invariants; if any are violated, reject the simulation. [1]

	Resume the behavior until it (or a subbehavior it is currently running using do) executes take or wait.
If the behavior executes a require statement with a false condition, reject the simulation.
If it executes terminate, stop the scenario which defined the agent as in step (1e) above.
If it executes terminate simulation, go to step (10) to terminate the simulation.
Otherwise, save the (possibly empty) set of actions specified for the agent to take.

	For each agent, execute the actions (if any) its behavior chose in the previous step.

	Run the simulator for one time step.

	Increment the simulation clock (the currentTime attribute of Simulation).

	Update every dynamic property of every object to its current value in the simulator.

	If the simulation is stopping for one of the reasons above, first check if any of the temporal requirements of any remaining scenarios were not satisfied: if so, reject the simulation.
Otherwise, save the values of any record final statements.

Footnotes

[1]
(1,2,3)
By default, violations of preconditions and invariants cause the simulation to be rejected; however, Simulator.simulate has an option to treat them as fatal errors instead.

[2]
More precisely, whether it is impossible for the requirement to be satisfied no matter how the simulation continues.
For example, given the requirement require always X, if X is false in the current time step then the whole simulation will certainly violate the requirement and we can reject.
On the other hand, given the requirement require eventually X, the fact that X is currently false does not mean the requirement will necessarily be violated, since X could become true later.
For such requirements Scenic will not reject until the simulation has completed, at which point we can tell with certainty whether or not the requirement was satisfied.

Command-Line Options

The scenic command supports a variety of options. Run scenic -h for a full list
with short descriptions; we elaborate on some of the most important options below.

Options may be given before and after the path to the Scenic file to run, so the syntax of the command is:

$ scenic [options] FILE [options]

General Scenario Control

	
-m <model>, --model <model>

	Specify the world model to use for the scenario, overriding any model statement
in the scenario. The argument must be the fully qualified name [https://docs.python.org/3/glossary.html#term-qualified-name] of a Scenic module
found on your PYTHONPATH [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH] (it does not necessarily need to be built into
Scenic).
This allows scenarios written using a generic model, like that provided by the Driving Domain, to be executed in a particular simulator (see the dynamic scenarios tutorial for examples).

The equivalent of this option for the Python API is the model argument to scenic.scenarioFromFile.

	
-p <param> <value>, --param <param> <value>

	Specify the value of a global parameter. This assignment overrides any
param statements in the scenario. If the given value can be interpreted as an
int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], it is; otherwise it is kept as a string.

The equivalent of this option for the Python API is the params argument to scenic.scenarioFromFile (which, however, does not attempt to convert strings to numbers).

	
--count <number>

	Number of successful scenes to generate or simulations to run (i.e., not counting rejected scenes/simulations).
The default is to run forever.

	
-s <seed>, --seed <seed>

	Specify the random seed used by Scenic, to make sampling deterministic.

This option sets the seed for the Python random number generator random [https://docs.python.org/3/library/random.html#module-random]
and the numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy] random number generator numpy.random [https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random], so
external Python code called from within Scenic can also be made deterministic
(although random [https://docs.python.org/3/library/random.html#module-random] and numpy.random [https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random] should not be used in place of
Scenic’s own sampling constructs in Scenic code).

	
--scenario <scenario>

	If the given Scenic file defines multiple scenarios, select which one to run.
The named modular scenario must not require any arguments.

The equivalent of this option for the Python API is the scenario argument to scenic.scenarioFromFile.

	
--2d

	Compile the scenario in 2D Compatibility Mode.

The equivalent of this option for the Python API is the mode2D argument to scenic.scenarioFromFile.

Dynamic Simulations

	
-S, --simulate

	Run dynamic simulations from scenes instead of plotting scene diagrams. This option
will only work for scenarios which specify a simulator, which is done automatically
by the world models for the simulator interfaces that support dynamic scenarios, e.g.
scenic.simulators.carla.model and scenic.simulators.lgsvl.model. If your scenario
is written for an abstract domain, like scenic.domains.driving, you will need to
use the --model option to specify the specific model for the simulator you
want to use.

	
--time <steps>

	Maximum number of time steps to run each simulation (the default is infinity).
Simulations may end earlier if termination criteria defined in the scenario are met (see terminate when and terminate).

Debugging

	
--version

	Show which version of Scenic is being used.

	
-v <verbosity>, --verbosity <verbosity>

	Set the verbosity level, from 0 to 3 (default 1):

	0
	Nothing is printed except error messages and
warnings [https://docs.python.org/3/library/warnings.html] (to stderr). Warnings can be
suppressed using the PYTHONWARNINGS [https://docs.python.org/3/using/cmdline.html#envvar-PYTHONWARNINGS] environment variable.

	1
	The main steps of compilation and scene generation are indicated, with timing
statistics.

	2
	Additionally, details on which modules are being compiled and the reasons for
any scene/simulation rejections are printed.

	3
	Additionally, the actions taken by each agent at each time step of a dynamic
simulation are printed.

This option can be configured from the Python API using scenic.setDebuggingOptions.

	
--show-params

	Show values of global parameters for each generated scene.

	
--show-records

	Show recorded values (see record) for each dynamic simulation.

	
-b, --full-backtrace

	Include Scenic’s internals in backtraces printed for uncaught exceptions.
This information will probably only be useful if you are developing Scenic.

This option can be enabled from the Python API using scenic.setDebuggingOptions.

	
--pdb

	If an error occurs, enter the Python interactive debugger pdb [https://docs.python.org/3/library/pdb.html#module-pdb].
Implies the -b option.

This option can be enabled from the Python API using scenic.setDebuggingOptions.

	
--pdb-on-reject

	If a scene/simulation is rejected (so that another must be sampled), enter pdb [https://docs.python.org/3/library/pdb.html#module-pdb].
Implies the -b option.

This option can be enabled from the Python API using scenic.setDebuggingOptions.

Using Scenic Programmatically

While Scenic is most easily invoked as a command-line tool, it also provides a Python API
for compiling Scenic programs, sampling scenes from them, and running dynamic
simulations.

Compiling Scenarios and Generating Scenes

The top-level interface to Scenic is provided by two functions in the scenic module
which compile a Scenic program:

	
scenarioFromFile(path, params={}, model=None, scenario=None, *, mode2D=False, **kwargs)

	Compile a Scenic file into a Scenario.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a Scenic file.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Global parameters to override, as a dictionary mapping
parameter names to their desired values.

	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – Scenic module to use as world model.

	scenario (str [https://docs.python.org/3/library/stdtypes.html#str]) – If there are multiple modular scenarios in the
file, which one to compile; if not specified, a scenario called ‘Main’
is used if it exists.

	mode2D (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to compile this scenario in 2D Compatibility Mode.

	Returns:

	A Scenario object representing the Scenic scenario.

Note for Scenic developers: this function accepts additional keyword
arguments which are intended for internal use and debugging only.
See _scenarioFromStream for details.

	
scenarioFromString(string, params={}, model=None, scenario=None, *, filename='<string>', mode2D=False, **kwargs)

	Compile a string of Scenic code into a Scenario.

The optional filename is used for error messages.
Other arguments are as in scenarioFromFile.

The resulting Scenario object represents the abstract scenario defined by the Scenic
program. To sample concrete scenes from this object, you can call the Scenario.generate
method, which returns a Scene. If you are only using static scenarios, you can extract
the sampled values for all the global parameters and objects in the scene from the
Scene object. For example:

import random, scenic
random.seed(12345)
scenario = scenic.scenarioFromString('ego = new Object with foo Range(0, 5)')
scene, numIterations = scenario.generate()
print(f'ego has foo = {scene.egoObject.foo}')

ego has foo = 2.083099362726706

Running Dynamic Simulations

To run dynamic scenarios, you must instantiate an instance of the Simulator class for
the particular simulator you want to use. Each simulator interface that supports dynamic
simulations defines a subclass of Simulator; for example, NewtonianSimulator for the
simple Newtonian simulator built into Scenic. These subclasses provide simulator-specific
functionality, and have different requirements for their use: see the specific
documentation of each interface under scenic.simulators for details.

Once you have an instance of Simulator, you can ask it to run a simulation from a
Scene by calling the Simulator.simulate method. If Scenic is able to run a simulation
that satisfies all the requirements in the Scenic program (potentially after multiple
attempts – Scenic uses rejection sampling), this method will return a Simulation
object. Results of the simulation can then be obtained by inspecting its result
attribute, which is an instance of SimulationResult (simulator-specific subclasses of
Simulation may also provide additional information). For example:

import scenic
from scenic.simulators.newtonian import NewtonianSimulator
scenario = scenic.scenarioFromFile('examples/driving/badlyParkedCarPullingIn.scenic',
 model='scenic.simulators.newtonian.driving_model',
 mode2D=True)
scene, _ = scenario.generate()
simulator = NewtonianSimulator()
simulation = simulator.simulate(scene, maxSteps=10)
if simulation: # `simulate` can return None if simulation fails
 result = simulation.result
 for i, state in enumerate(result.trajectory):
 egoPos, parkedCarPos = state
 print(f'Time step {i}: ego at {egoPos}; parked car at {parkedCarPos}')

If you want to monitor data from simulations to see if the system you are testing
violates its specfications, you may want to use VerifAI [https://verifai.readthedocs.io/] instead of implementing your
own code along the lines above. VerifAI supports running tests from Scenic programs,
specifying system specifications using temporal logic or arbitrary Python monitor
functions, actively searching the space of parameters in a Scenic program to find
concrete scenarios where the system violates its specs [1], and more. See the VerifAI
documentation for details.

Storing Scenes/Simulations for Later Use

Scene and Simulation objects are heavyweight and not themselves suitable for bulk
storage or transmission over a network [2]. However, Scenic provides serialization
routines which can encode such objects into relatively short sequences of bytes. Compact
encodings are achieved by storing only the sampled values of the primitive random
variables in the scenario: all non-random information is obtained from the original
Scenic file.

Having compiled a Scenic scenario into a Scenario object, any scenes you generate from
the scenario can be encoded as bytes using the Scenario.sceneToBytes method. For
example, to save a scene to a file one could use code like the following:

import scenic, tempfile, pathlib
scenario = scenic.scenarioFromFile('examples/gta/parkedCar.scenic', mode2D=True)
scene, _ = scenario.generate()
data = scenario.sceneToBytes(scene)
with open(pathlib.Path(tempfile.gettempdir()) / 'test.scene', 'wb') as f:
 f.write(data)
print(f'ego car position = {scene.egoObject.position}')

Then you could restore the scene in another process, obtaining the same position for the ego car:

import scenic, tempfile, pathlib
scenario = scenic.scenarioFromFile('examples/gta/parkedCar.scenic', mode2D=True)
with open(pathlib.Path(tempfile.gettempdir()) / 'test.scene', 'rb') as f:
 data = f.read()
scene = scenario.sceneFromBytes(data)
print(f'ego car position = {scene.egoObject.position}')

Notice how we need to compile the scenario a second time in order to decode the scene,
if the original Scenario object is not available. If you need to send a large number
of scenes from one computer to another, for example, it suffices to send the Scenic file
for the underlying scenario, plus the encodings of each of the scenes.

You can encode and decode simulations run from a Scenario in a similar way, using the
Scenario.simulationToBytes and Scenario.simulationFromBytes methods. One additional
concern when replaying a serialized simulation is that if your simulator is not
deterministic (or you change the simulator configuration), the original simulation and
its replay can diverge, leading to unexpected behavior or exceptions. Scenic can attempt
to detect such divergences by saving the exact history of the simulation and comparing
it to the replay, but this greatly increases the size of the encoded simulation. See
Simulator.simulate for the available options.

Note

The serialization format used for scenes and simulations is suitable for long-term
storage (for instance if you want to save all the simulations you’ve run so that you
can return to one later for further analysis), but it is not guaranteed to be
compatible across major versions of Scenic.

See also

If you get exceptions or unexpected behavior when using the API, Scenic provides various debugging features: see Debugging.

Footnotes

[1]
VerifAI’s active samplers can be used directly from Scenic when VerifAI is
installed. See scenic.core.external_params.

[2]
If you really do need to store/transmit such objects, you may be able to do so
using dill [https://pypi.org/project/dill/], a drop-in replacement for Python’s standard pickle [https://docs.python.org/3/library/pickle.html#module-pickle] library. Be aware
that pickling will produce much larger encodings than Scenic’s own APIs, as they need
to include all the information present in the original Scenic file and its associated
resources (e.g. for driving scenarios, the entire road map). Unpickling malicious
files can also trigger arbitrary code execution, while Scenic’s deserialization APIs
can be used with untrusted data (as long as you trust the Scenic program you’re
running, of course).

Developing Scenic

This page covers information useful if you will be developing Scenic, either changing the
language itself or adding new built-in libraries or simulator interfaces.

To find documentation (and code) for specific parts of Scenic’s implementation, see our page on Scenic Internals.

Getting Started

Start by cloning our repository on GitHub and setting up your virtual environment.
Then to install Scenic and its development dependencies in your virtual environment run:

$ python -m pip install -e ".[dev]"

This will perform an “editable” install, so that any changes you make to Scenic’s code will take effect immediately when running Scenic in your virtual environment.

Scenic uses the isort [https://pycqa.github.io/isort/] and black [https://black.readthedocs.io/en/stable/index.html] tools to automatically sort import statements and enforce a consistent code style.
Run the command pre-commit install to set up hooks which will run every time you commit and correct any formatting problems (you can then inspect the files and try committing again).
You can also manually run the formatters on the files changed since the last commit with pre-commit run. [1]

Running the Test Suite

Scenic has an extensive test suite exercising most of the features of the language. We
use the pytest [https://docs.pytest.org/en/latest/index.html] Python testing tool. To
run the entire test suite, run the command pytest inside the virtual
environment from the root directory of the repository.

Some of the tests are quite slow, e.g. those which test the parsing and construction of
road networks. We add a --fast option to pytest which skips such tests, while
still covering all of the core features of the language. So it is convenient to often run
pytest --fast as a quick check, remembering to run the full pytest
before making any final commits. You can also run specific parts of the test suite with a
command like pytest tests/syntax/test_specifiers.py, or use pytest’s -k
option to filter by test name, e.g. pytest -k specifiers.

Note that many of Scenic’s tests are probabilistic, so in order to reproduce a test
failure you may need to set the random seed. We use the
pytest-randomly [https://github.com/pytest-dev/pytest-randomly] plugin to help with
this: at the beginning of each run of pytest, it prints out a line like:

Using --randomly-seed=344295085

Adding this as an option, i.e. running pytest --randomly-seed=344295085, will
reproduce the same sequence of tests with the same Python/Scenic random seed. As a
shortcut, you can use --randomly-seed=last to use the seed from the previous
testing run.

If you’re running the test suite on a headless server or just want to stop windows from
popping up during testing, use the --no-graphics option to skip graphical
tests.

Prior to finalizing a PR or other substantial changes, it’s a good idea to run the test suite under all major versions of Python that Scenic supports, in fresh virtual environments.
You can do this automatically with the command tox, which by default will test all supported major versions both with and without optional dependencies (this will take a long time).
Some variations:

	tox -p will run the various combinations in parallel.

	tox -m basic skips testing installations with the optional dependencies.

	tox -- --fast only runs the “fast” tests. In general, any arguments after the -- will get passed to pytest. For example,

	tox -- tests/syntax/test_specifiers.py only runs the tests in the given file.

See the Tox [https://tox.wiki/] website for more information about the available options and how to configure Tox.

Debugging

You can use Python’s built-in debugger pdb [https://docs.python.org/3/library/pdb.html#module-pdb] to debug the parsing, compilation, sampling,
and simulation of Scenic programs. The Scenic command-line option -b will cause the
backtraces printed from uncaught exceptions to include Scenic’s internals; you can also
use the --pdb option to automatically enter the debugger on such exceptions.
If you’re trying to figure out why a scenario is taking many iterations of rejection
sampling, first use the --verbosity option to print out the reason for each
rejection. If the problem doesn’t become clear, you can use the --pdb-on-reject
option to automatically enter the debugger when a scene or simulation is rejected.

If you’re using the Python API instead of invoking Scenic from the command line, these
debugging features can be enabled using the following function from the scenic module:

	
setDebuggingOptions(*, verbosity=0, fullBacktrace=False, debugExceptions=False, debugRejections=False)

	Configure Scenic’s debugging options.

	Parameters:

	
	verbosity (int [https://docs.python.org/3/library/functions.html#int]) – Verbosity level. Zero by default, although the command-line
interface uses 1 by default. See the --verbosity option for the
allowed values.

	fullBacktrace (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to include Scenic’s innards in backtraces
(like the -b command-line option).

	debugExceptions (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use pdb [https://docs.python.org/3/library/pdb.html#module-pdb] for post-mortem debugging of
uncaught exceptions (like the --pdb option).

	debugRejections (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to enter pdb [https://docs.python.org/3/library/pdb.html#module-pdb] when a scene or simulation is
rejected (like the --pdb-on-reject option).

It is possible to put breakpoints into a Scenic program using the Python built-in
function breakpoint [https://docs.python.org/3/library/functions.html#breakpoint]. Note however that since code in a Scenic program is not always
executed the way you might expect (e.g. top-level code is only run once, whereas code in
requirements can run every time we generate a sample: see How Scenic is Compiled), some care is needed when
interpreting what you see in the debugger. The same consideration applies when adding
print [https://docs.python.org/3/library/functions.html#print] statements to a Scenic program. For example, a top-level print(x) will
not print out the actual value of x every time a sample is generated: instead,
you will get a single print at compile time, showing the Distribution object which
represents the distribution of x (and which is bound to x in the Python
namespace used internally for the Scenic module).

Building the Documentation

Scenic’s documentation is built using Sphinx [https://www.sphinx-doc.org/]. The
freestanding documentation pages (like this one) are found under the docs
folder, written in the reStructuredText format [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#rst-primer].
The detailed documentation of Scenic’s internal classes, functions, etc. is largely
auto-generated from their docstrings, which are written in a variant of Google’s style
understood by the Napoleon [https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#module-sphinx.ext.napoleon]
Sphinx extension (see the docstring of Scenario.generate for a simple example: click
the [source] link to the right of the function signature to see the code).

If you modify the documentation, you should build a copy of it locally to make sure
everything looks good before you push your changes to GitHub (where they will be picked
up automatically by ReadTheDocs [https://readthedocs.org/]). To compile the
documentation, enter the docs folder and run make html. The output
will be placed in the docs/_build/html folder, so the root page will be at
docs/_build/html/index.html. If your changes do not appear, it’s possible that Sphinx
has not detected them; you can run make clean to delete all the files from the
last compilation and start from a clean slate.

Scenic extends Sphinx in a number of ways to improve the presentation of Scenic code and
add various useful features: see docs/conf.py for full details. Some of the most
commonly-used features are:

	a scenic role [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html]
which extends the standard Sphinx samp [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-samp] role with Scenic syntax highlighting;

	a sampref role which makes a cross-reference like keyword [https://www.sphinx-doc.org/en/master/usage/referencing.html#role-keyword] but allows
emphasizing variables like samp [https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-samp];

	the term [https://www.sphinx-doc.org/en/master/usage/referencing.html#role-term] role for glossary terms is extended so that the cross-reference will
work even if the link is plural but the glossary entry is singular or vice versa.

Footnotes

[1]
To run the formatters on all files, changed or otherwise, use make format in the root directory of the repository. But this should not be necessary if you installed the pre-commit hooks and so all files already committed are clean.

Scenic Internals

This section of the documentation describes the implementation of Scenic.
Much of this information will probably only be useful for people who need to make some change to the language (e.g. adding a new type of distribution).
However, the detailed documentation on Scenic’s abstract application domains (in scenic.domains) and simulator interfaces (in scenic.simulators) may be of interest to people using those features.

	How Scenic is Compiled

	Guide to the Scenic Parser & Compiler

	Scenic Grammar

Scenic Modules

Detailed documentation on Scenic’s components is organized by the submodules of the main scenic module:

	scenic.core

	Scenic's core types and associated support code.

	scenic.domains

	General scenario domains used across simulators.

	scenic.formats

	Support for file formats not specific to particular simulators.

	scenic.simulators

	World models and interfaces for particular simulators.

	scenic.syntax

	The Scenic compiler and associated support code.

The scenic module itself provides the top-level API for using Scenic: see Using Scenic Programmatically.

How Scenic is Compiled

The process of compiling a Scenic program into a Scenario object can be split into several phases.
Understanding what each phase does is useful if you plan to modify the Scenic language.

For more details on Phases 1 and 2 (parsing Scenic and converting it into Python), see the Guide to the Scenic Parser & Compiler.

Phase 1: Scenic Parser

In this phase the program is parsed using the Scenic parser. The parser is generated from a PEG grammar (scenic.gram) using the Pegen parser generator [https://we-like-parsers.github.io/pegen/index.html].
The parser generates an abstract syntax tree (Scenic AST) for the program. Scenic AST is a superset of Python AST defined in ast.py and has additional nodes for representing Scenic-specific constructs.

Phase 2: Scenic Compiler

In this phase, the Scenic AST is transformed into a Python AST. The Scenic Compiler walks the Scenic AST and replaces Scenic-specific nodes with corresponding Python AST nodes.

Phase 3: AST Compilation

Compile the Python AST down to a Python code [https://docs.python.org/3/library/stdtypes.html#bltin-code-objects] object.

Phase 4: Python Execution

In this phase the Python code object compiled in Phase 3 is executed.
When run, the definitions of objects, global parameters, requirements, behaviors, etc. produce Python data structures used internally by Scenic to keep track of the distributions, functions, coroutines, etc. used in their definitions.
For example, a random value will evaluate to a Distribution object storing information about which distribution it is drawn from; actually sampling from that distribution will not occur until after the compilation process (when calling Scenario.generate).
A require statement will likewise produce a closure which can be used at sampling time to check whether its condition is satisfied or not.

Note that since this phase only happens once, at compile time and not sampling time, top-level code in a Scenic program [1] is only executed once even when sampling many scenes from it.
This is done deliberately, in order to generate a static representation of the semantics of the Scenic program which can be used for sampling without needing to re-run the entire program.

Phase 5: Scenario Construction

In this phase the various pieces of the internal representation of the program resulting from Phase 4 are bundled into a Scenario object and returned to the user.
This phase is also where the program is analyzed and pruning techniques applied to optimize the scenario for later sampling.

Sampling and Executing Scenarios

Sampling scenes and executing dynamic simulations from them are not part of the compilation process [2].
For documentation on how those are done, see Scenario.generate and scenic.core.simulators respectively.

Footnotes

[1]
As compared to code inside a require statement or a dynamic behavior,
which will execute every time a scene is sampled or a simulation is run respectively.

[2]
Although there are some syntax errors which are currently not detected until those stages.

Guide to the Scenic Parser & Compiler

This page describes the process of parsing Scenic code and compiling it into equivalent Python.
We also include a tutorial illustrating how to add a new syntax construct to Scenic.

Architecture & Terminology

[image: Scenic Parser & Compiler Architecture]

Scenic AST

A Scenic AST is an abstract syntax tree for representing Scenic programs.
It is a superset of Python AST and includes nodes for Scenic-specific
language constructs.

The scenic.syntax.ast module defines all Scenic-specific AST nodes, which are instances of the AST class defined in the same file.

AST nodes should include fields to store objects. To add fields, add a
parameter to the initializer and define fields by assigning values to
self.

When adding fields, be sure to update the _fields and
__match_args__ fields. _fields lists the names of the fields in
the AST node and is used by the AST module to traverse the tree, fill in
the missing information, etc. __match_args__ [https://docs.python.org/3/reference/datamodel.html#object.__match_args__] is used by the test
suite to assert the structure of the AST node using Python’s structural
pattern matching.

Scenic Grammar

The Scenic Grammar (syntax/scenic.gram) is a formal grammar that defines the syntax
of the Scenic language. It is written as a Parsing Expression Grammar [https://en.wikipedia.org/wiki/Parsing_expression_grammar]
(PEG) using the Pegen parser generator [https://we-like-parsers.github.io/pegen/index.html].

Please refer to Pegen’s documentation [https://we-like-parsers.github.io/pegen/grammar.html] on how to write a grammar.

Scenic Parser

The Scenic Parser takes Scenic source code and outputs the corresponding
abstract syntax tree. It is generated from the grammar file using Pegen.

When you modify scenic.gram, you need to regenerate the parser
by calling make or running

$ python -m pegen ./src/scenic/syntax/scenic.gram -o ./src/scenic/syntax/parser.py

at the project root.
When running the test suite with pytest, the parser is automatically updated before test execution.

tests/syntax/test_parser.py includes parser tests and ensures that the parser
generates the desired AST.

Scenic Compiler

The Scenic Compiler is a Scenic AST-to-Python AST compiler. The generated
Python AST can be passed to the Python interpreter for execution.

Internally, the compiler is a subclass of ast.NodeTransformer [https://docs.python.org/3/library/ast.html#ast.NodeTransformer]. It
must define visitors for each Scenic AST node which return corresponding
Python AST nodes.

Tutorial: Adding New Syntax

In order to add new syntax, you’ll want to do the following:

	add AST nodes to ast.py

	add grammar to scenic.gram

	write parser tests

	add visitor to compiler.py

	write compiler tests

The rest of this section will demonstrate how we can add the implies
operator using the new parser architecture.

Step 1: Add AST Nodes

First, we define AST nodes that represent the syntax. Since the
implies operator is a binary operator, the AST node will have two
fields for each operand.

 1class ImpliesOp(AST):
 2 __match_args__ = ("hypothesis", "conclusion")
 3
 4 def __init__(
 5 self, hypothesis: ast.AST, conclusion: ast.AST, *args: Any, **kwargs: Any
 6) -> None:
 7 super().__init__(*args, **kwargs)
 8 self.hypothesis = hypothesis
 9 self.conclusion = conclusion
10 self._fields = ["hypothesis", "conclusion"]

	On line 1, AST (scenic.syntax.ast.AST, not ast.AST [https://docs.python.org/3/library/ast.html#ast.AST]) is the base class that all Scenic AST nodes extend.

	On line 2, __match_args__ is a syntax for using structural pattern
matching [https://peps.python.org/pep-0636/#matching-positional-attributes]
on argument positions. This is to make it easier to write parser tests.

	On line 5, the initializer takes two required arguments corresponding to the operator’s operands (hypothesis and conclusion). Note
that their types are ast.AST [https://docs.python.org/3/library/ast.html#ast.AST], which is the base class for all AST nodes,
including both Scenic AST nodes and Python AST nodes. The additional arguments *args and
**kwargs should be passed to the base class’ initializer to store
extra information such as line number, offset, etc.

	On line 10, _fields is a special field that specifies the child nodes. This is used by
the library functions such as generic_visit to traverse the
syntax tree.

Step 2: Add Grammar

Note

The grammar described here is slightly simplified for the sake of brevity.
For the actual grammar used by the parser, see the Scenic Grammar.

The next step is to update the scenic.gram file with a rule that matches our new construct.
We’ll add a rule called scenic_implication: all Scenic grammar rules should be prefixed with scenic_ so that we can
easily distinguish Scenic-specific rules from those in the original Python grammar.

scenic_implication (memo):
 | invalid_scenic_implication # special rule to explain invalid uses of "implies"
 | a=disjunction "implies" b=disjunction { s.ImpliesOp(a, b, LOCATIONS) }
 | disjunction

Our rule has three alternatives, which the parser considers in order.
For the moment, let’s consider the second alternative, which is the one defining the actual syntax of implies: it matches any text matching the disjunction rule, followed by the word implies, followed by any text matching the disjunction rule.
In the grammar, precedence and associativity of operators are defined by using
separate rules for each precedence level.
The disjunction rule matches any expression defined using or or an operator with higher precedence than or.
Since implication should bind less tightly than or, we use disjunction for its operands in our rule.
To allow scenic_implication to match higher-precedence operators as well as just implies, we add the third alternative, which matches any disjunction.

Returning to the second alternative, we define its outcome, i.e., the AST node which it generates if it matches, using the ordinary Python code inside the curly brackets.
Here s refers to the Scenic AST module, so s.ImpliesOp(a, b, LOCATIONS) creates an instance of the ImpliesOp class we defined above with a the hypothesis and b the conclusion.
The special term LOCATIONS will be replaced with a set of named arguments to
express source code locations.

The implies operator is unique in that it takes exactly two
operands: we disallow A implies B implies C as being ambiguous, rather than parsing it as (A implies B) implies C (left-associatively) or A implies (B implies C) (right-associatively).
In order to block the ambiguous case and force the developer to make the meaning clear by wrapping one of the operands in parentheses, our rule says that the right-hand side of the implication must be a disjunction rather than an arbitrary expression.
This will cause the code A implies B implies C to result in a syntax error, because no rules will match.

In order to replace the generic syntax error with a more informative one, we add the invalid_scenic_implication rule as the first alternative.
Rules with the invalid_ prefix are special rules for generating
custom error messages.
Pegen first tries to parse the input without
using invalid_ rules. If that fails, it tries parsing again, this time allowing invalid_
rules: those rules can then generate errors when they match.

invalid_scenic_implication[NoReturn]:
 | a=disjunction "implies" disjunction "implies" b=disjunction {
 self.raise_syntax_error_known_range(
 f"`implies` must take exactly two operands", a, b
)
 }

The invalid_scenic_implication rule looks for an implication with more
than two arguments (e.g. A implies B implies C) and raises a syntax
error with a detailed error message.

Once we are done with the grammar, run make to generate the parser
from the grammar. If there is no error, the file src/scenic/syntax/parser.py will be created.

Step 3: Write Parser Tests

Now that we have the parser, we need to add test cases to check that it works as we expect.

The number of test cases depends on the complexity of the grammar rule.
Here, I decided to add the following three cases:

class TestOperator: # 1
 def test_implies_basic(self): # 2
 mod = parse_string_helper("x implies y") # 3
 stmt = mod.body[0]
 match stmt:
 case Expr(ImpliesOp(Name("x"), Name("y"))): # 4
 assert True
 case _:
 assert False # 5

 def test_implies_precedence(self):
 mod = parse_string_helper("x implies y or z")
 stmt = mod.body[0]
 match stmt:
 case Expr(ImpliesOp(Name("x"), BoolOp(Or(), [Name("y"), Name("z")]))):
 assert True
 case _:
 assert False

 def test_implies_three_operands(self):
 with pytest.raises(SyntaxError) as e: # 6
 parse_string_helper("x implies y implies z")
 assert "must take exactly two operands" in e.value.msg

	TestOperator is a test class that has all tests related to Scenic
operators, so it is natural for us to add test cases here.

	The test case name should contain the names of the grammar we’re
testing (implies in this case)

	parse_string_helper is a thin wrapper around the parser. The
return value would be a module, but we’re only concerned about the
first statement of the body, so we extract that to the stmt
variable.

	We use structural pattern matching to match the result with the
expected AST structure. In this case, the statement is expected to be
an Expr whose value is an ImpliesOp that takes Names,
x and y.

	Be sure to add an otherwise case (with _) and assert false.
Otherwise, no error will be caught even if the returned node does not
match the expected structure.

	Errors can be tested using pytest.raises [https://docs.pytest.org/en/stable/reference/reference.html#pytest.raises].

Step 4: Add Visitor to Compiler

The next step is to add a visitor method to the compiler so it knows how to
compile the ImpliesOp AST node to the corresponding Python AST.
In this case, we want to compile A implies B to a Python function call
Implies(A, B).

The visitor class used in the compiler, ScenicToPythonTransformer, is a subclass of ast.NodeTransformer [https://docs.python.org/3/library/ast.html#ast.NodeTransformer], which transforms an AST node of class C by calling a method called visit_C if one exists, otherwise just recursively transforming its child nodes.
So to add the ability to compile ImpliesOp nodes, we’ll add
a method named visit_ImpliesOp:

class ScenicToPythonTransformer(ast.NodeTransformer):
 def visit_ImpliesOp(self, node: s.ImpliesOp):
 return ast.Call(
 func=ast.Name(id="Implies", ctx=loadCtx),
 args=[self.visit(node.hypothesis), self.visit(node.conclusion)],
 keywords=[],
)

Inside the visitor, we construct a Call to a name Implies with
node.hypothesis and node.conclusion as its arguments. Note that
the arguments need to be recursively visited using self.visit; otherwise Scenic AST nodes
inside them won’t be compiled.

Step 5: Write Compiler Tests

Similarly to step 3, we add tests for the compiler.

def test_implies_op(self):
 node, _ = compileScenicAST(ImpliesOp(Name("x"), Name("y")))
 match node:
 case Call(Name("Implies"), [Name("x"), Name("y")]):
 assert True
 case _:
 assert False

compileScenicAST is a function that invokes the node transformer. We
match the compiled node against the desired structure, which in this
case is a call to a function with two arguments.

This completes adding the implies operator.

Scenic Grammar

This page gives the formal Parsing Expression Grammar [https://en.wikipedia.org/wiki/Parsing_expression_grammar] (PEG) used to parse the Scenic language.
It is in the format of the Pegen parser generator [https://we-like-parsers.github.io/pegen/index.html], and is based on the Python grammar from CPython [https://github.com/python/cpython] (see Grammar/python.gram in the CPython repository).
In the source code, the grammar can be found at src/scenic/syntax/scenic.gram.

PEG grammar for Scenic
Based on the Python grammar at https://github.com/we-like-parsers/pegen/blob/main/data/python.gram

@class ScenicParser

@subheader'''
import enum
import io
import itertools
import os
import sys
import token
from typing import (
 Any, Callable, Iterator, List, Literal, NoReturn, Sequence, Tuple, TypeVar, Union
)

from pegen.tokenizer import Tokenizer

import scenic.syntax.ast as s
from scenic.core.errors import ScenicParseError

Singleton ast nodes, created once for efficiency
Load = ast.Load()
Store = ast.Store()
Del = ast.Del()

Node = TypeVar("Node")
FC = TypeVar("FC", ast.FunctionDef, ast.AsyncFunctionDef, ast.ClassDef)

EXPR_NAME_MAPPING = {
 ast.Attribute: "attribute",
 ast.Subscript: "subscript",
 ast.Starred: "starred",
 ast.Name: "name",
 ast.List: "list",
 ast.Tuple: "tuple",
 ast.Lambda: "lambda",
 ast.Call: "function call",
 ast.BoolOp: "expression",
 ast.BinOp: "expression",
 ast.UnaryOp: "expression",
 ast.GeneratorExp: "generator expression",
 ast.Yield: "yield expression",
 ast.YieldFrom: "yield expression",
 ast.Await: "await expression",
 ast.ListComp: "list comprehension",
 ast.SetComp: "set comprehension",
 ast.DictComp: "dict comprehension",
 ast.Dict: "dict literal",
 ast.Set: "set display",
 ast.JoinedStr: "f-string expression",
 ast.FormattedValue: "f-string expression",
 ast.Compare: "comparison",
 ast.IfExp: "conditional expression",
 ast.NamedExpr: "named expression",
}

def parse_file(
 path: str,
 py_version: Optional[tuple]=None,
 token_stream_factory: Optional[
 Callable[[Callable[[], str]], Iterator[tokenize.TokenInfo]]
] = None,
 verbose:bool = False,
) -> ast.Module:
 """Parse a file."""
 with open(path) as f:
 tok_stream = (
 token_stream_factory(f.readline)
 if token_stream_factory else
 tokenize.generate_tokens(f.readline)
)
 tokenizer = Tokenizer(tok_stream, verbose=verbose, path=path)
 parser = ScenicParser(
 tokenizer,
 verbose=verbose,
 filename=os.path.basename(path),
 py_version=py_version
)
 return parser.parse("file")

def parse_string(
 source: str,
 mode: Union[Literal["eval"], Literal["exec"]],
 py_version: Optional[tuple]=None,
 token_stream_factory: Optional[
 Callable[[Callable[[], str]], Iterator[tokenize.TokenInfo]]
] = None,
 verbose: bool = False,
 filename: str = "<unknown>",
) -> Any:
 """Parse a string."""
 tok_stream = (
 token_stream_factory(io.StringIO(source).readline)
 if token_stream_factory else
 tokenize.generate_tokens(io.StringIO(source).readline)
)
 tokenizer = Tokenizer(tok_stream, verbose=verbose)
 parser = ScenicParser(tokenizer, verbose=verbose, py_version=py_version, filename=filename)
 return parser.parse(mode if mode == "eval" else "file")

class Target(enum.Enum):
 FOR_TARGETS = enum.auto()
 STAR_TARGETS = enum.auto()
 DEL_TARGETS = enum.auto()

class Parser(Parser):

 #: Name of the source file, used in error reports
 filename : str

 def __init__(self,
 tokenizer: Tokenizer, *,
 verbose: bool = False,
 filename: str = "<unknown>",
 py_version: Optional[tuple] = None,
) -> None:
 super().__init__(tokenizer, verbose=verbose)
 self.filename = filename
 self.py_version = min(py_version, sys.version_info) if py_version else sys.version_info

 def parse(self, rule: str, call_invalid_rules: bool = False) -> Optional[ast.AST]:
 self.call_invalid_rules = call_invalid_rules
 res = getattr(self, rule)()

 if res is None:

 # Grab the last token that was parsed in the first run to avoid
 # polluting a generic error reports with progress made by invalid rules.
 last_token = self._tokenizer.diagnose()

 if not call_invalid_rules:
 self.call_invalid_rules = True

 # Reset the parser cache to be able to restart parsing from the
 # beginning.
 self._reset(0) # type: ignore
 self._cache.clear()

 res = getattr(self, rule)()

 self.raise_raw_syntax_error("invalid syntax", last_token.start, last_token.end)

 return res

 def check_version(self, min_version: Tuple[int, ...], error_msg: str, node: Node) -> Node:
 """Check that the python version is high enough for a rule to apply.

 """
 if self.py_version >= min_version:
 return node
 else:
 raise ScenicParseError(SyntaxError(
 f"{error_msg} is only supported in Python {min_version} and above."
))

 def raise_indentation_error(self, msg: str) -> None:
 """Raise an indentation error."""
 last_token = self._tokenizer.diagnose()
 args = (self.filename, last_token.start[0], last_token.start[1] + 1, last_token.line)
 if sys.version_info >= (3, 10):
 args += (last_token.end[0], last_token.end[1] + 1)
 raise ScenicParseError(IndentationError(msg, args))

 def get_expr_name(self, node) -> str:
 """Get a descriptive name for an expression."""
 # See https://github.com/python/cpython/blob/master/Parser/pegen.c#L161
 assert node is not None
 node_t = type(node)
 if node_t is ast.Constant:
 v = node.value
 if v is Ellipsis:
 return "ellipsis"
 elif v is None:
 return str(v)
 # Avoid treating 1 as True through == comparison
 elif v is True:
 return str(v)
 elif v is False:
 return str(v)
 else:
 return "literal"

 try:
 return EXPR_NAME_MAPPING[node_t]
 except KeyError:
 raise ValueError(
 f"unexpected expression in assignment {type(node).__name__} "
 f"(line {node.lineno})."
)

 def get_invalid_target(self, target: Target, node: Optional[ast.AST]) -> Optional[ast.AST]:
 """Get the meaningful invalid target for different assignment type."""
 if node is None:
 return None

 # We only need to visit List and Tuple nodes recursively as those
 # are the only ones that can contain valid names in targets when
 # they are parsed as expressions. Any other kind of expression
 # that is a container (like Sets or Dicts) is directly invalid and
 # we do not need to visit it recursively.
 if isinstance(node, (ast.List, ast.Tuple)):
 for e in node.elts:
 if (inv := self.get_invalid_target(target, e)) is not None:
 return inv
 elif isinstance(node, ast.Starred):
 if target is Target.DEL_TARGETS:
 return node
 return self.get_invalid_target(target, node.value)
 elif isinstance(node, ast.Compare):
 # This is needed, because the `a in b` in `for a in b` gets parsed
 # as a comparison, and so we need to search the left side of the comparison
 # for invalid targets.
 if target is Target.FOR_TARGETS:
 if isinstance(node.ops[0], ast.In):
 return self.get_invalid_target(target, node.left)
 return None

 return node
 elif isinstance(node, (ast.Name, ast.Subscript, ast.Attribute)):
 return None
 else:
 return node

 def set_expr_context(self, node, context):
 """Set the context (Load, Store, Del) of an ast node."""
 node.ctx = context
 return node

 def ensure_real(self, number: ast.Constant) -> float:
 value = ast.literal_eval(number.string)
 if type(value) is complex:
 self.raise_syntax_error_known_location("real number required in complex literal", number)
 return value

 def ensure_imaginary(self, number: ast.Constant) -> complex:
 value = ast.literal_eval(number.string)
 if type(value) is not complex:
 self.raise_syntax_error_known_location("imaginary number required in complex literal", number)
 return value

 def check_fstring_conversion(self, mark: tokenize.TokenInfo, name: tokenize.TokenInfo) -> tokenize.TokenInfo:
 if mark.lineno != name.lineno or mark.col_offset != name.col_offset:
 self.raise_syntax_error_known_range(
 "f-string: conversion type must come right after the exclamanation mark",
 mark,
 name
)

 s = name.string
 if len(s) > 1 or s not in ("s", "r", "a"):
 self.raise_syntax_error_known_location(
 f"f-string: invalid conversion character '{s}': expected 's', 'r', or 'a'",
 name,
)

 return name

 def _concat_strings_in_constant(self, parts) -> Union[str, bytes]:
 s = ast.literal_eval(parts[0].string)
 for ss in parts[1:]:
 s += ast.literal_eval(ss.string)
 args = dict(
 value=s,
 lineno=parts[0].start[0],
 col_offset=parts[0].start[1],
 end_lineno=parts[-1].end[0],
 end_col_offset=parts[0].end[1],
)
 if parts[0].string.startswith("u"):
 args["kind"] = "u"
 return ast.Constant(**args)

 def concatenate_strings(self, parts):
 """Concatenate multiple tokens and ast.JoinedStr"""
 # Get proper start and stop
 start = end = None
 if isinstance(parts[0], ast.JoinedStr):
 start = parts[0].lineno, parts[0].col_offset
 if isinstance(parts[-1], ast.JoinedStr):
 end = parts[-1].end_lineno, parts[-1].end_col_offset

 # Combine the different parts
 seen_joined = False
 values = []
 ss = []
 for p in parts:
 if isinstance(p, ast.JoinedStr):
 seen_joined = True
 if ss:
 values.append(self._concat_strings_in_constant(ss))
 ss.clear()
 values.extend(p.values)
 else:
 ss.append(p)

 if ss:
 values.append(self._concat_strings_in_constant(ss))

 consolidated = []
 for p in values:
 if consolidated and isinstance(consolidated[-1], ast.Constant) and isinstance(p, ast.Constant):
 consolidated[-1].value += p.value
 consolidated[-1].end_lineno = p.end_lineno
 consolidated[-1].end_col_offset = p.end_col_offset
 else:
 consolidated.append(p)

 if not seen_joined and len(values) == 1 and isinstance(values[0], ast.Constant):
 return values[0]
 else:
 return ast.JoinedStr(
 values=consolidated,
 lineno=start[0] if start else values[0].lineno,
 col_offset=start[1] if start else values[0].col_offset,
 end_lineno=end[0] if end else values[-1].end_lineno,
 end_col_offset=end[1] if end else values[-1].end_col_offset,
)

 def generate_ast_for_string(self, tokens):
 """Generate AST nodes for strings."""
 err_args = None
 line_offset = tokens[0].start[0]
 line = line_offset
 col_offset = 0
 source = "(\\n"
 for t in tokens:
 n_line = t.start[0] - line
 if n_line:
 col_offset = 0
 source += """\\n""" * n_line + ' ' * (t.start[1] - col_offset) + t.string
 line, col_offset = t.end
 source += "\\n)"
 try:
 m = ast.parse(source)
 except SyntaxError as err:
 args = (err.filename, err.lineno + line_offset - 2, err.offset, err.text)
 if sys.version_info >= (3, 10):
 args += (err.end_lineno + line_offset - 2, err.end_offset)
 err_args = (err.msg, args)
 # Ensure we do not keep the frame alive longer than necessary
 # by explicitely deleting the error once we got what we needed out
 # of it
 del err

 # Avoid getting a triple nesting in the error report that does not
 # bring anything relevant to the traceback.
 if err_args is not None:
 raise ScenicParseError(SyntaxError(*err_args))

 node = m.body[0].value
 # Since we asked Python to parse an alterred source starting at line 2
 # we alter the lineno of the returned AST to recover the right line.
 # If the string start at line 1, tha AST says 2 so we need to decrement by 1
 # hence the -2.
 ast.increment_lineno(node, line_offset - 2)
 return node

 def extract_import_level(self, tokens: List[tokenize.TokenInfo]) -> int:
 """Extract the relative import level from the tokens preceding the module name.

 '.' count for one and '...' for 3.

 """
 level = 0
 for t in tokens:
 if t.string == ".":
 level += 1
 else:
 level += 3
 return level

 def set_decorators(self,
 target: FC,
 decorators: list
) -> FC:
 """Set the decorators on a function or class definition."""
 target.decorator_list = decorators
 return target

 def get_comparison_ops(self, pairs):
 return [op for op, _ in pairs]

 def get_comparators(self, pairs):
 return [comp for _, comp in pairs]

 def set_arg_type_comment(self, arg, type_comment):
 if type_comment or sys.version_info < (3, 9):
 arg.type_comment = type_comment
 return arg

 def make_arguments(self,
 pos_only: Optional[List[Tuple[ast.arg, None]]],
 pos_only_with_default: List[Tuple[ast.arg, Any]],
 param_no_default: Optional[List[Tuple[ast.arg, None]]],
 param_default: Optional[List[Tuple[ast.arg, Any]]],
 after_star: Optional[Tuple[Optional[ast.arg], List[Tuple[ast.arg, Any]], Optional[ast.arg]]]
) -> ast.arguments:
 """Build a function definition arguments."""
 defaults = (
 [d for _, d in pos_only_with_default if d is not None]
 if pos_only_with_default else
 []
)
 defaults += (
 [d for _, d in param_default if d is not None]
 if param_default else
 []
)

 pos_only = pos_only or pos_only_with_default

 # Because we need to combine pos only with and without default even
 # the version with no default is a tuple
 pos_only = [p for p, _ in pos_only]
 params = (param_no_default or []) + ([p for p, _ in param_default] if param_default else [])

 # If after_star is None, make a default tuple
 after_star = after_star or (None, [], None)

 return ast.arguments(
 posonlyargs=pos_only,
 args=params,
 defaults=defaults,
 vararg=after_star[0],
 kwonlyargs=[p for p, _ in after_star[1]],
 kw_defaults=[d for _, d in after_star[1]],
 kwarg=after_star[2]
)

 def _build_syntax_error(
 self,
 message: str,
 start: Optional[Tuple[int, int]] = None,
 end: Optional[Tuple[int, int]] = None
) -> None:
 line_from_token = start is None and end is None
 if start is None or end is None:
 tok = self._tokenizer.diagnose()
 start = start or tok.start
 end = end or tok.end

 if line_from_token:
 line = tok.line
 else:
 # End is used only to get the proper text
 line = "\\n".join(
 self._tokenizer.get_lines(list(range(start[0], end[0] + 1)))
)

 # tokenize.py index column offset from 0 while Cpython index column
 # offset at 1 when reporting SyntaxError, so we need to increment
 # the column offset when reporting the error.
 args = (self.filename, start[0], start[1] + 1, line)
 if sys.version_info >= (3, 10):
 args += (end[0], end[1] + 1)

 return ScenicParseError(SyntaxError(message, args))

 def raise_raw_syntax_error(
 self,
 message: str,
 start: Optional[Tuple[int, int]] = None,
 end: Optional[Tuple[int, int]] = None
) -> NoReturn:
 raise self._build_syntax_error(message, start, end)

 def make_syntax_error(self, message: str) -> None:
 return self._build_syntax_error(message)

 def expect_forced(self, res: Any, expectation: str) -> Optional[tokenize.TokenInfo]:
 if res is None:
 last_token = self._tokenizer.diagnose()
 end = last_token.start
 if sys.version_info >= (3, 12) or (sys.version_info >= (3, 11) and last_token.type != 4): # i.e. not a \n
 end = last_token.end
 self.raise_raw_syntax_error(
 f"expected {expectation}", last_token.start, end
)
 return res

 def raise_syntax_error(self, message: str) -> NoReturn:
 """Raise a syntax error."""
 tok = self._tokenizer.diagnose()
 raise self._build_syntax_error(message, tok.start, tok.end if sys.version_info >= (3, 12) or tok.type != 4 else tok.start)

 def raise_syntax_error_known_location(
 self, message: str, node: Union[ast.AST, tokenize.TokenInfo]
) -> NoReturn:
 """Raise a syntax error that occured at a given AST node."""
 if isinstance(node, tokenize.TokenInfo):
 start = node.start
 end = node.end
 else:
 start = node.lineno, node.col_offset
 end = node.end_lineno, node.end_col_offset

 raise self._build_syntax_error(message, start, end)

 def raise_syntax_error_known_range(
 self,
 message: str,
 start_node: Union[ast.AST, tokenize.TokenInfo],
 end_node: Union[ast.AST, tokenize.TokenInfo]
) -> NoReturn:
 if isinstance(start_node, tokenize.TokenInfo):
 start = start_node.start
 else:
 start = start_node.lineno, start_node.col_offset

 if isinstance(end_node, tokenize.TokenInfo):
 end = end_node.end
 else:
 end = end_node.end_lineno, end_node.end_col_offset

 raise self._build_syntax_error(message, start, end)

 def raise_syntax_error_starting_from(
 self,
 message: str,
 start_node: Union[ast.AST, tokenize.TokenInfo]
) -> NoReturn:
 if isinstance(start_node, tokenize.TokenInfo):
 start = start_node.start
 else:
 start = start_node.lineno, start_node.col_offset

 last_token = self._tokenizer.diagnose()

 raise self._build_syntax_error(message, start, last_token.start)

 def raise_syntax_error_invalid_target(
 self, target: Target, node: Optional[ast.AST]
) -> NoReturn:
 invalid_target = self.get_invalid_target(target, node)

 if invalid_target is None:
 return None

 if target in (Target.STAR_TARGETS, Target.FOR_TARGETS):
 msg = f"cannot assign to {self.get_expr_name(invalid_target)}"
 else:
 msg = f"cannot delete {self.get_expr_name(invalid_target)}"

 self.raise_syntax_error_known_location(msg, invalid_target)

 def raise_syntax_error_on_next_token(self, message: str) -> NoReturn:
 next_token = self._tokenizer.peek()
 raise self._build_syntax_error(message, next_token.start, next_token.end)

 # scenic helpers
 def extend_new_specifiers(self, node: s.New, specifiers: List[ast.AST]) -> s.New:
 node.specifiers.extend(specifiers)
 return node
'''

rule for adding hard keywords
scenic_hard_keyword:

STARTING RULES
==============

start: file

file[ast.Module]: a=[statements] ENDMARKER { ast.Module(body=a or [], type_ignores=[]) }
interactive[ast.Interactive]: a=statement_newline { ast.Interactive(body=a) }
eval[ast.Expression]: a=expressions NEWLINE* ENDMARKER { ast.Expression(body=a) }
func_type[ast.FunctionType]: '(' a=[type_expressions] ')' '->' b=expression NEWLINE* ENDMARKER { ast.FunctionType(argtypes=a, returns=b) }
fstring[ast.Expr]: star_expressions

GENERAL STATEMENTS
==================

statements[list]: a=statement+ { list(itertools.chain.from_iterable(a)) }

statement[list]: a=scenic_compound_stmt { [a] } | a=compound_stmt { [a] } | a=scenic_stmts { a } | a=simple_stmts { a }

statement_newline[list]:
 | a=compound_stmt NEWLINE { [a] }
 | simple_stmts
 | NEWLINE { [ast.Pass(LOCATIONS)] }
 | ENDMARKER { None }

simple_stmts[list]:
 | a=simple_stmt !';' NEWLINE { [a] } # Not needed, there for speedup
 | a=';'.simple_stmt+ [';'] NEWLINE { a }

scenic_stmts[list]:
 | a=scenic_stmt !';' NEWLINE { [a] } # Not needed, there for speedup
 | a=';'.scenic_stmt+ [';'] NEWLINE { a }

NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.
simple_stmt (memo):
 | assignment
 | &"type" type_alias
 | e=star_expressions { ast.Expr(value=e, LOCATIONS) }
 | &'return' return_stmt
 | &('import' | 'from') import_stmt
 | &'raise' raise_stmt
 | 'pass' { ast.Pass(LOCATIONS) }
 | &'del' del_stmt
 | &'yield' yield_stmt
 | &'assert' assert_stmt
 | 'break' { ast.Break(LOCATIONS) }
 | 'continue' { ast.Continue(LOCATIONS) }
 | &'global' global_stmt
 | &'nonlocal' nonlocal_stmt

compound_stmt:
 | &('def' | '@' | 'async') function_def
 | &'if' if_stmt
 | &('class' | '@') class_def
 | &('with' | 'async') with_stmt
 | &('for' | 'async') for_stmt
 | &'try' try_stmt
 | &'while' while_stmt
 | match_stmt

scenic_stmt:
 | scenic_model_stmt
 | scenic_tracked_assignment
 | scenic_param_stmt
 | scenic_require_stmt
 | scenic_record_initial_stmt
 | scenic_record_final_stmt
 | scenic_record_stmt
 | scenic_mutate_stmt
 | scenic_terminate_simulation_when_stmt
 | scenic_terminate_when_stmt
 | scenic_terminate_after_stmt
 | scenic_take_stmt
 | scenic_wait_stmt
 | scenic_terminate_simulation_stmt
 | scenic_terminate_stmt
 | scenic_do_choose_stmt
 | scenic_do_shuffle_stmt
 | scenic_do_for_stmt
 | scenic_do_until_stmt
 | scenic_do_stmt
 | scenic_abort_stmt
 | scenic_simulator_stmt

scenic_compound_stmt:
 | scenic_tracked_assign_new_stmt
 | scenic_assign_new_stmt
 | scenic_expr_new_stmt
 | scenic_behavior_def
 | scenic_monitor_def
 | scenic_scenario_def
 | scenic_try_interrupt_stmt
 | scenic_override_stmt

SIMPLE STATEMENTS
=================

NOTE: annotated_rhs may start with 'yield'; yield_expr must start with 'yield'
assignment:
 | a=NAME ':' b=expression c=['=' d=annotated_rhs { d }] {
 self.check_version(
 (3, 6),
 "Variable annotation syntax is",
 ast.AnnAssign(
 target=ast.Name(
 id=a.string,
 ctx=Store,
 lineno=a.start[0],
 col_offset=a.start[1],
 end_lineno=a.end[0],
 end_col_offset=a.end[1],
),
 annotation=b,
 value=c,
 simple=1,
 LOCATIONS,
)
) }
 | a=('(' b=single_target ')' { b }
 | single_subscript_attribute_target) ':' b=expression c=['=' d=annotated_rhs { d }] {
 self.check_version(
 (3, 6),
 "Variable annotation syntax is",
 ast.AnnAssign(
 target=a,
 annotation=b,
 value=c,
 simple=0,
 LOCATIONS,
)
)
 }
 | a=(z=star_targets '=' { z })+ b=(yield_expr | star_expressions) !'=' tc=[TYPE_COMMENT] {
 ast.Assign(targets=a, value=b, type_comment=tc, LOCATIONS)
 }
 | a=single_target b=augassign ~ c=(yield_expr | star_expressions) {
 ast.AugAssign(target = a, op=b, value=c, LOCATIONS)
 }
 | invalid_assignment

annotated_rhs: yield_expr | star_expressions

augassign:
 | '+=' { ast.Add() }
 | '-=' { ast.Sub() }
 | '*=' { ast.Mult() }
 | '@=' { self.check_version((3, 5), "The '@' operator is", ast.MatMult()) }
 | '/=' { ast.Div() }
 | '%=' { ast.Mod() }
 | '&=' { ast.BitAnd() }
 | '|=' { ast.BitOr() }
 | '^=' { ast.BitXor() }
 | '<<=' { ast.LShift() }
 | '>>=' { ast.RShift() }
 | '**=' { ast.Pow() }
 | '//=' { ast.FloorDiv() }

return_stmt[ast.Return]:
 | 'return' a=[star_expressions] { ast.Return(value=a, LOCATIONS) }

raise_stmt[ast.Raise]:
 | 'raise' a=expression b=['from' z=expression { z }] { ast.Raise(exc=a, cause=b, LOCATIONS) }
 | 'raise' { ast.Raise(exc=None, cause=None, LOCATIONS) }

global_stmt[ast.Global]: 'global' a=','.NAME+ {
 ast.Global(names=[n.string for n in a], LOCATIONS)
}

nonlocal_stmt[ast.Nonlocal]: 'nonlocal' a=','.NAME+ {
 ast.Nonlocal(names=[n.string for n in a], LOCATIONS)
}

del_stmt[ast.Delete]:
 | 'del' a=del_targets &(';' | NEWLINE) { ast.Delete(targets=a, LOCATIONS) }
 | invalid_del_stmt

yield_stmt[ast.Expr]: y=yield_expr { ast.Expr(value=y, LOCATIONS) }

assert_stmt[ast.Assert]: 'assert' a=expression b=[',' z=expression { z }] {
 ast.Assert(test=a, msg=b, LOCATIONS)
}

import_stmt[ast.Import]:
 | invalid_import
 | import_name
 | import_from

Import statements

import_name[ast.Import]: 'import' a=dotted_as_names { ast.Import(names=a, LOCATIONS) }

note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from[ast.ImportFrom]:
 | 'from' a=('.' | '...')* b=dotted_name 'import' c=import_from_targets {
 ast.ImportFrom(module=b, names=c, level=self.extract_import_level(a), LOCATIONS)
 }
 | 'from' a=('.' | '...')+ 'import' b=import_from_targets {
 ast.ImportFrom(names=b, level=self.extract_import_level(a), LOCATIONS)
 if sys.version_info >= (3, 9) else
 ast.ImportFrom(module=None, names=b, level=self.extract_import_level(a), LOCATIONS)
 }
import_from_targets[List[ast.alias]]:
 | '(' a=import_from_as_names [','] ')' { a }
 | import_from_as_names !','
 | '*' { [ast.alias(name="*", asname=None, LOCATIONS)] }
 | invalid_import_from_targets
import_from_as_names[List[ast.alias]]:
 | a=','.import_from_as_name+ { a }
import_from_as_name[ast.alias]:
 | a=NAME b=['as' z=NAME { z.string }] { ast.alias(name=a.string, asname=b, LOCATIONS) }
dotted_as_names[List[ast.alias]]:
 | a=','.dotted_as_name+ { a }
dotted_as_name[ast.alias]:
 | a=dotted_name b=['as' z=NAME { z.string }] { ast.alias(name=a, asname=b, LOCATIONS) }
dotted_name[str]:
 | a=dotted_name '.' b=NAME { a + "." + b.string }
 | a=NAME { a.string }

COMPOUND STATEMENTS
===================

Common elements

block[list] (memo):
 | NEWLINE INDENT a=statements DEDENT { a }
 | simple_stmts
 | invalid_block

decorators: decorator+
decorator:
 | a=('@' f=dec_maybe_call NEWLINE { f }) { a }
 | a=('@' f=named_expression NEWLINE { f }) {
 self.check_version((3, 9), "Generic decorator are", a)
 }
dec_maybe_call:
 | dn=dec_primary '(' z=[arguments] ')' {
 ast.Call(func=dn, args=z[0] if z else [], keywords=z[1] if z else [], LOCATIONS)
 }
 | dec_primary
dec_primary:
 | a=dec_primary '.' b=NAME { ast.Attribute(value=a, attr=b.string, ctx=Load, LOCATIONS) }
 | a=NAME { ast.Name(id=a.string, ctx=Load, LOCATIONS) }

Class definitions

class_def[ast.ClassDef]:
 | a=decorators b=class_def_raw { self.set_decorators(b, a) }
 | class_def_raw

class_def_raw[ast.ClassDef]:
 | invalid_class_def_raw
 | 'class' a=NAME t=[type_params] b=['(' z=[arguments] ')' { z }] &&':' c=scenic_class_def_block {
 (
 ast.ClassDef(
 a.string,
 bases=b[0] if b else [],
 keywords=b[1] if b else [],
 body=c,
 decorator_list=[],
 type_params=t or [],
 LOCATIONS,
)
 if sys.version_info >= (3, 12) else
 ast.ClassDef(
 a.string,
 bases=b[0] if b else [],
 keywords=b[1] if b else [],
 body=c,
 decorator_list=[],
 LOCATIONS,
)
)
 }

scenic_class_def_block:
 | NEWLINE INDENT a=scenic_class_statements DEDENT { a }
 | simple_stmts
 | invalid_block

scenic_class_statements[list]: a=scenic_class_statement+ { list(itertools.chain.from_iterable(a)) }

scenic_class_statement[list]:
 | a=scenic_class_property_stmt { [a] }
 | a=compound_stmt { [a] }
 | a=scenic_stmts { a }
 | a=simple_stmts { a }

scenic_class_property_stmt:
 # not a simple statement; reads NEWLINE
 | a=NAME b=['[' attrs=','.scenic_class_property_attribute+ ']' { attrs }] ':' c=expression NEWLINE {
 s.PropertyDef(
 property=a.string,
 attributes=b if b is not None else [],
 value=c,
 LOCATIONS,
)
 }

fail if `NAME [<expr>]` pattern is found at top level of class definition and
<expr> is neither `additive` nor `dynamic`
scenic_class_property_attribute: &&(
 "additive" { s.Additive(LOCATIONS) }
 | "dynamic" { s.Dynamic(LOCATIONS) }
 | "final" { s.Final(LOCATIONS) }
)

Multiline Specifiers

scenic_assign_new_stmt:
 | a=(z=star_targets '=' { z })+ b=(scenic_new_block) !'=' tc=[TYPE_COMMENT] {
 ast.Assign(targets=a, value=b, type_comment=tc, LOCATIONS)
 }

scenic_tracked_assign_new_stmt:
 | a=scenic_tracked_name '=' b=scenic_new_block { s.TrackedAssign(target=a, value=b, LOCATIONS) }

scenic_expr_new_stmt: a=scenic_new_block { ast.Expr(value=a, LOCATIONS) }

scenic_new_block:
 | a=scenic_new_expr ',' NEWLINE INDENT b=scenic_new_block_body DEDENT {
 self.extend_new_specifiers(a, b)
 }

scenic_new_block_body:
 # without trailing comma
 | b=(x=scenic_specifiers ',' NEWLINE { x })* c=scenic_specifiers NEWLINE {
 list(itertools.chain.from_iterable(b)) + c
 }
 # with trailing comma
 | b=(x=scenic_specifiers ',' NEWLINE { x })+ {
 list(itertools.chain.from_iterable(b))
 }

Behavior

scenic_behavior_def:
 | "behavior" a=NAME '(' b=[params] ')' &&':' c=scenic_behavior_def_block {
 s.BehaviorDef(
 a.string,
 args=b or self.make_arguments(None, [], None, [], None),
 docstring=c[0],
 header=c[1],
 body=c[2],
 LOCATIONS,
)
 }

scenic_behavior_def_block:
 # behavior definition must have at least one statement that is not a precondition/invariant definition
 | NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=[scenic_behavior_header] c=scenic_behavior_statements DEDENT { (a, b or [], c) }
 | invalid_block

scenic_behavior_statements[list]: a=scenic_behavior_statement+ { list(itertools.chain.from_iterable(a)) }

statements available inside behavior (normal statements + dynamic statements - precondition/invariant)
scenic_behavior_statement[list]:
 | scenic_invalid_behavior_statement
 | a=statement { a }

scenic_invalid_behavior_statement:
 | a="invariant" ':' a=expression {
 self.raise_syntax_error_known_location("invariant can only be set at the beginning of behavior definitions", a)
 }
 | a="precondition" ':' a=expression {
 self.raise_syntax_error_known_location("precondition can only be set at the beginning of behavior definitions", a)
 }

scenic_behavior_header: a=(x=(scenic_precondition_stmt | scenic_invariant_stmt) NEWLINE { x })+ { a }

scenic_precondition_stmt:
 | "precondition" ':' a=expression { s.Precondition(value=a, LOCATIONS) }

scenic_invariant_stmt:
 | "invariant" ':' a=expression { s.Invariant(value=a, LOCATIONS) }

Monitor

scenic_monitor_def:
 | invalid_monitor
 | "monitor" a=NAME '(' b=[params] ')' &&':' c=scenic_monitor_def_block {
 s.MonitorDef(
 a.string,
 args=b or self.make_arguments(None, [], None, [], None),
 docstring=c[0],
 body=c[1],
 LOCATIONS
)
 }

invalid_monitor[NoReturn]:
 | "monitor" NAME a=':' {
 self.raise_syntax_error_known_location("2.0-style monitor must be converted to use parentheses and explicit require", a)
 }

scenic_monitor_def_block:
 | NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=scenic_monitor_statements DEDENT { (a, b) }

scenic_monitor_statements[list]: a=statement+ { list(itertools.chain.from_iterable(a)) }

Modular Scenario

scenic_scenario_def:
 | "scenario" a=NAME b=['(' z=[params] ')' { z }] &&':' c=scenic_scenario_def_block {
 s.ScenarioDef(
 a.string,
 args=b or self.make_arguments(None, [], None, [], None),
 docstring=c[0],
 header=c[1],
 setup=c[2],
 compose=c[3],
 LOCATIONS,
)
 }

returns a four-tuple (docstring, header, setup block, compose block)
scenic_scenario_def_block:
 | NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=[scenic_behavior_header] c=[scenic_scenario_setup_block] d=[scenic_scenario_compose_block] DEDENT { (a, b or [], c or [], d or []) }
 | NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=statements DEDENT { (a, [], b, []) }

scenic_scenario_setup_block:
 | "setup" &&':' b=block { b }

scenic_scenario_compose_block:
 | "compose" &&':' b=block { b }

Override

scenic_override_stmt:
 # restricting `e` to `primary` rather than `expression` to disambiguate keywords that are both specifiers and operators (e.g. `at`, `offset by`)
 | "override" e=primary ss=scenic_specifiers NEWLINE { s.Override(target=e, specifiers=ss) }
 | "override" e=primary ss=scenic_specifiers ',' NEWLINE INDENT t=scenic_new_block_body DEDENT {
 s.Override(target=e, specifiers=ss + t)
 }

Function definitions

function_def[Union[ast.FunctionDef, ast.AsyncFunctionDef]]:
 | d=decorators f=function_def_raw { self.set_decorators(f, d) }
 | f=function_def_raw {self.set_decorators(f, [])}

function_def_raw[Union[ast.FunctionDef, ast.AsyncFunctionDef]]:
 | invalid_def_raw
 | 'def' n=NAME t=[type_params] &&'(' params=[params] ')' a=['->' z=expression { z }] &&':' tc=[func_type_comment] b=block {
 (
 ast.FunctionDef(
 name=n.string,
 args=params or self.make_arguments(None, [], None, [], None),
 returns=a,
 body=b,
 type_comment=tc,
 type_params=t or [],
 LOCATIONS,
) if sys.version_info >= (3, 12) else
 ast.FunctionDef(
 name=n.string,
 args=params or self.make_arguments(None, [], None, [], None),
 returns=a,
 body=b,
 type_comment=tc,
 LOCATIONS,
)
)
 }
 | 'async' 'def' n=NAME t=[type_params] &&'(' params=[params] ')' a=['->' z=expression { z }] &&':' tc=[func_type_comment] b=block {
 (
 self.check_version(
 (3, 5),
 "Async functions are",
 ast.AsyncFunctionDef(
 name=n.string,
 args=params or self.make_arguments(None, [], None, [], None),
 returns=a,
 body=b,
 type_comment=tc,
 type_params=t or [],
 LOCATIONS,
)
) if sys.version_info >= (3, 12) else
 self.check_version(
 (3, 5),
 "Async functions are",
 ast.AsyncFunctionDef(
 name=n.string,
 args=params or self.make_arguments(None, [], None, [], None),
 returns=a,
 body=b,
 type_comment=tc,
 LOCATIONS,
)
)
)
 }

Function parameters

params:
 | invalid_parameters
 | parameters

parameters[ast.arguments]:
 | a=slash_no_default b=param_no_default* c=param_with_default* d=[star_etc] {
 self.check_version(
 (3, 8), "Positional only arguments are", self.make_arguments(a, [], b, c, d)
)
 }
 | a=slash_with_default b=param_with_default* c=[star_etc] {
 self.check_version(
 (3, 8),
 "Positional only arguments are",
 self.make_arguments(None, a, None, b, c),
)
 }
 | a=param_no_default+ b=param_with_default* c=[star_etc] {
 self.make_arguments(None, [], a, b, c)
 }
 | a=param_with_default+ b=[star_etc] {
 self.make_arguments(None, [], None, a, b)
 }
 | a=star_etc { self.make_arguments(None, [], None, None, a) }

Some duplication here because we can't write (',' | &')'),
which is because we don't support empty alternatives (yet).
#

slash_no_default[List[Tuple[ast.arg, None]]]:
 | a=param_no_default+ '/' ',' { [(p, None) for p in a] }
 | a=param_no_default+ '/' &')' { [(p, None) for p in a] }
slash_with_default[List[Tuple[ast.arg, Any]]]:
 | a=param_no_default* b=param_with_default+ '/' ',' { ([(p, None) for p in a] if a else []) + b }
 | a=param_no_default* b=param_with_default+ '/' &')' { ([(p, None) for p in a] if a else []) + b }

star_etc[Tuple[Optional[ast.arg], List[Tuple[ast.arg, Any]], Optional[ast.arg]]]:
 | invalid_star_etc
 | '*' a=param_no_default b=param_maybe_default* c=[kwds] { (a, b, c) }
 | '*' a=param_no_default_star_annotation b=param_maybe_default* c=[kwds] { (a, b, c) }
 | '*' ',' b=param_maybe_default+ c=[kwds] { (None, b, c) }
 | a=kwds { (None, [], a) }

kwds[ast.arg]:
 | invalid_kwds
 | '**' a=param_no_default { a }

One parameter. This *includes* a following comma and type comment.
#
There are three styles:
- No default
- With default
- Maybe with default
#
There are two alternative forms of each, to deal with type comments:
- Ends in a comma followed by an optional type comment
- No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#

param_no_default[ast.arg]:
 | a=param ',' tc=TYPE_COMMENT? { self.set_arg_type_comment(a, tc) }
 | a=param tc=TYPE_COMMENT? &')' { self.set_arg_type_comment(a, tc) }
param_no_default_star_annotation[ast.arg]:
 | a=param_star_annotation ',' tc=TYPE_COMMENT? { self.set_arg_type_comment(a, tc) }
 | a=param_star_annotation tc=TYPE_COMMENT? &')' { self.set_arg_type_comment(a, tc) }
param_with_default[Tuple[ast.arg, Any]]:
 | a=param c=default ',' tc=TYPE_COMMENT? { (self.set_arg_type_comment(a, tc), c) }
 | a=param c=default tc=TYPE_COMMENT? &')' { (self.set_arg_type_comment(a, tc), c) }
param_maybe_default[Tuple[ast.arg, Any]]:
 | a=param c=default? ',' tc=TYPE_COMMENT? { (self.set_arg_type_comment(a, tc), c) }
 | a=param c=default? tc=TYPE_COMMENT? &')' { (self.set_arg_type_comment(a, tc), c) }
param: a=NAME b=annotation? { ast.arg(arg=a.string, annotation=b, LOCATIONS) }
param_star_annotation: a=NAME b=star_annotation {
 ast.arg(arg=a.string, annotations=b, LOCATIONS)
 }
annotation: ':' a=expression { a }
star_annotation: ':' a=star_expression { a }
default: '=' a=expression { a } | invalid_default

If statement

if_stmt[ast.If]:
 | invalid_if_stmt
 | 'if' a=named_expression ':' b=block c=elif_stmt { ast.If(test=a, body=b, orelse=c or [], LOCATIONS) }
 | 'if' a=named_expression ':' b=block c=[else_block] { ast.If(test=a, body=b, orelse=c or [], LOCATIONS) }
elif_stmt[List[ast.If]]:
 | invalid_elif_stmt
 | 'elif' a=named_expression ':' b=block c=elif_stmt { [ast.If(test=a, body=b, orelse=c, LOCATIONS)] }
 | 'elif' a=named_expression ':' b=block c=[else_block] { [ast.If(test=a, body=b, orelse=c or [], LOCATIONS)] }
else_block[list]:
 | invalid_else_stmt
 | 'else' &&':' b=block { b }

While statement

while_stmt[ast.While]:
 | invalid_while_stmt
 | 'while' a=named_expression ':' b=block c=[else_block] {
 ast.While(test=a, body=b, orelse=c or [], LOCATIONS)
 }

For statement

for_stmt[Union[ast.For, ast.AsyncFor]]:
 | invalid_for_stmt
 | 'for' t=star_targets 'in' ~ ex=star_expressions &&':' tc=[TYPE_COMMENT] b=block el=[else_block] {
 ast.For(target=t, iter=ex, body=b, orelse=el or [], type_comment=tc, LOCATIONS) }
 | 'async' 'for' t=star_targets 'in' ~ ex=star_expressions ':' tc=[TYPE_COMMENT] b=block el=[else_block] {
 self.check_version(
 (3, 5),
 "Async for loops are",
 ast.AsyncFor(target=t, iter=ex, body=b, orelse=el or [], type_comment=tc, LOCATIONS)) }
 | invalid_for_target

With statement

with_stmt[Union[ast.With, ast.AsyncWith]]:
 | invalid_with_stmt_indent
 | 'with' '(' a=','.with_item+ ','? ')' ':' b=block {
 self.check_version(
 (3, 9),
 "Parenthesized with items",
 ast.With(items=a, body=b, LOCATIONS)
)
 }
 | 'with' a=','.with_item+ ':' tc=[TYPE_COMMENT] b=block {
 ast.With(items=a, body=b, type_comment=tc, LOCATIONS)
 }
 | 'async' 'with' '(' a=','.with_item+ ','? ')' ':' b=block {
 self.check_version(
 (3, 9),
 "Parenthesized with items",
 ast.AsyncWith(items=a, body=b, LOCATIONS)
)
 }
 | 'async' 'with' a=','.with_item+ ':' tc=[TYPE_COMMENT] b=block {
 self.check_version(
 (3, 5),
 "Async with statements are",
 ast.AsyncWith(items=a, body=b, type_comment=tc, LOCATIONS)
)
 }
 | invalid_with_stmt

with_item[ast.withitem]:
 | e=expression 'as' t=star_target &(',' | ')' | ':') {
 ast.withitem(context_expr=e, optional_vars=t)
 }
 | invalid_with_item
 | e=expression { ast.withitem(context_expr=e, optional_vars=None) }

Try statement

try_stmt[ast.Try]:
 | invalid_try_stmt
 | 'try' &&':' b=block f=finally_block {
 ast.Try(body=b, handlers=[], orelse=[], finalbody=f, LOCATIONS)
 }
 | 'try' &&':' b=block ex=except_block+ el=[else_block] f=[finally_block] {
 ast.Try(body=b, handlers=ex, orelse=el or [], finalbody=f or [], LOCATIONS)
 }
 | 'try' &&':' b=block ex=except_star_block+ el=[else_block] f=[finally_block] {
 self.check_version(
 (3, 11),
 "Exception groups are",
 (
 ast.TryStar(body=b, handlers=ex, orelse=el or [], finalbody=f or [], LOCATIONS)
 if sys.version_info >= (3, 11)
 else None
)
)
 }

scenic_try_interrupt_stmt[s.TryInterrupt]:
 | 'try' &&':' b=block iw=interrupt_when_block+ ex=except_block* el=[else_block] f=[finally_block] {
 s.TryInterrupt(
 body=b,
 interrupt_when_handlers=iw,
 except_handlers=ex,
 orelse=el or [],
 finalbody=f or [],
 LOCATIONS,
)
 }

Interrupt statement

interrupt_when_block:
 | "interrupt" "when" e=expression &&':' b=block { s.InterruptWhenHandler(cond=e, body=b, LOCATIONS) }

Except statement

except_block[ast.ExceptHandler]:
 | invalid_except_stmt_indent
 | 'except' e=expression t=['as' z=NAME { z.string }] ':' b=block {
 ast.ExceptHandler(type=e, name=t, body=b, LOCATIONS) }
 | 'except' ':' b=block { ast.ExceptHandler(type=None, name=None, body=b, LOCATIONS) }
 | invalid_except_stmt
except_star_block[ast.ExceptHandler]:
 | invalid_except_star_stmt_indent
 | 'except' '*' e=expression t=['as' z=NAME { z.string }] ':' b=block {
 ast.ExceptHandler(type=e, name=t, body=b, LOCATIONS)
 }
 | invalid_except_stmt
finally_block[list]:
 | invalid_finally_stmt
 | 'finally' &&':' a=block { a }

Match statement

We cannot do version checks here since the production will occur after any other
production which will have failed since the ast module does not have the right nodes.
match_stmt["ast.Match"]:
 | "match" subject=subject_expr ':' NEWLINE INDENT cases=case_block+ DEDENT {
 ast.Match(subject=subject, cases=cases, LOCATIONS)
 }
 | invalid_match_stmt

Version checking here allows to avoid tracking down every single possible production
subject_expr:
 | value=star_named_expression ',' values=star_named_expressions? {
 self.check_version(
 (3, 10),
 "Pattern matching is",
 ast.Tuple(elts=[value] + (values or []), ctx=Load, LOCATIONS)
)
 }
 | e=named_expression { self.check_version((3, 10), "Pattern matching is", e)}

case_block["ast.match_case"]:
 | invalid_case_block
 | "case" pattern=patterns guard=guard? ':' body=block {
 ast.match_case(pattern=pattern, guard=guard, body=body)
 }

guard: 'if' guard=named_expression { guard }

patterns:
 | patterns=open_sequence_pattern {
 ast.MatchSequence(patterns=patterns, LOCATIONS)
 }
 | pattern

pattern:
 | as_pattern
 | or_pattern

as_pattern["ast.MatchAs"]:
 | pattern=or_pattern 'as' target=pattern_capture_target {
 ast.MatchAs(pattern=pattern, name=target, LOCATIONS)
 }
 | invalid_as_pattern

or_pattern["ast.MatchOr"]:
 | patterns='|'.closed_pattern+ {
 ast.MatchOr(patterns=patterns, LOCATIONS) if len(patterns) > 1 else patterns[0]
 }

closed_pattern:
 | literal_pattern
 | capture_pattern
 | wildcard_pattern
 | value_pattern
 | group_pattern
 | sequence_pattern
 | mapping_pattern
 | class_pattern

Literal patterns are used for equality and identity constraints
literal_pattern:
 | value=signed_number !('+' | '-') { ast.MatchValue(value=value, LOCATIONS) }
 | value=complex_number { ast.MatchValue(value=value, LOCATIONS) }
 | value=strings { ast.MatchValue(value=value, LOCATIONS) }
 | 'None' { ast.MatchSingleton(value=None, LOCATIONS) }
 | 'True' { ast.MatchSingleton(value=True, LOCATIONS) }
 | 'False' { ast.MatchSingleton(value=False, LOCATIONS) }

Literal expressions are used to restrict permitted mapping pattern keys
literal_expr:
 | signed_number !('+' | '-')
 | complex_number
 | strings
 | 'None' { ast.Constant(value=None, LOCATIONS) }
 | 'True' { ast.Constant(value=True, LOCATIONS) }
 | 'False' { ast.Constant(value=False, LOCATIONS) }

complex_number:
 | real=signed_real_number '+' imag=imaginary_number {
 ast.BinOp(left=real, op=ast.Add(), right=imag, LOCATIONS)
 }
 | real=signed_real_number '-' imag=imaginary_number {
 ast.BinOp(left=real, op=ast.Sub(), right=imag, LOCATIONS)
 }

signed_number:
 | a=NUMBER { ast.Constant(value=ast.literal_eval(a.string), LOCATIONS) }
 | '-' a=NUMBER {
 ast.UnaryOp(
 op=ast.USub(),
 operand=ast.Constant(
 value=ast.literal_eval(a.string),
 lineno=a.start[0],
 col_offset=a.start[1],
 end_lineno=a.end[0],
 end_col_offset=a.end[1]
),
 LOCATIONS,
)
 }

signed_real_number:
 | real_number
 | '-' real=real_number { ast.UnaryOp(op=ast.USub(), operand=real, LOCATIONS) }

real_number[ast.Constant]:
 | real=NUMBER { ast.Constant(value=self.ensure_real(real), LOCATIONS) }

imaginary_number[ast.Constant]:
 | imag=NUMBER { ast.Constant(value=self.ensure_imaginary(imag), LOCATIONS) }

capture_pattern:
 | target=pattern_capture_target {
 ast.MatchAs(pattern=None, name=target, LOCATIONS)
 }

pattern_capture_target[str]:
 | !"_" name=NAME !('.' | '(' | '=') { name.string }

wildcard_pattern["ast.MatchAs"]:
 | "_" { ast.MatchAs(pattern=None, target=None, LOCATIONS) }

value_pattern["ast.MatchValue"]:
 | attr=attr !('.' | '(' | '=') { ast.MatchValue(value=attr, LOCATIONS) }

attr[ast.Attribute]:
 | value=name_or_attr '.' attr=NAME {
 ast.Attribute(value=value, attr=attr.string, ctx=Load, LOCATIONS)
 }

name_or_attr:
 | attr
 | name=NAME { ast.Name(id=name.string, ctx=Load, LOCATIONS) }

group_pattern:
 | '(' pattern=pattern ')' { pattern }

sequence_pattern["ast.MatchSequence"]:
 | '[' patterns=maybe_sequence_pattern? ']' { ast.MatchSequence(patterns=patterns or [], LOCATIONS) }
 | '(' patterns=open_sequence_pattern? ')' { ast.MatchSequence(patterns=patterns or [], LOCATIONS) }

open_sequence_pattern:
 | pattern=maybe_star_pattern ',' patterns=maybe_sequence_pattern? {
 [pattern] + (patterns or [])
 }

maybe_sequence_pattern:
 | patterns=','.maybe_star_pattern+ ','? { patterns }

maybe_star_pattern:
 | star_pattern
 | pattern

star_pattern:
 | '*' target=pattern_capture_target { ast.MatchStar(name=target, LOCATIONS) }
 | '*' wildcard_pattern { ast.MatchStar(target=None, LOCATIONS) }

mapping_pattern:
 | '{' '}' { ast.MatchMapping(keys=[], patterns=[], rest=None, LOCATIONS) }
 | '{' rest=double_star_pattern ','? '}' {
 ast.MatchMapping(keys=[], patterns=[], rest=rest, LOCATIONS) }
 | '{' items=items_pattern ',' rest=double_star_pattern ','? '}' {
 ast.MatchMapping(
 keys=[k for k,_ in items],
 patterns=[p for _, p in items],
 rest=rest,
 LOCATIONS,
)
 }
 | '{' items=items_pattern ','? '}' {
 ast.MatchMapping(
 keys=[k for k,_ in items],
 patterns=[p for _, p in items],
 rest=None,
 LOCATIONS,
)
 }

items_pattern:
 | ','.key_value_pattern+

key_value_pattern:
 | key=(literal_expr | attr) ':' pattern=pattern { (key, pattern) }

double_star_pattern:
 | '**' target=pattern_capture_target { target }

class_pattern["ast.MatchClass"]:
 | cls=name_or_attr '(' ')' {
 ast.MatchClass(cls=cls, patterns=[], kwd_attrs=[], kwd_patterns=[], LOCATIONS)
 }
 | cls=name_or_attr '(' patterns=positional_patterns ','? ')' {
 ast.MatchClass(cls=cls, patterns=patterns, kwd_attrs=[], kwd_patterns=[], LOCATIONS)
 }
 | cls=name_or_attr '(' keywords=keyword_patterns ','? ')' {
 ast.MatchClass(
 cls=cls,
 patterns=[],
 kwd_attrs=[k for k, _ in keywords],
 kwd_patterns=[p for _, p in keywords],
 LOCATIONS,
)
 }
 | cls=name_or_attr '(' patterns=positional_patterns ',' keywords=keyword_patterns ','? ')' {
 ast.MatchClass(
 cls=cls,
 patterns=patterns,
 kwd_attrs=[k for k, _ in keywords],
 kwd_patterns=[p for _, p in keywords],
 LOCATIONS,
)
 }
 | invalid_class_pattern

positional_patterns:
 | args=','.pattern+ { args }

keyword_patterns:
 | ','.keyword_pattern+

keyword_pattern:
 | arg=NAME '=' value=pattern { (arg.string, value) }

Type statement

type_alias["ast.TypeAlias"]:
 | "type" n=NAME t=[type_params] '=' b=expression {
 self.check_version(
 (3, 12),
 "Type statement is",
 (
 ast.TypeAlias(
 name=ast.Name(
 id=n.string,
 ctx=Store,
 lineno=n.start[0],
 col_offset=n.start[1],
 end_lineno=n.end[0],
 end_col_offset=n.end[1],
),
 type_params=t or [],
 value=b,
 LOCATIONS
)
 if sys.version_info >= (3, 12)
 else None
)
)
 }

Type parameter declaration

type_params[list]: '[' t=type_param_seq ']' {
 self.check_version(
 (3, 12),
 "Type parameter lists are",
 t
)
 }

type_param_seq: a=','.type_param+ [','] { a }

type_param (memo):
 | a=NAME b=[type_param_bound] {
 ast.TypeVar(name=a.string, bound=b, LOCATIONS)
 if sys.version_info >= (3, 12)
 else object()
 }
 | '*' a=NAME colon=":" e=expression {
 self.raise_syntax_error_starting_from(
 "cannot use constraints with TypeVarTuple"
 if isinstance(e, ast.Tuple)
 else "cannot use bound with TypeVarTuple",
 colon
)
 }
 | '*' a=NAME {
 ast.TypeVarTuple(name=a.string, LOCATIONS)
 if sys.version_info >= (3, 12)
 else object()
 }
 | '**' a=NAME colon=":" e=expression {
 self.raise_syntax_error_starting_from(
 "cannot use constraints with ParamSpec"
 if isinstance(e, ast.Tuple)
 else "cannot use bound with ParamSpec",
 colon
)
 }
 | '**' a=NAME {
 ast.ParamSpec(name=a.string, LOCATIONS)
 if sys.version_info >= (3, 12)
 else object()
 }

type_param_bound: ":" e=expression { e }

EXPRESSIONS

expressions:
 | a=expression b=(',' c=expression { c })+ [','] {
 ast.Tuple(elts=[a] + b, ctx=Load, LOCATIONS) }
 | a=expression ',' { ast.Tuple(elts=[a], ctx=Load, LOCATIONS) }
 | expression

expression (memo):
 | invalid_scenic_instance_creation
 | invalid_expression
 | invalid_legacy_expression
 | a=disjunction 'if' b=disjunction 'else' c=disjunction {
 ast.IfExp(body=a, test=b, orelse=c, LOCATIONS)
 }
 | disjunction
 | lambdef

scenic_temporal_expression (memo):
 | invalid_expression
 | invalid_legacy_expression
 | a=scenic_until 'if' b=scenic_until 'else' c=scenic_until {
 ast.IfExp(body=a, test=b, orelse=c, LOCATIONS)
 }
 | scenic_until
 | lambdef

yield_expr:
 | 'yield' 'from' a=expression { ast.YieldFrom(value=a, LOCATIONS) }
 | 'yield' a=[star_expressions] { ast.Yield(value=a, LOCATIONS) }

star_expressions:
 | a=star_expression b=(',' c=star_expression { c })+ [','] {
 ast.Tuple(elts=[a] + b, ctx=Load, LOCATIONS) }
 | a=star_expression ',' { ast.Tuple(elts=[a], ctx=Load, LOCATIONS) }
 | star_expression

star_expression (memo):
 | '*' a=bitwise_or { ast.Starred(value=a, ctx=Load, LOCATIONS) }
 | expression

star_named_expressions: a=','.star_named_expression+ [','] { a }

star_named_expression:
 | '*' a=bitwise_or { ast.Starred(value=a, ctx=Load, LOCATIONS) }
 | named_expression

assignment_expression:
 | a=NAME ':=' ~ b=expression {
 self.check_version(
 (3, 8),
 "The ':=' operator is",
 ast.NamedExpr(
 target=ast.Name(
 id=a.string,
 ctx=Store,
 lineno=a.start[0],
 col_offset=a.start[1],
 end_lineno=a.end[0],
 end_col_offset=a.end[1]
),
 value=b,
 LOCATIONS,
)
)
 }

named_expression:
 | assignment_expression
 | invalid_named_expression
 | a=expression !':=' { a }

scenic_until (memo):
 | invalid_scenic_until
 | a=scenic_above_until 'until' b=scenic_above_until { s.UntilOp(a, b, LOCATIONS) }
 | scenic_above_until

scenic_above_until (memo): # anything with precedence above "until"
 | scenic_temporal_prefix
 | scenic_implication

scenic_temporal_prefix (memo):
 | "next" e=scenic_above_until { s.Next(e, LOCATIONS) }
 | "eventually" e=scenic_above_until { s.Eventually(e, LOCATIONS) }
 | "always" e=scenic_above_until { s.Always(e, LOCATIONS) }

scenic_implication (memo):
 | invalid_scenic_implication
 # exclude implication on RHS to disallow "A implies B implies C"
 | a=scenic_temporal_disjunction "implies" b=(scenic_temporal_prefix | scenic_temporal_disjunction) { s.ImpliesOp(a, b, LOCATIONS) }
 | scenic_temporal_disjunction

disjunction (memo):
 | a=conjunction b=('or' c=conjunction { c })+ { ast.BoolOp(op=ast.Or(), values=[a] + b, LOCATIONS) }
 | conjunction

scenic_temporal_disjunction (memo):
 | a=scenic_temporal_conjunction b=('or' c=(scenic_temporal_prefix | scenic_temporal_conjunction) { c })+ { ast.BoolOp(op=ast.Or(), values=[a] + b, LOCATIONS) }
 | scenic_temporal_conjunction

conjunction (memo):
 | a=inversion b=('and' c=inversion { c })+ { ast.BoolOp(op=ast.And(), values=[a] + b, LOCATIONS) }
 | inversion

scenic_temporal_conjunction (memo):
 | a=scenic_temporal_inversion b=('and' c=(scenic_temporal_prefix | scenic_temporal_inversion) { c })+ { ast.BoolOp(op=ast.And(), values=[a] + b, LOCATIONS) }
 | scenic_temporal_inversion

inversion (memo):
 # [SCENIC NOTE]: Fail `not visible <inversion>` to be handled later
 | 'not' !("visible" inversion) a=inversion { ast.UnaryOp(op=ast.Not(), operand=a, LOCATIONS) }
 | comparison

scenic_temporal_inversion (memo):
 # Fail `not visible <inversion>` to be handled later
 | 'not' !("visible" scenic_temporal_inversion) a=(scenic_temporal_prefix | scenic_temporal_inversion) { ast.UnaryOp(op=ast.Not(), operand=a, LOCATIONS) }
 | scenic_temporal_group
 | comparison

Parsing temporal operators only inside "require" would require duplicating
the entire rule hierarchy for expressions, since for example "always(X)" is a
valid function call in ordinary Python but should be a temporal operator
inside require. Instead, we only duplicate the boolean operators (above) and
add the following rule which allows the introduction of parentheses without
traversing all the way down to `atom`; the rule looks ahead for a binary
temporal operator or the end of the parent expression in order to prevent
matching expressions like "(X) > 5", which should be parsed by `comparison`
instead. Invalid code like "(always(X)) > 5" is parsed as an ordinary
expression (with a call to the "always" function) and caught in the compiler.
scenic_temporal_group: '(' a=scenic_temporal_expression ')' &('until' | 'or' | 'and' | ')' | ';' | NEWLINE) { a }

Scenic instance creation

scenic_new_expr: 'new' n=NAME ss=[scenic_specifiers] { s.New(className=n.string, specifiers=ss, LOCATIONS) }
scenic_specifiers: ss=','.scenic_specifier+ { ss }
scenic_specifier:
 | scenic_valid_specifier
 | invalid_scenic_specifier
scenic_valid_specifier:
 | 'with' p=NAME v=expression { s.WithSpecifier(prop=p.string, value=v, LOCATIONS) }
 | 'at' position=expression { s.AtSpecifier(position=position, LOCATIONS) }
 | "offset" 'by' o=expression { s.OffsetBySpecifier(offset=o, LOCATIONS) }
 | "offset" "along" d=expression 'by' o=expression { s.OffsetAlongSpecifier(direction=d, offset=o, LOCATIONS) }
 | direction=scenic_specifier_position_direction position=expression distance=['by' e=expression { e }] {
 s.DirectionOfSpecifier(direction=direction, position=position, distance=distance, LOCATIONS)
 }
 | "beyond" v=expression 'by' o=expression b=['from' a=expression {a}] { s.BeyondSpecifier(position=v, offset=o, base=b) }
 | "visible" b=['from' r=expression { r }] { s.VisibleSpecifier(base=b, LOCATIONS) }
 | 'not' "visible" b=['from' r=expression { r }] { s.NotVisibleSpecifier(base=b, LOCATIONS) }
 | 'in' r=expression { s.InSpecifier(region=r, LOCATIONS) }
 | 'on' r=expression { s.OnSpecifier(region=r, LOCATIONS) }
 | "contained" 'in' r=expression { s.ContainedInSpecifier(region=r, LOCATIONS) }
 | "following" f=expression b=['from' e=expression {e}] 'for' d=expression {
 s.FollowingSpecifier(field=f, distance=d, base=b, LOCATIONS)
 }
 | "facing" "toward" p=expression { s.FacingTowardSpecifier(position=p, LOCATIONS) }
 | "facing" "away" "from" p=expression { s.FacingAwayFromSpecifier(position=p, LOCATIONS) }
 | "facing" "directly" "toward" p=expression { s.FacingDirectlyTowardSpecifier(position=p, LOCATIONS) }
 | "facing" "directly" "away" "from" p=expression { s.FacingDirectlyAwayFromSpecifier(position=p, LOCATIONS) }
 | "facing" h=expression { s.FacingSpecifier(heading=h, LOCATIONS) }
 | "apparently" "facing" h=expression v=['from' a=expression { a }] {
 s.ApparentlyFacingSpecifier(heading=h, base=v, LOCATIONS)
 }

scenic_specifier_position_direction:
 | "left" "of" { s.LeftOf(LOCATIONS) }
 | "right" "of" { s.RightOf(LOCATIONS) }
 | "ahead" "of" { s.AheadOf(LOCATIONS) }
 | "behind" { s.Behind(LOCATIONS) }
 | "above" {s.Above(LOCATIONS)}
 | "below" {s.Below(LOCATIONS)}

Comparisons operators

comparison:
 | a=bitwise_or b=compare_op_bitwise_or_pair+ {
 ast.Compare(left=a, ops=self.get_comparison_ops(b), comparators=self.get_comparators(b), LOCATIONS)
 }
 | bitwise_or

Make a tuple of operator and comparator
compare_op_bitwise_or_pair:
 | eq_bitwise_or
 | noteq_bitwise_or
 | lte_bitwise_or
 | lt_bitwise_or
 | gte_bitwise_or
 | gt_bitwise_or
 | notin_bitwise_or
 | in_bitwise_or
 | isnot_bitwise_or
 | is_bitwise_or

eq_bitwise_or: '==' a=bitwise_or { (ast.Eq(), a) }
Do not support the Barry as BDFL <> for not eq
noteq_bitwise_or[tuple]:
 | '!=' a=bitwise_or { (ast.NotEq(), a) }
lte_bitwise_or: '<=' a=bitwise_or { (ast.LtE(), a) }
lt_bitwise_or: '<' a=bitwise_or { (ast.Lt(), a) }
gte_bitwise_or: '>=' a=bitwise_or { (ast.GtE(), a) }
gt_bitwise_or: '>' a=bitwise_or { (ast.Gt(), a) }
notin_bitwise_or: 'not' 'in' a=bitwise_or { (ast.NotIn(), a) }
in_bitwise_or: 'in' a=bitwise_or { (ast.In(), a) }
isnot_bitwise_or: 'is' 'not' a=bitwise_or { (ast.IsNot(), a) }
is_bitwise_or: 'is' a=bitwise_or { (ast.Is(), a) }

Logical operators

bitwise_or:
 | scenic_visible_from
 | scenic_not_visible_from
 | scenic_can_see
 | scenic_intersects
 | a=bitwise_or '|' b=bitwise_xor { ast.BinOp(left=a, op=ast.BitOr(), right=b, LOCATIONS) }
 | bitwise_xor

scenic_visible_from: a=bitwise_or "visible" 'from' b=bitwise_xor { s.VisibleFromOp(region=a, base=b, LOCATIONS) }

scenic_not_visible_from: a=bitwise_or "not" "visible" 'from' b=bitwise_xor { s.NotVisibleFromOp(region=a, base=b, LOCATIONS) }

scenic_can_see: a=bitwise_or "can" "see" b=bitwise_xor { s.CanSeeOp(left=a, right=b, LOCATIONS) }

scenic_intersects: a=bitwise_or "intersects" b=bitwise_xor { s.IntersectsOp(left=a, right=b, LOCATIONS) }

bitwise_xor:
 | scenic_offset_along
 | a=bitwise_xor '^' b=bitwise_and { ast.BinOp(left=a, op=ast.BitXor(), right=b, LOCATIONS) }
 | bitwise_and

scenic_offset_along: a=bitwise_xor "offset" "along" b=bitwise_xor 'by' c=bitwise_and { s.OffsetAlongOp(base=a, direction=b, offset=c, LOCATIONS) }

bitwise_and:
 | scenic_relative_to
 | a=bitwise_and '&' b=shift_expr { ast.BinOp(left=a, op=ast.BitAnd(), right=b, LOCATIONS) }
 | shift_expr

scenic_relative_to: a=bitwise_and ("relative" 'to' | "offset" 'by') b=shift_expr { s.RelativeToOp(left=a, right=b, LOCATIONS) }

shift_expr:
 | scenic_at
 | a=shift_expr '<<' b=sum { ast.BinOp(left=a, op=ast.LShift(), right=b, LOCATIONS) }
 | a=shift_expr '>>' b=sum { ast.BinOp(left=a, op=ast.RShift(), right=b, LOCATIONS) }
 | scenic_prefix_operators

scenic_at: a=shift_expr 'at' b=sum { s.FieldAtOp(left=a, right=b, LOCATIONS) }

Scenic prefix operators

scenic_prefix_operators:
 # relative position of
 | "relative" "position" "of" e1=expression 'from' e2=scenic_prefix_operators { s.RelativePositionOp(target=e1, base=e2, LOCATIONS) }
 | "relative" "position" "of" e1=scenic_prefix_operators { s.RelativePositionOp(target=e1, LOCATIONS) }
 # relative heading of
 | "relative" "heading" "of" e1=expression 'from' e2=scenic_prefix_operators { s.RelativeHeadingOp(target=e1, base=e2, LOCATIONS) }
 | "relative" "heading" "of" e1=scenic_prefix_operators { s.RelativeHeadingOp(target=e1, LOCATIONS) }
 # apparent heading of
 | "apparent" "heading" "of" e1=expression 'from' e2=scenic_prefix_operators { s.ApparentHeadingOp(target=e1, base=e2, LOCATIONS) }
 | "apparent" "heading" "of" e1=scenic_prefix_operators { s.ApparentHeadingOp(target=e1, LOCATIONS) }
 # distance from/to
 | &"distance" scenic_distance_from_op
 # distance past
 | "distance" "past" e1=expression 'of' e2=scenic_prefix_operators { s.DistancePastOp(target=e1, base=e2, LOCATIONS) }
 | "distance" "past" e1=scenic_prefix_operators { s.DistancePastOp(target=e1, LOCATIONS) }
 # angle from/to
 | &"angle" scenic_angle_from_op
 # altitude from/to
 | &"altitude" scenic_altitude_from_op
 | "follow" e1=expression 'from' e2=expression 'for' e3=scenic_prefix_operators { s.FollowOp(target=e1, base=e2, distance=e3, LOCATIONS) }
 | "visible" e=scenic_prefix_operators { s.VisibleOp(region=e, LOCATIONS) }
 | 'not' "visible" e=scenic_prefix_operators { s.NotVisibleOp(region=e, LOCATIONS) }
 | p=scenic_position_of_op_position 'of' e=scenic_prefix_operators { s.PositionOfOp(position=p, target=e, LOCATIONS) }
 | sum

scenic_distance_from_op:
 | "distance" 'from' e1=expression 'to' e2=scenic_prefix_operators { s.DistanceFromOp(target=e1, base=e2, LOCATIONS) }
 | "distance" 'to' e1=expression 'from' e2=scenic_prefix_operators { s.DistanceFromOp(target=e1, base=e2, LOCATIONS) }
 | "distance" ('to'|'from') e1=scenic_prefix_operators { s.DistanceFromOp(target=e1, LOCATIONS) }

scenic_angle_from_op:
 | "angle" 'from' e1=expression 'to' e2=scenic_prefix_operators { s.AngleFromOp(base=e1, target=e2, LOCATIONS) }
 | "angle" 'to' e1=expression 'from' e2=scenic_prefix_operators { s.AngleFromOp(target=e1, base=e2, LOCATIONS) }
 | "angle" 'to' e1=scenic_prefix_operators { s.AngleFromOp(target=e1, LOCATIONS) }
 | "angle" 'from' e1=scenic_prefix_operators { s.AngleFromOp(base=e1, LOCATIONS) }

scenic_altitude_from_op:
 | "altitude" 'from' e1=expression 'to' e2=scenic_prefix_operators { s.AltitudeFromOp(base=e1, target=e2, LOCATIONS) }
 | "altitude" 'to' e1=expression 'from' e2=scenic_prefix_operators { s.AltitudeFromOp(target=e1, base=e2, LOCATIONS) }
 | "altitude" 'to' e1=scenic_prefix_operators { s.AltitudeFromOp(target=e1, LOCATIONS) }
 | "altitude" 'from' e1=scenic_prefix_operators { s.AltitudeFromOp(base=e1, LOCATIONS) }

scenic_position_of_op_position:
 | "top" "front" "left" { s.TopFrontLeft(LOCATIONS) }
 | "top" "front" "right" { s.TopFrontRight(LOCATIONS) }
 | "top" "back" "left" { s.TopBackLeft(LOCATIONS) }
 | "top" "back" "right" { s.TopBackRight(LOCATIONS) }
 | "bottom" "front" "left" { s.BottomFrontLeft(LOCATIONS) }
 | "bottom" "front" "right" { s.BottomFrontRight(LOCATIONS) }
 | "bottom" "back" "left" { s.BottomBackLeft(LOCATIONS) }
 | "bottom" "back" "right" { s.BottomBackRight(LOCATIONS) }
 | "front" "left" { s.FrontLeft(LOCATIONS) }
 | "front" "right" { s.FrontRight(LOCATIONS) }
 | "back" "left" { s.BackLeft(LOCATIONS) }
 | "back" "right" { s.BackRight(LOCATIONS) }
 | "front" { s.Front(LOCATIONS) }
 | "back" { s.Back(LOCATIONS) }
 | "left" { s.Left(LOCATIONS) }
 | "right" { s.Right(LOCATIONS) }
 | "top" { s.Top(LOCATIONS) }
 | "bottom" { s.Bottom(LOCATIONS) }

Arithmetic operators

sum:
 | a=sum '+' b=term { ast.BinOp(left=a, op=ast.Add(), right=b, LOCATIONS) }
 | a=sum '-' b=term { ast.BinOp(left=a, op=ast.Sub(), right=b, LOCATIONS) }
 | term

term:
 | scenic_vector
 | scenic_deg
 | a=term '*' b=factor { ast.BinOp(left=a, op=ast.Mult(), right=b, LOCATIONS) }
 | a=term '/' b=factor { ast.BinOp(left=a, op=ast.Div(), right=b, LOCATIONS) }
 | a=term '//' b=factor { ast.BinOp(left=a, op=ast.FloorDiv(), right=b, LOCATIONS) }
 | a=term '%' b=factor { ast.BinOp(left=a, op=ast.Mod(), right=b, LOCATIONS) }
 | a=term '@' b=factor {
 self.check_version((3, 5), "The '@' operator is", ast.BinOp(left=a, op=ast.MatMult(), right=b, LOCATIONS))
 }
 | factor

scenic_vector: a=term '@' b=factor { s.VectorOp(left=a, right=b, LOCATIONS) }
scenic_deg: a=term "deg" { s.DegOp(operand=a, LOCATIONS) }

factor (memo):
 | '+' a=factor { ast.UnaryOp(op=ast.UAdd(), operand=a, LOCATIONS) }
 | '-' a=factor { ast.UnaryOp(op=ast.USub(), operand=a, LOCATIONS) }
 | '~' a=factor { ast.UnaryOp(op=ast.Invert(), operand=a, LOCATIONS) }
 | power

power:
 | a=await_primary '**' b=factor { ast.BinOp(left=a, op=ast.Pow(), right=b, LOCATIONS) }
 | scenic_new

scenic_new:
 | scenic_new_expr
 | await_primary

Primary elements

Primary elements are things like "obj.something.something", "obj[something]", "obj(something)", "obj" ...

await_primary (memo):
 | 'await' a=primary { self.check_version((3, 5), "Await expressions are", ast.Await(a, LOCATIONS)) }
 | primary

primary:
 | a=primary '.' b=NAME { ast.Attribute(value=a, attr=b.string, ctx=Load, LOCATIONS) }
 | a=primary b=genexp { ast.Call(func=a, args=[b], keywords=[], LOCATIONS) }
 | a=primary '(' b=[arguments] ')' {
 ast.Call(
 func=a,
 args=b[0] if b else [],
 keywords=b[1] if b else [],
 LOCATIONS,
)
 }
 | a=primary '[' b=slices ']' { ast.Subscript(value=a, slice=b, ctx=Load, LOCATIONS) }
 | atom

slices:
 | a=slice !',' { a }
 | a=','.(slice | starred_expression)+ [','] {
 ast.Tuple(elts=a, ctx=Load, LOCATIONS)
 if sys.version_info >= (3, 9) else
 (
 ast.ExtSlice(dims=a, LOCATIONS)
 if any(isinstance(e, ast.Slice) for e in a) else
 ast.Index(value=ast.Tuple(elts=[e.value for e in a], ctx=Load, LOCATIONS), LOCATIONS)
)
 }

slice:
 | a=[expression] ':' b=[expression] c=[':' d=[expression] { d }] {
 ast.Slice(lower=a, upper=b, step=c, LOCATIONS)
 }
 | a=named_expression {
 a
 if sys.version_info >= (3, 9) or isinstance(a, ast.Slice) else
 ast.Index(
 value=a,
 lineno=a.lineno,
 col_offset=a.col_offset,
 end_lineno=a.end_lineno,
 end_col_offset=a.end_col_offset
)
 }

atom:
 | "initial" "scenario" { s.InitialScenario(LOCATIONS) }
 | a=NAME { ast.Name(id=a.string, ctx=Load, LOCATIONS) }
 | 'True' {
 ast.Constant(value=True, LOCATIONS)
 if sys.version_info >= (3, 9) else
 ast.Constant(value=True, kind=None, LOCATIONS)
 }
 | 'False' {
 ast.Constant(value=False, LOCATIONS)
 if sys.version_info >= (3, 9) else
 ast.Constant(value=False, kind=None, LOCATIONS)
 }
 | 'None' {
 ast.Constant(value=None, LOCATIONS)
 if sys.version_info >= (3, 9) else
 ast.Constant(value=None, kind=None, LOCATIONS)
 }
 | &(STRING|FSTRING_START) strings
 | a=NUMBER {
 ast.Constant(value=ast.literal_eval(a.string), LOCATIONS)
 if sys.version_info >= (3, 9) else
 ast.Constant(value=ast.literal_eval(a.string), kind=None, LOCATIONS)
 }
 | &'(' (tuple | group | genexp)
 | &'[' (list | listcomp)
 | &'{' (dict | set | dictcomp | setcomp)
 | '...' {
 ast.Constant(value=Ellipsis, LOCATIONS)
 if sys.version_info >= (3, 9) else
 ast.Constant(value=Ellipsis, kind=None, LOCATIONS)
 }

group:
 | '(' a=(yield_expr | named_expression) ')' { a }
 | invalid_group

Lambda functions

lambdef:
 | 'lambda' a=[lambda_params] ':' b=expression {
 ast.Lambda(args=a or self.make_arguments(None, [], None, [], (None, [], None)), body=b, LOCATIONS)
 }

lambda_params:
 | invalid_lambda_parameters
 | lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters[ast.arguments]:
 | a=lambda_slash_no_default b=lambda_param_no_default* c=lambda_param_with_default* d=[lambda_star_etc] {
 self.make_arguments(a, [], b, c, d)
 }
 | a=lambda_slash_with_default b=lambda_param_with_default* c=[lambda_star_etc] {
 self.make_arguments(None, a, None, b, c)
 }
 | a=lambda_param_no_default+ b=lambda_param_with_default* c=[lambda_star_etc] {
 self.make_arguments(None, [], a, b, c)
 }
 | a=lambda_param_with_default+ b=[lambda_star_etc] {
 self.make_arguments(None, [], None, a, b)
 }
 | a=lambda_star_etc { self.make_arguments(None, [], None, [], a) }

lambda_slash_no_default[List[Tuple[ast.arg, None]]]:
 | a=lambda_param_no_default+ '/' ',' { [(p, None) for p in a] }
 | a=lambda_param_no_default+ '/' &':' { [(p, None) for p in a] }

lambda_slash_with_default[List[Tuple[ast.arg, Any]]]:
 | a=lambda_param_no_default* b=lambda_param_with_default+ '/' ',' { ([(p, None) for p in a] if a else []) + b }
 | a=lambda_param_no_default* b=lambda_param_with_default+ '/' &':' { ([(p, None) for p in a] if a else []) + b }

lambda_star_etc[Tuple[Optional[ast.arg], List[Tuple[ast.arg, Any]], Optional[ast.arg]]]:
 | invalid_lambda_star_etc
 | '*' a=lambda_param_no_default b=lambda_param_maybe_default* c=[lambda_kwds] {
 (a, b, c) }
 | '*' ',' b=lambda_param_maybe_default+ c=[lambda_kwds] {
 (None, b, c) }
 | a=lambda_kwds { (None, [], a) }

lambda_kwds[ast.arg]:
 | invalid_lambda_kwds
 | '**' a=lambda_param_no_default { a }

lambda_param_no_default[ast.arg]:
 | a=lambda_param ',' { a }
 | a=lambda_param &':' { a }

lambda_param_with_default[Tuple[ast.arg, Any]]:
 | a=lambda_param c=default ',' { (a, c) }
 | a=lambda_param c=default &':' { (a, c) }
lambda_param_maybe_default[Tuple[ast.arg, Any]]:
 | a=lambda_param c=default? ',' { (a, c) }
 | a=lambda_param c=default? &':' { (a, c) }
lambda_param[ast.arg]: a=NAME {
 ast.arg(arg=a.string, annotation=None, LOCATIONS)
 if sys.version_info >= (3, 9) else
 ast.arg(arg=a.string, annotation=None, type_comment=None, LOCATIONS)
}

SCENIC STATEMENTS
=================

scenic_model_stmt:
 | "model" a=dotted_name { s.Model(name=a, LOCATIONS) }

scenic_tracked_assignment:
 | a=scenic_tracked_name '=' b=expression { s.TrackedAssign(target=a, value=b, LOCATIONS) }
scenic_tracked_name:
 | "ego" { s.Ego(LOCATIONS) }
 | "workspace" { s.Workspace(LOCATIONS) }

scenic_param_stmt:
 | "param" elts=(','.scenic_param_stmt_param+) { s.Param(elts=elts, LOCATIONS) }
scenic_param_stmt_param: name=scenic_param_stmt_id '=' e=expression { s.parameter(name, e, LOCATIONS) }
scenic_param_stmt_id:
 | a=NAME { a.string }
 | a=STRING { a.string[1:-1] } # strip quotes

scenic_require_stmt:
 | 'require' "monitor" e=expression n=['as' scenic_require_stmt_name] {
 s.RequireMonitor(monitor=e, name=n, LOCATIONS)
 }
 | invalid_scenic_require_prob
 | 'require' p=['[' a=NUMBER ']' { float(a.string) }] e=scenic_temporal_expression n=['as' a=scenic_require_stmt_name { a }] {
 s.Require(cond=e, prob=p, name=n, LOCATIONS)
 }
scenic_require_stmt_name:
 | a=(NAME | NUMBER) { a.string }
 | a=STRING { a.string[1:-1] }

scenic_record_stmt:
 | "record" e=expression n=['as' a=scenic_require_stmt_name { a }] {
 s.Record(value=e, name=n, LOCATIONS)
 }

scenic_record_initial_stmt:
 | "record" "initial" e=expression n=['as' a=scenic_require_stmt_name { a }] {
 s.RecordInitial(value=e, name=n, LOCATIONS)
 }

scenic_record_final_stmt:
 | "record" "final" e=expression n=['as' a=scenic_require_stmt_name { a }] {
 s.RecordFinal(value=e, name=n, LOCATIONS)
 }

scenic_mutate_stmt:
 | "mutate" elts=[(','.scenic_mutate_stmt_id+)] scale=['by' x=expression {x}] {
 s.Mutate(elts=elts if elts is not None else [], scale=scale, LOCATIONS)
 }
scenic_mutate_stmt_id: a=NAME { ast.Name(id=a.string, ctx=Load, LOCATIONS) }

scenic_abort_stmt: "abort" { s.Abort(LOCATIONS) }

scenic_take_stmt: "take" elts=(','.expression+) { s.Take(elts=elts, LOCATIONS) }

scenic_wait_stmt: "wait" { s.Wait(LOCATIONS) }

scenic_terminate_simulation_when_stmt: "terminate" "simulation" "when" v=expression n=['as' a=scenic_require_stmt_name { a }] { s.TerminateSimulationWhen(v, name=n, LOCATIONS) }

scenic_terminate_when_stmt: "terminate" "when" v=expression n=['as' a=scenic_require_stmt_name { a }] { s.TerminateWhen(v, name=n, LOCATIONS) }

scenic_terminate_after_stmt: "terminate" "after" v=scenic_dynamic_duration { s.TerminateAfter(v, LOCATIONS) }

scenic_terminate_simulation_stmt: "terminate" "simulation" { s.TerminateSimulation(LOCATIONS) }

scenic_terminate_stmt: "terminate" { s.Terminate(LOCATIONS) }

scenic_do_choose_stmt: 'do' "choose" e=(','.expression+) { s.DoChoose(e, LOCATIONS) }

scenic_do_shuffle_stmt: 'do' "shuffle" e=(','.expression+) { s.DoShuffle(e, LOCATIONS) }

scenic_do_for_stmt: 'do' e=(','.expression+) 'for' u=scenic_dynamic_duration { s.DoFor(elts=e, duration=u, LOCATIONS) }
scenic_dynamic_duration:
 | v=expression "seconds" { s.Seconds(v, LOCATIONS) }
 | v=expression "steps" { s.Steps(v, LOCATIONS) }
 | invalid_scenic_dynamic_duration

FIXME: Is this the right way to resolve ambiguity in `do A until B until X`?
scenic_do_until_stmt: 'do' e=(','.disjunction+) 'until' cond=expression { s.DoUntil(elts=e, cond=cond, LOCATIONS) }

scenic_do_stmt: 'do' e=(','.expression+) { s.Do(elts=e, LOCATIONS) }

scenic_simulator_stmt: "simulator" e=expression { s.Simulator(value=e, LOCATIONS) }

LITERALS
========

fstring_mid:
 | fstring_replacement_field
 | t=FSTRING_MIDDLE { ast.Constant(value=t.string, LOCATIONS) }
fstring_replacement_field:
 | '{' a=(yield_expr | star_expressions) debug_expr="="? conversion=[fstring_conversion] format=[fstring_full_format_spec] rbrace='}' {
 ast.FormattedValue(
 value=a,
 conversion=(
 conversion.decode()[0]
 if conversion else
 (b'r'[0] if debug_expr else -1)
),
 format_spec=format,
 LOCATIONS
)
 }
 | invalid_replacement_field
fstring_conversion[int]:
 | conv_token="!" conv=NAME { self.check_fstring_conversion(conv_token, conv) }
fstring_full_format_spec:
 | ':' spec=fstring_format_spec* {
 ast.JoinedStr(
 values=spec if spec and (len(spec) > 1 or spec[0].value) else [],
 LOCATIONS,
)
 }
fstring_format_spec:
 | t=FSTRING_MIDDLE { ast.Constant(value=t.string, LOCATIONS) }
 | fstring_replacement_field
fstring:
 | a=FSTRING_START b=fstring_mid* c=FSTRING_END {
 ast.JoinedStr(values=b, LOCATIONS)
 }

strings (memo): a=(fstring|STRING)+ {
 self.concatenate_strings(a) if sys.version_info >= (3, 12) else self.generate_ast_for_string(a)
 }

list[ast.List]:
 | '[' a=[star_named_expressions] ']' { ast.List(elts=a or [], ctx=Load, LOCATIONS) }
 | a='**' expression '=' b=expression {
 self.raise_syntax_error_known_range(
 "cannot assign to keyword argument unpacking", a, b
)
 }

tuple[ast.Tuple]:
 | '(' a=[y=star_named_expression ',' z=[star_named_expressions] { [y] + (z or []) }] ')' {
 ast.Tuple(elts=a or [], ctx=Load, LOCATIONS)
 }

set[ast.Set]: '{' a=star_named_expressions '}' { ast.Set(elts=a, LOCATIONS) }

Dicts

dict[ast.Dict]:
 | '{' a=[double_starred_kvpairs] '}' {
 ast.Dict(keys=[kv[0] for kv in (a or [])], values=[kv[1] for kv in (a or [])], LOCATIONS)
 }
 | '{' invalid_double_starred_kvpairs '}'

double_starred_kvpairs[list]: a=','.double_starred_kvpair+ [','] { a }

double_starred_kvpair:
 | '**' a=bitwise_or { (None, a) }
 | kvpair

kvpair[tuple]: a=expression ':' b=expression { (a, b) }

Comprehensions & Generators

for_if_clauses[List[ast.comprehension]]:
 | a=for_if_clause+ { a }

for_if_clause[ast.comprehension]:
 | 'async' 'for' a=star_targets 'in' ~ b=disjunction c=('if' z=disjunction { z })* {
 self.check_version(
 (3, 6),
 "Async comprehensions are",
 ast.comprehension(target=a, iter=b, ifs=c, is_async=1)
)
 }
 | 'for' a=star_targets 'in' ~ b=disjunction c=('if' z=disjunction { z })* {
 ast.comprehension(target=a, iter=b, ifs=c, is_async=0) }
 | invalid_for_target

listcomp[ast.ListComp]:
 | '[' a=named_expression b=for_if_clauses ']' { ast.ListComp(elt=a, generators=b, LOCATIONS) }
 | invalid_comprehension

setcomp[ast.SetComp]:
 | '{' a=named_expression b=for_if_clauses '}' { ast.SetComp(elt=a, generators=b, LOCATIONS) }
 | invalid_comprehension

genexp[ast.GeneratorExp]:
 | '(' a=(assignment_expression | expression !':=') b=for_if_clauses ')' {
 ast.GeneratorExp(elt=a, generators=b, LOCATIONS)
 }
 | invalid_comprehension

dictcomp[ast.DictComp]:
 | '{' a=kvpair b=for_if_clauses '}' { ast.DictComp(key=a[0], value=a[1], generators=b, LOCATIONS) }
 | invalid_dict_comprehension

FUNCTION CALL ARGUMENTS
=======================

arguments[Tuple[list, list]] (memo):
 | a=args [','] &')' { a }
 | invalid_arguments

args[Tuple[list, list]]:
 | a=','.(starred_expression | (assignment_expression | expression !':=') !'=')+ b=[',' k=kwargs {k}] {
 (a + ([e for e in b if isinstance(e, ast.Starred)] if b else []),
 ([e for e in b if not isinstance(e, ast.Starred)] if b else [])
)
 }
 | a=kwargs {
 ([e for e in a if isinstance(e, ast.Starred)],
 [e for e in a if not isinstance(e, ast.Starred)])
 }

kwargs[list]:
 | a=','.kwarg_or_starred+ ',' b=','.kwarg_or_double_starred+ { a + b }
 | ','.kwarg_or_starred+
 | ','.kwarg_or_double_starred+

starred_expression:
 | invalid_starred_expression
 | '*' a=expression { ast.Starred(value=a, ctx=Load, LOCATIONS) }

kwarg_or_starred:
 | invalid_kwarg
 | a=NAME '=' b=expression { ast.keyword(arg=a.string, value=b, LOCATIONS) }
 | a=starred_expression { a }

kwarg_or_double_starred:
 | invalid_kwarg
 | a=NAME '=' b=expression { ast.keyword(arg=a.string, value=b, LOCATIONS) } # XXX Unreachable
 | '**' a=expression { ast.keyword(arg=None, value=a, LOCATIONS) }

ASSIGNMENT TARGETS
==================

Generic targets

NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:
 | a=star_target !',' { a }
 | a=star_target b=(',' c=star_target { c })* [','] {
 ast.Tuple(elts=[a] + b, ctx=Store, LOCATIONS)
 }

star_targets_list_seq[list]: a=','.star_target+ [','] { a }

star_targets_tuple_seq[list]:
 | a=star_target b=(',' c=star_target { c })+ [','] { [a] + b }
 | a=star_target ',' { [a] }

star_target (memo):
 | '*' a=(!'*' star_target) {
 ast.Starred(value=self.set_expr_context(a, Store), ctx=Store, LOCATIONS)
 }
 | target_with_star_atom

target_with_star_atom (memo):
 | a=t_primary '.' b=NAME !t_lookahead { ast.Attribute(value=a, attr=b.string, ctx=Store, LOCATIONS) }
 | a=t_primary '[' b=slices ']' !t_lookahead { ast.Subscript(value=a, slice=b, ctx=Store, LOCATIONS) }
 | star_atom

star_atom:
 | a=NAME { ast.Name(id=a.string, ctx=Store, LOCATIONS) }
 | '(' a=target_with_star_atom ')' { self.set_expr_context(a, Store) }
 | '(' a=[star_targets_tuple_seq] ')' { ast.Tuple(elts=a, ctx=Store, LOCATIONS) }
 | '[' a=[star_targets_list_seq] ']' { ast.List(elts=a, ctx=Store, LOCATIONS) }

single_target:
 | single_subscript_attribute_target
 | a=NAME { ast.Name(id=a.string, ctx=Store, LOCATIONS) }
 | '(' a=single_target ')' { a }

single_subscript_attribute_target:
 | a=t_primary '.' b=NAME !t_lookahead { ast.Attribute(value=a, attr=b.string, ctx=Store, LOCATIONS) }
 | a=t_primary '[' b=slices ']' !t_lookahead { ast.Subscript(value=a, slice=b, ctx=Store, LOCATIONS) }

t_primary:
 | a=t_primary '.' b=NAME &t_lookahead { ast.Attribute(value=a, attr=b.string, ctx=Load, LOCATIONS) }
 | a=t_primary '[' b=slices ']' &t_lookahead { ast.Subscript(value=a, slice=b, ctx=Load, LOCATIONS) }
 | a=t_primary b=genexp &t_lookahead { ast.Call(func=a, args=[b], keywords=[], LOCATIONS) }
 | a=t_primary '(' b=[arguments] ')' &t_lookahead {
 ast.Call(
 func=a,
 args=b[0] if b else [],
 keywords=b[1] if b else [],
 LOCATIONS,
)
 }
 | a=atom &t_lookahead { a }

t_lookahead: '(' | '[' | '.'

Targets for del statements

del_targets: a=','.del_target+ [','] { a }

del_target (memo):
 | a=t_primary '.' b=NAME !t_lookahead { ast.Attribute(value=a, attr=b.string, ctx=Del, LOCATIONS) }
 | a=t_primary '[' b=slices ']' !t_lookahead { ast.Subscript(value=a, slice=b, ctx=Del, LOCATIONS) }
 | del_t_atom

del_t_atom:
 | a=NAME { ast.Name(id=a.string, ctx=Del, LOCATIONS) }
 | '(' a=del_target ')' { self.set_expr_context(a, Del) }
 | '(' a=[del_targets] ')' { ast.Tuple(elts=a, ctx=Del, LOCATIONS) }
 | '[' a=[del_targets] ']' { ast.List(elts=a, ctx=Del, LOCATIONS) }

TYPING ELEMENTS

type_expressions allow */** but ignore them
type_expressions[list]:
 | a=','.expression+ ',' '*' b=expression ',' '**' c=expression { a + [b, c] }
 | a=','.expression+ ',' '*' b=expression { a + [b] }
 | a=','.expression+ ',' '**' b=expression { a + [b] }
 | '*' a=expression ',' '**' b=expression { [a, b] }
 | '*' a=expression { [a] }
 | '**' a=expression { [a] }
 | a=','.expression+ {a}

func_type_comment:
 | NEWLINE t=TYPE_COMMENT &(NEWLINE INDENT) { t.string } # Must be followed by indented block
 | invalid_double_type_comments
 | TYPE_COMMENT

========================= END OF THE GRAMMAR ===========================

========================= START OF INVALID RULES =======================

From here on, there are rules for invalid syntax with specialised error messages
invalid_arguments[NoReturn]:
 | a=args ',' '*' {
 self.raise_syntax_error_known_location(
 "iterable argument unpacking follows keyword argument unpacking",
 a[1][-1] if a[1] else a[0][-1],
)
 }
 | a=expression b=for_if_clauses ',' [args | expression for_if_clauses] {
 self.raise_syntax_error_known_range(
 "Generator expression must be parenthesized",
 a,
 (b[-1].ifs[-1] if b[-1].ifs else b[-1].iter)
)
 }
 | a=NAME b='=' expression for_if_clauses {
 self.raise_syntax_error_known_range(
 "invalid syntax. Maybe you meant '==' or ':=' instead of '='?", a, b
)
 }
 | (args ',')? a=NAME b='=' &(',' | ')') {
 self.raise_syntax_error_known_range("expected argument value expression", a, b)
 }
 | a=args b=for_if_clauses {
 self.raise_syntax_error_known_range(
 "Generator expression must be parenthesized",
 a[0][-1],
 (b[-1].ifs[-1] if b[-1].ifs else b[-1].iter),
) if len(a[0]) > 1 else None
 }
 | args ',' a=expression b=for_if_clauses {
 self.raise_syntax_error_known_range(
 "Generator expression must be parenthesized",
 a,
 (b[-1].ifs[-1] if b[-1].ifs else b[-1].iter),
)
 }
 | a=args ',' args {
 self.raise_syntax_error(
 "positional argument follows keyword argument unpacking"
 if a[1][-1].arg is None else
 "positional argument follows keyword argument",
)
 }
invalid_kwarg[NoReturn]:
 | a=('True'|'False'|'None') b='=' {
 self.raise_syntax_error_known_range(f"cannot assign to {a.string}", a, b)
 }
 | a=NAME b='=' expression for_if_clauses {
 self.raise_syntax_error_known_range(
 "invalid syntax. Maybe you meant '==' or ':=' instead of '='?", a, b
)
 }
 | !(NAME '=') a=expression b='=' {
 self.raise_syntax_error_known_range(
 "expression cannot contain assignment, perhaps you meant \"==\"?", a, b,
)
 }

invalid_scenic_instance_creation[NoReturn]:
 | n=NAME s=scenic_valid_specifier {
 self.raise_syntax_error_known_range("invalid syntax. Perhaps you forgot 'new'?", n, s)
 }
invalid_scenic_specifier[NoReturn]:
 | n=NAME {
 self.raise_syntax_error_known_location("invalid specifier.", n)
 }

expression_without_invalid[ast.AST]:
 | a=disjunction 'if' b=disjunction 'else' c=expression { ast.IfExp(body=b, test=a, orelse=c, LOCATIONS) }
 | disjunction
 | lambdef
invalid_legacy_expression:
 | a=NAME !'(' b=star_expressions {
 self.raise_syntax_error_known_range(
 f"Missing parentheses in call to '{a.string}' . Did you mean {a.string}(...)?", a, b,
) if a.string in ("exec", "print") else
 None
 }
invalid_expression[NoReturn]:
 # !(NAME STRING) is not matched so we don't show this error with some invalid string prefixes like: kf"dsfsdf"
 # Soft keywords need to also be ignored because they can be parsed as NAME NAME
 # Soft keywords can follow a disjunction to support expressions like `3 steps`
 | !(NAME STRING | SOFT_KEYWORD) a=disjunction !SOFT_KEYWORD b=expression_without_invalid {
 (
 self.raise_syntax_error_known_range("invalid syntax. Perhaps you forgot a comma?", a, b)
 if not isinstance(a, ast.Name) or a.id not in ("print", "exec")
 else None
)
 }
 | a=disjunction 'if' b=disjunction !('else'|':') {
 self.raise_syntax_error_known_range("expected 'else' after 'if' expression", a, b)
 }
 | a='lambda' [lambda_params] b=':' &(FSTRING_MIDDLE | fstring_replacement_field) {
 self.raise_syntax_error_known_range(
 "f-string: lambda expressions are not allowed without parentheses", a, b
)
 }
invalid_named_expression[NoReturn]:
 | a=expression ':=' expression {
 self.raise_syntax_error_known_location(
 f"cannot use assignment expressions with {self.get_expr_name(a)}", a
)
 }
 # Use in_raw_rule
 | a=NAME '=' b=bitwise_or !('='|':=') {
 (
 None
 if self.in_recursive_rule else
 self.raise_syntax_error_known_range(
 "invalid syntax. Maybe you meant '==' or ':=' instead of '='?", a, b
)
)
 }
 | !(list|tuple|genexp|'True'|'None'|'False') a=bitwise_or b='=' bitwise_or !('='|':=') {
 (
 None
 if self.in_recursive_rule else
 self.raise_syntax_error_known_location(
 f"cannot assign to {self.get_expr_name(a)} here. Maybe you meant '==' instead of '='?", a
)
)
 }

invalid_scenic_until[NoReturn]:
 | a=scenic_temporal_disjunction 'until' scenic_implication {
 self.raise_syntax_error_known_location(
 f"`until` must take exactly two operands", a
)
 }

invalid_scenic_implication[NoReturn]:
 | a=scenic_until "implies" scenic_implication {
 self.raise_syntax_error_known_location(
 f"`implies` must take exactly two operands", a
)
 }

invalid_scenic_require_prob[NoReturn]:
 | 'require' '[' !(NUMBER ']') p=expression ']' scenic_temporal_expression ['as' scenic_require_stmt_name] {
 self.raise_syntax_error_known_location(
 f"'require' probability must be a constant", p
)
 }

invalid_scenic_dynamic_duration[NoReturn]: e=expression {
 self.raise_syntax_error_known_location(
 "duration must specify a unit (seconds or steps)", e
)
}

invalid_assignment[NoReturn]:
 | a=invalid_ann_assign_target ':' expression {
 self.raise_syntax_error_known_location(
 f"only single target (not {self.get_expr_name(a)}) can be annotated", a
)
 }
 | a=star_named_expression ',' star_named_expressions* ':' expression {
 self.raise_syntax_error_known_location("only single target (not tuple) can be annotated", a) }
 | a=expression ':' expression {
 self.raise_syntax_error_known_location("illegal target for annotation", a) }
 | (star_targets '=')* a=star_expressions '=' {
 self.raise_syntax_error_invalid_target(Target.STAR_TARGETS, a)
 }
 | (star_targets '=')* a=yield_expr '=' {
 self.raise_syntax_error_known_location("assignment to yield expression not possible", a)
 }
 | a=star_expressions augassign (yield_expr | star_expressions) {
 self.raise_syntax_error_known_location(
 f"'{self.get_expr_name(a)}' is an illegal expression for augmented assignment", a
)
 }
invalid_ann_assign_target[ast.AST]:
 | a=list { a }
 | a=tuple { a }
 | '(' a=invalid_ann_assign_target ')' { a }
invalid_del_stmt[NoReturn]:
 | 'del' a=star_expressions {
 self.raise_syntax_error_invalid_target(Target.DEL_TARGETS, a)
 }
invalid_block[NoReturn]:
 | NEWLINE !INDENT { self.raise_indentation_error("expected an indented block") }
invalid_comprehension[NoReturn]:
 | ('[' | '(' | '{') a=starred_expression for_if_clauses {
 self.raise_syntax_error_known_location("iterable unpacking cannot be used in comprehension", a)
 }
 | ('[' | '{') a=star_named_expression ',' b=star_named_expressions for_if_clauses {
 self.raise_syntax_error_known_range(
 "did you forget parentheses around the comprehension target?", a, b[-1]
)
 }
 | ('[' | '{') a=star_named_expression b=',' for_if_clauses {
 self.raise_syntax_error_known_range(
 "did you forget parentheses around the comprehension target?", a, b
)
 }
invalid_dict_comprehension[NoReturn]:
 | '{' a='**' bitwise_or for_if_clauses '}' {
 self.raise_syntax_error_known_location("dict unpacking cannot be used in dict comprehension", a)
 }
invalid_parameters[NoReturn]:
 | a="/" ',' {
 self.raise_syntax_error_known_location("at least one argument must precede /", a)
 }
 | (slash_no_default | slash_with_default) param_maybe_default* a='/' {
 self.raise_syntax_error_known_location("/ may appear only once", a)
 }
 | slash_no_default? param_no_default* invalid_parameters_helper a=param_no_default {
 self.raise_syntax_error_known_location(
 "parameter without a default follows parameter with a default", a
)
 }
 | param_no_default* a='(' param_no_default+ ','? b=')' {
 self.raise_syntax_error_known_range(
 "Function parameters cannot be parenthesized", a, b
)
 }
 | (slash_no_default | slash_with_default)? param_maybe_default* '*' (',' | param_no_default) param_maybe_default* a='/' {
 self.raise_syntax_error_known_location("/ must be ahead of *", a)
 }
 | param_maybe_default+ '/' a='*' {
 self.raise_syntax_error_known_location("expected comma between / and *", a)
 }
invalid_default:
 | a='=' &(')'|',') {
 self.raise_syntax_error_known_location("expected default value expression", a)
 }
invalid_star_etc:
 | a='*' (')' | ',' (')' | '**')) {
 self.raise_syntax_error_known_location("named arguments must follow bare *", a)
 }
 | '*' ',' TYPE_COMMENT { self.raise_syntax_error("bare * has associated type comment") }
 | '*' param a='=' {
 self.raise_syntax_error_known_location("var-positional argument cannot have default value", a)
 }
 | '*' (param_no_default | ',') param_maybe_default* a='*' (param_no_default | ',') {
 self.raise_syntax_error_known_location("* argument may appear only once", a)
 }
invalid_kwds:
 | '**' param a='=' {
 self.raise_syntax_error_known_location("var-keyword argument cannot have default value", a)
 }
 | '**' param ',' a=param {
 self.raise_syntax_error_known_location("arguments cannot follow var-keyword argument", a)
 }
 | '**' param ',' a=('*'|'**'|'/') {
 self.raise_syntax_error_known_location("arguments cannot follow var-keyword argument", a)
 }
invalid_parameters_helper: # This is only there to avoid type errors
 | a=slash_with_default { [a] }
 | a=param_with_default+
invalid_lambda_parameters[NoReturn]:
 | a="/" ',' {
 self.raise_syntax_error_known_location("at least one argument must precede /", a)
 }
 | (lambda_slash_no_default | lambda_slash_with_default) lambda_param_maybe_default* a='/' {
 self.raise_syntax_error_known_location("/ may appear only once", a)
 }
 | lambda_slash_no_default? lambda_param_no_default* invalid_lambda_parameters_helper a=lambda_param_no_default {
 self.raise_syntax_error_known_location(
 "parameter without a default follows parameter with a default", a
)
 }
 | lambda_param_no_default* a='(' ','.lambda_param+ ','? b=')' {
 self.raise_syntax_error_known_range(
 "Lambda expression parameters cannot be parenthesized", a, b
)
 }
 | (lambda_slash_no_default | lambda_slash_with_default)? lambda_param_maybe_default* '*' (',' | lambda_param_no_default) lambda_param_maybe_default* a='/' {
 self.raise_syntax_error_known_location("/ must be ahead of *", a)
 }
 | lambda_param_maybe_default+ '/' a='*' {
 self.raise_syntax_error_known_location("expected comma between / and *", a)
 }
invalid_lambda_parameters_helper[NoReturn]:
 | a=lambda_slash_with_default { [a] }
 | a=lambda_param_with_default+
invalid_lambda_star_etc[NoReturn]:
 | '*' (':' | ',' (':' | '**')) {
 self.raise_syntax_error("named arguments must follow bare *")
 }
 | '*' lambda_param a='=' {
 self.raise_syntax_error_known_location("var-positional argument cannot have default value", a)
 }
 | '*' (lambda_param_no_default | ',') lambda_param_maybe_default* a='*' (lambda_param_no_default | ',') {
 self.raise_syntax_error_known_location("* argument may appear only once", a)
 }
invalid_lambda_kwds:
 | '**' lambda_param a='=' {
 self.raise_syntax_error_known_location("var-keyword argument cannot have default value", a)
 }
 | '**' lambda_param ',' a=lambda_param {
 self.raise_syntax_error_known_location("arguments cannot follow var-keyword argument", a)
 }
 | '**' lambda_param ',' a=('*'|'**'|'/') {
 self.raise_syntax_error_known_location("arguments cannot follow var-keyword argument", a)
 }
invalid_double_type_comments[NoReturn]:
 | TYPE_COMMENT NEWLINE TYPE_COMMENT NEWLINE INDENT {
 self.raise_syntax_error("Cannot have two type comments on def")
 }
invalid_with_item[NoReturn]:
 | expression 'as' a=expression &(',' | ')' | ':') {
 self.raise_syntax_error_invalid_target(Target.STAR_TARGETS, a)
 }

invalid_for_target[NoReturn]:
 | 'async'? 'for' a=star_expressions {
 self.raise_syntax_error_invalid_target(Target.FOR_TARGETS, a)
 }

invalid_group[NoReturn]:
 | '(' a=starred_expression ')' {
 self.raise_syntax_error_known_location("cannot use starred expression here", a)
 }
 | '(' a='**' expression ')' {
 self.raise_syntax_error_known_location("cannot use double starred expression here", a)
 }
invalid_import:
 | a='import' ','.dotted_name+ 'from' dotted_name {
 self.raise_syntax_error_starting_from(
 "Did you mean to use 'from ... import ...' instead?", a
)
 }
invalid_import_from_targets[NoReturn]:
 | import_from_as_names ',' NEWLINE {
 self.raise_syntax_error("trailing comma not allowed without surrounding parentheses")
 }

invalid_with_stmt[None]:
 | ['async'] 'with' ','.(expression ['as' star_target])+ &&':' { UNREACHABLE }
 | ['async'] 'with' '(' ','.(expressions ['as' star_target])+ ','? ')' &&':' { UNREACHABLE }
invalid_with_stmt_indent[NoReturn]:
 | ['async'] a='with' ','.(expression ['as' star_target])+ ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'with' statement on line {a.start[0]}"
)
 }
 | ['async'] a='with' '(' ','.(expressions ['as' star_target])+ ','? ')' ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'with' statement on line {a.start[0]}"
)
 }

invalid_try_stmt[NoReturn]:
 | a='try' ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'try' statement on line {a.start[0]}",
)
 }
 | 'try' ':' block !('except' | 'finally') {
 self.raise_syntax_error("expected 'except' or 'finally' block")
 }
 | 'try' ':' block* except_block+ a='except' b='*' expression ['as' NAME] ':' {
 self.raise_syntax_error_known_range(
 "cannot have both 'except' and 'except*' on the same 'try'", a, b
)
 }
 | 'try' ':' block* except_star_block+ a='except' [expression ['as' NAME]] ':' {
 self.raise_syntax_error_known_location(
 "cannot have both 'except' and 'except*' on the same 'try'", a
)
 }
invalid_except_stmt[None]:
 | 'except' '*'? a=expression ',' expressions ['as' NAME] ':' {
 self.raise_syntax_error_starting_from("multiple exception types must be parenthesized", a)
 }
 | a='except' '*'? expression ['as' NAME] NEWLINE { self.raise_syntax_error("expected ':'") }
 | a='except' '*'? NEWLINE { self.raise_syntax_error("expected ':'") }
 | a='except' '*' (NEWLINE | ':') {
 self.raise_syntax_error("expected one or more exception types")
 }
invalid_finally_stmt[NoReturn]:
 | a='finally' ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'finally' statement on line {a.start[0]}"
)
 }
invalid_except_stmt_indent[NoReturn]:
 | a='except' expression ['as' NAME] ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'except' statement on line {a.start[0]}"
)
 }
 | a='except' ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'except' statement on line {a.start[0]}"
)
 }
invalid_except_star_stmt_indent:
 | a='except' '*' expression ['as' NAME] ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'except*' statement on line {a.start[0]}"
)
 }
invalid_match_stmt[NoReturn]:
 | "match" subject_expr !':' {
 self.check_version(
 (3, 10),
 "Pattern matching is",
 self.raise_syntax_error("expected ':'")
)
 }
 | a="match" subject=subject_expr ':' NEWLINE !INDENT {
 self.check_version(
 (3, 10),
 "Pattern matching is",
 self.raise_indentation_error(
 f"expected an indented block after 'match' statement on line {a.start[0]}"
)
)
 }
invalid_case_block[NoReturn]:
 | "case" patterns guard? !':' { self.raise_syntax_error("expected ':'") }
 | a="case" patterns guard? ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'case' statement on line {a.start[0]}"
)
 }
invalid_as_pattern[NoReturn]:
 | or_pattern 'as' a="_" {
 self.raise_syntax_error_known_location("cannot use '_' as a target", a)
 }
 | or_pattern 'as' !NAME a=expression {
 self.raise_syntax_error_known_location("invalid pattern target", a)
 }
invalid_class_pattern[NoReturn]:
 | name_or_attr '(' a=invalid_class_argument_pattern {
 self.raise_syntax_error_known_range(
 "positional patterns follow keyword patterns", a[0], a[-1]
)
 }
invalid_class_argument_pattern[list]:
 | [positional_patterns ','] keyword_patterns ',' a=positional_patterns { a }
invalid_if_stmt[NoReturn]:
 | 'if' named_expression NEWLINE { self.raise_syntax_error("expected ':'") }
 | a='if' a=named_expression ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'if' statement on line {a.start[0]}"
)
 }
invalid_elif_stmt[NoReturn]:
 | 'elif' named_expression NEWLINE { self.raise_syntax_error("expected ':'") }
 | a='elif' named_expression ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'elif' statement on line {a.start[0]}"
)
 }
invalid_else_stmt[NoReturn]:
 | a='else' ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'else' statement on line {a.start[0]}"
)
 }
invalid_while_stmt[NoReturn]:
 | 'while' named_expression NEWLINE { self.raise_syntax_error("expected ':'") }
 | a='while' named_expression ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'while' statement on line {a.start[0]}"
)
 }
invalid_for_stmt[NoReturn]:
 | [ASYNC] 'for' star_targets 'in' star_expressions NEWLINE { self.raise_syntax_error("expected ':'") }
 | ['async'] a='for' star_targets 'in' star_expressions ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after 'for' statement on line {a.start[0]}"
)
 }
invalid_def_raw[NoReturn]:
 | ['async'] a='def' NAME [type_params] '(' [params] ')' ['->' expression] ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after function definition on line {a.start[0]}"
)
 }
invalid_class_def_raw[NoReturn]:
 | 'class' NAME [type_params] ['(' [arguments] ')'] NEWLINE { self.raise_syntax_error("expected ':'") }
 | a='class' NAME [type_params] ['(' [arguments] ')'] ':' NEWLINE !INDENT {
 self.raise_indentation_error(
 f"expected an indented block after class definition on line {a.start[0]}"
)
 }

invalid_double_starred_kvpairs[None]:
 | ','.double_starred_kvpair+ ',' invalid_kvpair
 | expression ':' a='*' bitwise_or {
 self.raise_syntax_error_starting_from("cannot use a starred expression in a dictionary value", a)
 }
 | expression a=':' &('}'|',') {
 self.raise_syntax_error_known_location("expression expected after dictionary key and ':'", a)
 }
invalid_kvpair[None]:
 | a=expression !(':') {
 self.raise_raw_syntax_error(
 "':' expected after dictionary key",
 (a.lineno, a.col_offset),
 (a.end_lineno, a.end_col_offset)
)
 }
 | expression ':' a='*' bitwise_or {
 self.raise_syntax_error_starting_from("cannot use a starred expression in a dictionary value", a)
 }
 | expression a=':' &('}'|',') {
 self.raise_syntax_error_known_location(
 "expression expected after dictionary key and ':'", a
)
 }
 | expression a=':' {
 self.raise_syntax_error_known_location("expression expected after dictionary key and ':'", a)
 }
invalid_starred_expression:
 | a='*' expression '=' b=expression {
 self.raise_syntax_error_known_range(
 "cannot assign to iterable argument unpacking", a, b
)
 }
invalid_replacement_field:
 | '{' a='=' { self.raise_syntax_error_known_location("f-string: valid expression required before '='", a) }
 | '{' a='!' { self.raise_syntax_error_known_location("f-string: valid expression required before '!'", a) }
 | '{' a=':' { self.raise_syntax_error_known_location("f-string: valid expression required before ':'", a) }
 | '{' a='}' { self.raise_syntax_error_known_location("f-string: valid expression required before '}'", a) }
 | '{' !(yield_expr | star_expressions) {
 self.raise_syntax_error_on_next_token(
 "f-string: expecting a valid expression after '{'"
)
 }
 | '{' (yield_expr | star_expressions) !('=' | '!' | ':' | '}') {
 self.raise_syntax_error_on_next_token("f-string: expecting '=', or '!', or ':', or '}'") }
 | '{' (yield_expr | star_expressions) '=' !('!' | ':' | '}') {
 self.raise_syntax_error_on_next_token("f-string: expecting '!', or ':', or '}'")
 }
 | '{' (yield_expr | star_expressions) '='? invalid_conversion_character
 | '{' (yield_expr | star_expressions) '='? ['!' NAME] !(':' | '}') {
 self.raise_syntax_error_on_next_token("f-string: expecting ':' or '}'")
 }
 | '{' (yield_expr | star_expressions) '='? ['!' NAME] ':' fstring_format_spec* !'}' {
 self.raise_syntax_error_on_next_token("f-string: expecting '}', or format specs")
 }
 | '{' (yield_expr | star_expressions) '='? ['!' NAME] !'}' {
 self.raise_syntax_error_on_next_token("f-string: expecting '}'")
 }

invalid_conversion_character:
 | '!' &(':' | '}') { self.raise_syntax_error_on_next_token("f-string: missing conversion character") }
 | '!' !NAME { self.raise_syntax_error_on_next_token("f-string: invalid conversion character") }

scenic.core

Scenic’s core types and associated support code.

Submodules

	distributions

	Objects representing distributions that can be sampled from.

	dynamics

	Support for dynamic behaviors and modular scenarios.

	errors

	Common exceptions and error handling.

	external_params

	Support for values which are sampled outside of Scenic.

	geometry

	Utility functions for geometric computation.

	lazy_eval

	Support for lazy evaluation of expressions and specifiers.

	object_types

	Implementations of the built-in Scenic classes.

	propositions

	Objects representing propositions that can be used to specify conditions

	pruning

	Pruning parts of the sample space which violate requirements.

	regions

	Objects representing regions in space.

	requirements

	Support for hard and soft requirements.

	sample_checking

	The SampleChecker class and it's implementations.

	scenarios

	Scenario and scene objects.

	serialization

	Utilities to help serialize Scenic objects.

	shapes

	Module containing the Shape class and its subclasses, which represent shapes of Objects

	simulators

	Interface between Scenic and simulators.

	specifiers

	Specifiers and associated objects.

	type_support

	Support for checking Scenic types.

	utils

	Assorted utility functions.

	vectors

	Scenic vectors and vector fields.

	visibility

	Implementations of Scenic's visibility functions.

	workspaces

	Workspaces.

scenic.core.distributions

Objects representing distributions that can be sampled from.

Summary of Module Members

Functions

	Uniform

	Uniform distribution over a finite list of options.

	addSupports

	

	canUnpackDistributions

	Whether the function supports iterable unpacking of distributions.

	distributionFunction

	Decorator for wrapping a function so that it can take distributions as arguments.

	distributionMethod

	Decorator for wrapping a method so that it can take distributions as arguments.

	makeOperatorHandler

	

	monotonicDistributionFunction

	Like distributionFunction, but additionally specifies that the function is monotonic.

	supmax

	

	supmin

	

	supportInterval

	Lower and upper bounds on this value, if known.

	toDistribution

	Wrap Python data types with Distributions, if necessary.

	underlyingFunction

	Original function underlying a distribution wrapper.

	unionOfSupports

	

	unpacksDistributions

	Decorator indicating the function supports iterable unpacking of distributions.

Classes

	AttributeDistribution

	Distribution resulting from accessing an attribute of a distribution

	ConstantSamplable

	A samplable which always evaluates to a constant value.

	DiscreteRange

	Distribution over a range of integers.

	Distribution

	Abstract class for distributions.

	FunctionDistribution

	Distribution resulting from passing distributions to a function

	MethodDistribution

	Distribution resulting from passing distributions to a method of a fixed object

	MultiplexerDistribution

	Distribution selecting among values based on another distribution.

	Normal

	Normal distribution

	OperatorDistribution

	Distribution resulting from applying an operator to one or more distributions

	Options

	Distribution over a finite list of options.

	Range

	Uniform distribution over a range

	Samplable

	Abstract class for values which can be sampled, possibly depending on other values.

	SliceDistribution

	Distributions over slice [https://docs.python.org/3/library/functions.html#slice] objects.

	StarredDistribution

	A placeholder for the iterable unpacking operator * applied to a distribution.

	TruncatedNormal

	Truncated normal distribution.

	TupleDistribution

	Distributions over tuples (or namedtuples, or lists).

	UniformDistribution

	Uniform distribution over a variable number of options.

Exceptions

	RandomControlFlowError

	Exception indicating illegal conditional control flow depending on a random value.

	RejectionException

	Exception used to signal that the sample currently being generated must be rejected.

Member Details

	
supportInterval(thing)

	Lower and upper bounds on this value, if known.

	
underlyingFunction(thing)

	Original function underlying a distribution wrapper.

	
canUnpackDistributions(func)

	Whether the function supports iterable unpacking of distributions.

	
unpacksDistributions(func)

	Decorator indicating the function supports iterable unpacking of distributions.

	
exception RejectionException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception used to signal that the sample currently being generated must be rejected.

	
exception RandomControlFlowError

	Bases: ScenicError

Exception indicating illegal conditional control flow depending on a random value.

This includes trying to iterate over a random value, making a range of random length, etc.

	
class Samplable(dependencies)

	Bases: LazilyEvaluable

Abstract class for values which can be sampled, possibly depending on other values.

Samplables may specify a proxy object which must have the same distribution as the
original after conditioning on the scenario’s requirements. This allows transparent
conditioning without modifying Samplable fields of immutable objects.

	Parameters:

	dependencies – sequence of values that this value may depend on (formally, objects
for which sampled values must be provided to sampleGiven). It is legal to
include values which are not instances of Samplable, e.g. integers.

	Attributes:

	
	_conditioned – proxy object as described above; set using conditionTo.

	_dependencies – tuple of other samplables which must be sampled before this one;
set by the initializer and subsequently immutable.

	
static sampleAll(quantities)

	Sample all the given Samplables, which may have dependencies in common.

Reproducibility note: the order in which the quantities are given can affect the
order in which calls to random are made, affecting the final result.

	
sample(subsamples=None)

	Sample this value, optionally given some values already sampled.

	
sampleGiven(value)

	Sample this value, given values for all its dependencies.

Implemented by subclasses.

	Parameters:

	value (DefaultIdentityDict) – dictionary mapping objects to their sampled
values. Guaranteed to provide values for all objects given in the set of
dependencies when this Samplable was created.

	
conditionTo(value)

	Condition this value to another value with the same conditional distribution.

	
evaluateIn(context)

	See LazilyEvaluable.evaluateIn.

	
class ConstantSamplable(value)

	Bases: Samplable

A samplable which always evaluates to a constant value.

Only for internal use.

	
class Distribution(*dependencies, valueType=None)

	Bases: Samplable

Abstract class for distributions.

Note

When called during dynamic simulations (vs. scenario compilation), constructors
for distributions return actual sampled values, not Distribution objects.

	Parameters:

	
	dependencies – values which this distribution may depend on (see Samplable).

	valueType – _valueType to use (see below), or None [https://docs.python.org/3/library/constants.html#None] for the default.

	Attributes:

	_valueType – type of the values sampled from this distribution, or Object if the
type is not known.

	
_defaultValueType

	Default valueType for distributions of this class, when not otherwise specified.

alias of object [https://docs.python.org/3/library/functions.html#object]

	
_deterministic = False

	Whether this type of distribution is a deterministic function of its dependencies.

For example, Options is implemented as deterministic by using an internal
DiscreteRange to select which of its finitely-many options to choose from: the
value of the Options is then completely determined by the value of the range and
the values of each of the options. This simplifies serialization because these
dependencies likely have simpler valueTypes than the Options itself (e.g. if we
had a random choice between a list and a string, encoding the actual sampled value
would require saving type information).

	
clone()

	Construct an independent copy of this Distribution.

Optionally implemented by subclasses.

	
property isPrimitive

	Whether this is a primitive Distribution.

	
serializeValue(values, serializer)

	Serialize the sampled value of this distribution.

This method is used internally by Scenario.sceneToBytes and related APIs.
If you define a new subclass of Distribution, you probably don’t need to
override this method. If your distribution has an unusual valueType (i.e.
not float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int], or Vector), see the documentation for Serializer for
instructions on how to support serialization.

	
bucket(buckets=None)

	Construct a bucketed approximation of this Distribution.

Optionally implemented by subclasses.

This function factors a given Distribution into a discrete distribution over
buckets together with a distribution for each bucket. The argument buckets
controls how many buckets the domain of the original Distribution is split into.
Since the result is an independent distribution, the original must support
clone.

	
supportInterval()

	Compute lower and upper bounds on the value of this Distribution.

By default returns (None, None) indicating that no lower or upper bounds
are known. Subclasses may override this method to provide more accurate results.

	
class TupleDistribution(*coordinates, builder=<class 'tuple'>)

	Bases: Distribution, Sequence [https://trimesh.org/trimesh.typed.html#trimesh.typed.Sequence]

Distributions over tuples (or namedtuples, or lists).

	
class SliceDistribution(start, stop, step)

	Bases: Distribution

Distributions over slice [https://docs.python.org/3/library/functions.html#slice] objects.

	
toDistribution(val)

	Wrap Python data types with Distributions, if necessary.

For example, tuples containing Samplables need to be converted into TupleDistributions
in order to keep track of dependencies properly.

	
class FunctionDistribution(func, args, kwargs, support=None, valueType=None)

	Bases: Distribution

Distribution resulting from passing distributions to a function

	
distributionFunction(wrapped=None, *, support=None, valueType=None)

	Decorator for wrapping a function so that it can take distributions as arguments.

This decorator is mainly for internal use, and is not necessary when defining a
function in a Scenic file. It is, however, needed when calling external functions
which contain control flow or other operations that Scenic distribution objects
(representing random values) do not support.

	
monotonicDistributionFunction(method, valueType=None)

	Like distributionFunction, but additionally specifies that the function is monotonic.

	
class StarredDistribution(value, lineno)

	Bases: Distribution

A placeholder for the iterable unpacking operator * applied to a distribution.

	
class MethodDistribution(method, obj, args, kwargs, valueType=None)

	Bases: Distribution

Distribution resulting from passing distributions to a method of a fixed object

	
distributionMethod(method=None, *, identity=None)

	Decorator for wrapping a method so that it can take distributions as arguments.

	
class AttributeDistribution(attribute, obj, valueType=None)

	Bases: Distribution

Distribution resulting from accessing an attribute of a distribution

	
static inferType(ty, attribute)

	Attempt to infer the type of the given attribute.

	
class OperatorDistribution(operator, obj, operands, kwoperands, valueType=None)

	Bases: Distribution

Distribution resulting from applying an operator to one or more distributions

	
static inferType(ty, operator, operands, kwoperands)

	Attempt to infer the result type of the given operator application.

	
class MultiplexerDistribution(index, options)

	Bases: Distribution

Distribution selecting among values based on another distribution.

	
class Range(low, high)

	Bases: Distribution

Uniform distribution over a range

	
class Normal(mean, stddev)

	Bases: Distribution

Normal distribution

	
class TruncatedNormal(mean, stddev, low, high)

	Bases: Normal

Truncated normal distribution.

	
class DiscreteRange(low, high, weights=None, emptyMessage='empty DiscreteRange')

	Bases: Distribution

Distribution over a range of integers.

	
class Options(opts)

	Bases: MultiplexerDistribution

Distribution over a finite list of options.

Specified by a dict giving probabilities; otherwise uniform over a given iterable.

	
Uniform(*opts)

	Uniform distribution over a finite list of options.

Implemented as an instance of Options when the set of options is known
statically, and an instance of UniformDistribution otherwise.

	
class UniformDistribution(opts)

	Bases: Distribution

Uniform distribution over a variable number of options.

See Options for the more common uniform distribution over a fixed number
of options. This class is for the special case where iterable unpacking is
applied to a distribution, so that the number of options is unknown at
compile time.

scenic.core.dynamics

Support for dynamic behaviors and modular scenarios.

A few classes are exposed here for external use, including:

	Action;

	GuardViolation, InvariantViolation, and PreconditionViolation;

	StuckBehaviorWarning.

Everything else defined in the submodules is an implementation detail and
should not be used outside of Scenic (it may change at any time).

Submodules

	actions

	Actions taken by dynamic agents.

	behaviors

	Behaviors and monitors.

	guards

	Preconditions and invariants of behaviors and scenarios.

	invocables

	General code for invocables, i.e. behaviors, monitors, and modular scenarios.

	scenarios

	Dynamic scenarios.

	utils

	Assorted utilities and classes used throughout the dynamics package.

Summary of Module Members

Module Attributes

	stuckBehaviorWarningTimeout

	Timeout in seconds after which a StuckBehaviorWarning will be raised.

Member Details

	
stuckBehaviorWarningTimeout = 10

	Timeout in seconds after which a StuckBehaviorWarning will be raised.

scenic.core.dynamics.actions

Actions taken by dynamic agents.

Summary of Module Members

Classes

	Action

	An action which can be taken by an agent for one step of a simulation.

Member Details

	
class Action

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

An action which can be taken by an agent for one step of a simulation.

	
canBeTakenBy(agent)

	Whether this action is allowed to be taken by the given agent.

The default implementation always returns True.

	
abstract applyTo(agent, simulation)

	Apply this action to the given agent in the given simulation.

This method should call simulator APIs so that the agent will take this action
during the next simulated time step. Depending on the simulator API, it may be
necessary to batch each agent’s actions into a single update: in that case you
can have this method set some state on the agent, then apply the actual update
in an overridden implementation of Simulation.executeActions. For examples,
see the CARLA interface: scenic.simulators.carla.actions has some CARLA-specific
actions which directly call CARLA APIs, while the generic steering and braking
actions from scenic.domains.driving.actions are implemented using the batching
approach (see for example the setThrottle method of the class
scenic.simulators.carla.model.Vehicle, which sets state later read by
CarlaSimulation.executeActions in scenic.simulators.carla.simulator).

	
class _EndSimulationAction(line)

	Bases: Action

Special action indicating it is time to end the simulation.

Only for internal use.

	
class _EndScenarioAction(scenario, line)

	Bases: Action

Special action indicating it is time to end the current scenario.

Only for internal use.

scenic.core.dynamics.behaviors

Behaviors and monitors.

Summary of Module Members

Classes

	Behavior

	Dynamic behaviors of agents.

	Monitor

	Monitors for dynamic simulations.

Member Details

	
class Behavior(*args, **kwargs)

	Bases: Invocable, Samplable

Dynamic behaviors of agents.

Behavior statements are translated into definitions of subclasses of this class.

	
class Monitor(*args, **kwargs)

	Bases: Behavior

Monitors for dynamic simulations.

Monitor statements are translated into definitions of subclasses of this class.

scenic.core.dynamics.guards

Preconditions and invariants of behaviors and scenarios.

Summary of Module Members

Exceptions

	GuardViolation

	Abstract exception raised when a guard of a behavior is violated.

	InvariantViolation

	Exception raised when an invariant is violated.

	PreconditionViolation

	Exception raised when a precondition is violated.

Member Details

	
exception GuardViolation(behavior, lineno)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Abstract exception raised when a guard of a behavior is violated.

This will never be raised directly; either of the subclasses PreconditionViolation
or InvariantViolation will be used, as appropriate.

	
exception PreconditionViolation(behavior, lineno)

	Bases: GuardViolation

Exception raised when a precondition is violated.

Raised when a precondition is violated when invoking a behavior
or when a precondition encounters a RejectionException, so that
rejections count as precondition violations.

	
exception InvariantViolation(behavior, lineno)

	Bases: GuardViolation

Exception raised when an invariant is violated.

Raised when an invariant is violated when invoking/resuming a behavior
or when an invariant encounters a RejectionException, so that
rejections count as invariant violations.

scenic.core.dynamics.invocables

General code for invocables, i.e. behaviors, monitors, and modular scenarios.

Summary of Module Members

Functions

	runTryInterrupt

	

Classes

	BlockConclusion

	An enumeration.

	InterruptBlock

	

	Invocable

	Abstract class with common code for behaviors and modular scenarios.

Member Details

	
class Invocable(*args, **kwargs)

	Abstract class with common code for behaviors and modular scenarios.

Both of these types of objects can be called like functions, can have guards, and can
suspend their own execution to invoke sub-behaviors/scenarios.

	
_invokeInner(agent, subs)

	Run the given sub-behavior/scenario(s) in parallel.

Implemented by subclasses.

	
class BlockConclusion(value)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

scenic.core.dynamics.scenarios

Dynamic scenarios.

Summary of Module Members

Classes

	DynamicScenario

	Internal class for scenarios which can execute during dynamic simulations.

Member Details

	
class DynamicScenario(*args, **kwargs)

	Bases: Invocable

Internal class for scenarios which can execute during dynamic simulations.

Provides additional information complementing Scenario, which originally only
supported static scenarios. The two classes should probably eventually be merged.

	
classmethod _requiresArguments()

	Whether this scenario cannot be instantiated without arguments.

	
_bindTo(scene)

	Bind this scenario to a sampled scene when starting a new simulation.

	
_prepare(delayPreconditionCheck=False)

	Prepare the scenario for execution, executing its setup block.

	
_start()

	Start the scenario, starting its compose block, behaviors, and monitors.

	
_step()

	Execute the (already-started) scenario for one time step.

	Returns:

	None [https://docs.python.org/3/library/constants.html#None] if the scenario will continue executing; otherwise a string describing
why it has terminated.

	
_stop(reason, quiet=False)

	Stop the scenario’s execution, for the given reason.

	
_addRequirement(ty, reqID, req, line, name, prob)

	Save a requirement defined at compile-time for later processing.

	
_addDynamicRequirement(ty, req, line, name)

	Add a requirement defined during a dynamic simulation.

	
_addMonitor(monitor)

	Add a monitor during a dynamic simulation.

scenic.core.dynamics.utils

Assorted utilities and classes used throughout the dynamics package.

Summary of Module Members

Exceptions

	RejectSimulationException

	Exception indicating a requirement was violated at runtime.

	StuckBehaviorWarning

	Warning issued when a behavior/scenario may have gotten stuck.

Member Details

	
exception RejectSimulationException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception indicating a requirement was violated at runtime.

	
exception StuckBehaviorWarning

	Bases: UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning]

Warning issued when a behavior/scenario may have gotten stuck.

When a behavior or compose block of a modular scenario executes for a long
time without yielding control, there is no way to tell whether it has
entered an infinite loop with no take/wait statements, or is actually doing
some long computation. But since forgetting a wait statement in a while loop
is an easy mistake, we raise this warning after a behavior/scenario has run
for stuckBehaviorWarningTimeout seconds without yielding.

scenic.core.errors

Common exceptions and error handling.

Summary of Module Members

Module Attributes

	verbosityLevel

	Verbosity level.

	showInternalBacktrace

	Whether or not to include Scenic's innards in backtraces.

	postMortemDebugging

	Whether or not to do post-mortem debugging of uncaught exceptions.

	postMortemRejections

	Whether or not to do "post-mortem" debugging of rejected scenes/simulations.

	hiddenFolders

	Folders elided from backtraces when showInternalBacktrace is false.

Functions

	callBeginningScenicTrace

	Call the given function, starting the Scenic backtrace at that point.

	displayScenicException

	Print a Scenic exception, cleaning up the traceback if desired.

	excepthook

	

	getText

	Attempt to recover the text of an error from the original Scenic file.

	includeFrame

	

	optionallyDebugRejection

	

	saveErrorLocation

	

	setDebuggingOptions

	Configure Scenic's debugging options.

Exceptions

	ASTParseError

	Parse error occuring during modification of the Python AST.

	InconsistentScenarioError

	Error for scenarios with inconsistent requirements.

	InvalidScenarioError

	Error raised for syntactically-valid but otherwise problematic Scenic programs.

	ParseCompileError

	Error occurring during Scenic/Python parsing or compilation.

	PythonCompileError

	Error occuring during Python compilation of translated Scenic code.

	ScenicError

	An error produced during Scenic compilation, scene generation, or simulation.

	ScenicParseError

	Error occuring during Scenic parsing or compilation.

	ScenicSyntaxError

	An error produced by attempting to parse an invalid Scenic program.

	SpecifierError

	Error for illegal uses of specifiers.

Member Details

	
setDebuggingOptions(*, verbosity=0, fullBacktrace=False, debugExceptions=False, debugRejections=False)

	Configure Scenic’s debugging options.

	Parameters:

	
	verbosity (int [https://docs.python.org/3/library/functions.html#int]) – Verbosity level. Zero by default, although the command-line
interface uses 1 by default. See the --verbosity option for the
allowed values.

	fullBacktrace (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to include Scenic’s innards in backtraces
(like the -b command-line option).

	debugExceptions (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use pdb [https://docs.python.org/3/library/pdb.html#module-pdb] for post-mortem debugging of
uncaught exceptions (like the --pdb option).

	debugRejections (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to enter pdb [https://docs.python.org/3/library/pdb.html#module-pdb] when a scene or simulation is
rejected (like the --pdb-on-reject option).

	
verbosityLevel = 0

	Verbosity level. See --verbosity for the allowed values.

	
showInternalBacktrace = False

	Whether or not to include Scenic’s innards in backtraces.

Set to True by default so that any errors during import of the scenic module
will get full backtraces; the scenic module’s __init__.py sets it to False.

	
postMortemDebugging = False

	Whether or not to do post-mortem debugging of uncaught exceptions.

	
postMortemRejections = False

	Whether or not to do “post-mortem” debugging of rejected scenes/simulations.

	
hiddenFolders

	Folders elided from backtraces when showInternalBacktrace is false.

	
exception ScenicError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

An error produced during Scenic compilation, scene generation, or simulation.

	
exception ScenicSyntaxError

	Bases: ScenicError

An error produced by attempting to parse an invalid Scenic program.

This is intentionally not a subclass of SyntaxError so that pdb can be used
for post-mortem debugging of the parser. Our custom excepthook below will
arrange to still have it formatted as a SyntaxError, though.

	
exception ParseCompileError(exc)

	Bases: ScenicSyntaxError

Error occurring during Scenic/Python parsing or compilation.

	
exception ScenicParseError(exc)

	Bases: ParseCompileError

Error occuring during Scenic parsing or compilation.

	
exception PythonCompileError(exc)

	Bases: ParseCompileError

Error occuring during Python compilation of translated Scenic code.

	
exception ASTParseError(node, message, filename)

	Bases: ScenicSyntaxError

Parse error occuring during modification of the Python AST.

	
exception InvalidScenarioError

	Bases: ScenicError

Error raised for syntactically-valid but otherwise problematic Scenic programs.

	
exception InconsistentScenarioError(line, message)

	Bases: InvalidScenarioError

Error for scenarios with inconsistent requirements.

	
exception SpecifierError

	Bases: ScenicError

Error for illegal uses of specifiers.

	
displayScenicException(exc, seen=None)

	Print a Scenic exception, cleaning up the traceback if desired.

If showInternalBacktrace is False, this hides frames inside Scenic itself.

	
callBeginningScenicTrace(func)

	Call the given function, starting the Scenic backtrace at that point.

This function is just a convenience to make Scenic backtraces cleaner when
running Scenic programs from the command line.

	
getText(filename, lineno, line='', offset=0, end_offset=None)

	Attempt to recover the text of an error from the original Scenic file.

scenic.core.external_params

Support for values which are sampled outside of Scenic.

External Samplers in General

External samplers provide a mechanism to use different types of sampling
techniques, like optimization or quasi-random sampling, from within a Scenic
program. Ordinary random values in Scenic are instances of Distribution;
this module defines a special subclass, ExternalParameter, representing a
value which is sampled externally. Scenic programs with external parameters
are handled as follows:

	During compilation, all instances of ExternalParameter are gathered
together and given to the ExternalSampler.forParameters function;
this function creates an appropriate ExternalSampler,
whose configuration can be controlled using global parameters
(see the function documentation for details).

	When sampling a scene, before sampling any other distributions the
sample method of the ExternalSampler is
called to sample all the external parameters. For active samplers, this
method passes along the feedback value given to Scenario.generate,
if any.

	Once the external parameters have values, the program is equivalent to
one without external parameters, and sampling proceeds as usual. As for
every instance of Distribution, the external parameters will have
their sampleGiven method called once all their
dependencies have been sampled; by default this method just returns the
value sampled for this parameter in step (2).

Note

Note that while external parameters, like all instances of Distribution,
are allowed to have dependencies, they are an exception to the usual rule
that dependencies are always sampled before dependents, because the
ExternalSampler.sample method is called before any other sampling.
However, as explained above, the sampleGiven method is
called in the proper order and external samplers which need to do sampling
based on the values of other distributions can be invoked from it. The
two-step mechanism with ExternalSampler.sample is provided for samplers
which sample the whole space of external parameters at once (e.g. the
VerifAI samplers).

Samplers from VerifAI

The external sampling mechanism is designed to be extensible. The only built-in
ExternalSampler is the VerifaiSampler, which provides access to the
samplers in the VerifAI [https://github.com/BerkeleyLearnVerify/VerifAI] toolkit (which in turn can use Scenic as a modeling
language).

The VerifaiSampler supports several types of external parameters corresponding
to the primitive distributions: VerifaiRange and VerifaiDiscreteRange for
continuous and discrete intervals, and VerifaiOptions for discrete sets.
For example, suppose we write:

ego = new Object at (VerifaiRange(5, 15), 0)

This is equivalent to the ordinary Scenic line ego = new Object at (Range(5, 15), 0),
except that the X coordinate of the ego is sampled by VerifAI within the range
(5, 15) instead of being uniformly distributed over it. By default the
VerifaiSampler uses VerifAI’s Halton [https://en.wikipedia.org/wiki/Halton_sequence] sampler, so the range will still be
covered uniformly but more systematically. If we want to use a different sampler,
we can set the verifaiSamplerType global parameter:

param verifaiSamplerType = 'ce'
ego = new Object at (VerifaiRange(5, 15), 0)

Now the X coordinate will be sampled using VerifAI’s cross-entropy [https://en.wikipedia.org/wiki/Cross-entropy_method] sampler.
If we pass a feedback value to Scenario.generate which scores the previous
scene, then the coordinate will not be sampled uniformly but rather converge to
a distribution concentrated on values minimizing the score. Active samplers like
cross-entropy can be used for falsification in this way, driving a system toward
parts of the parameter space where a specification is violated.

The cross-entropy sampler in VerifAI can be started from a non-uniform prior.
Scenic provides a convenient way to define this prior using the ordinary syntax
for distributions:

param verifaiSamplerType = 'ce'
ego = new Object at (VerifaiParameter.withPrior(Normal(10, 3)), 0)

Now cross-entropy sampling will start from a normal distribution with mean 10
and standard deviation 3. Priors are restricted to primitive distributions and
in general may be approximated so that VerifAI can handle them – see
VerifaiParameter.withPrior for details.

For more information on how to customize the sampler, see VerifaiSampler.

Summary of Module Members

Classes

	ExternalParameter

	A value determined by external code rather than Scenic's internal sampler.

	ExternalSampler

	Abstract class for objects called to sample values for each external parameter.

	VerifaiDiscreteRange

	A DiscreteRange (integer interval) sampled by VerifAI.

	VerifaiOptions

	An Options (discrete set) sampled by VerifAI.

	VerifaiParameter

	An external parameter sampled using one of VerifAI's samplers.

	VerifaiRange

	A Range (real interval) sampled by VerifAI.

	VerifaiSampler

	An external sampler exposing the samplers in the VerifAI toolkit.

Member Details

	
class ExternalSampler(params, globalParams)

	Abstract class for objects called to sample values for each external parameter.

The initializer for this class takes the same arguments as the factory function
forParameters below.

	Attributes:

	rejectionFeedback – Value passed to the sample method when the last sample was rejected.
This value can be chosen by a Scenic scenario using the global parameter
externalSamplerRejectionFeedback.

	
static forParameters(params, globalParams)

	Create an ExternalSampler given the sets of external and global parameters.

The scenario may explicitly select an external sampler by assigning the
global parameter externalSampler to a subclass of ExternalSampler.
Otherwise, a VerifaiSampler is used by default.

	Parameters:

	
	params (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple listing each ExternalParameter.

	globalParams (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of global parameters for the Scenario, made
available here to support sampler customization through setting parameters.
Note that the values of these parameters may be instances of Distribution!

	Returns:

	An ExternalSampler configured for the given parameters.

	
sample(feedback)

	Sample values for all the external parameters.

	Parameters:

	feedback – Feedback from the last sample (for active samplers).

	
nextSample(feedback)

	Actually do the sampling. Implemented by subclasses.

	
valueFor(param)

	Return the sampled value for a parameter. Implemented by subclasses.

	
class VerifaiSampler(params, globalParams)

	Bases: ExternalSampler

An external sampler exposing the samplers in the VerifAI toolkit.

The sampler can be configured using the following Scenic global parameters:

	verifaiSamplerType – sampler type (see the verifai.server.choose_sampler
function); the default is 'halton'

	verifaiSamplerParams – DotMap of options passed to the sampler

The VerifaiSampler supports external parameters which are instances of VerifaiParameter.

	
class ExternalParameter

	Bases: Distribution

A value determined by external code rather than Scenic’s internal sampler.

	
sampleGiven(value)

	Specialization of Samplable.sampleGiven for external parameters.

By default, this method simply looks up the value previously sampled by
ExternalSampler.sample.

	
class VerifaiParameter(domain)

	Bases: ExternalParameter

An external parameter sampled using one of VerifAI’s samplers.

	
static withPrior(dist, buckets=None)

	Creates a VerifaiParameter using the given distribution as a prior.

Since the VerifAI cross-entropy sampler currently only supports piecewise-constant
distributions, if the prior is not of that form it may be approximated. For most
built-in distributions, the approximation is exact: for a particular distribution,
check its bucket method.

	
class VerifaiRange(low, high, buckets=None, weights=None)

	Bases: VerifaiParameter

A Range (real interval) sampled by VerifAI.

	
_defaultValueType

	alias of float [https://docs.python.org/3/library/functions.html#float]

	
class VerifaiDiscreteRange(low, high, weights=None)

	Bases: VerifaiParameter

A DiscreteRange (integer interval) sampled by VerifAI.

	
_defaultValueType

	alias of float [https://docs.python.org/3/library/functions.html#float]

	
class VerifaiOptions(opts)

	Bases: Options

An Options (discrete set) sampled by VerifAI.

scenic.core.geometry

Utility functions for geometric computation.

Summary of Module Members

Functions

	allChains

	

	apparentHeadingAtPoint

	

	averageVectors

	

	cleanChain

	

	cleanPolygon

	

	cos

	

	distanceToLine

	

	findMinMax

	

	headingOfSegment

	

	hypot

	

	max

	

	min

	

	normalizeAngle

	

	plotPolygon

	

	pointIsInCone

	

	polygonUnion

	

	removeHoles

	

	rotateVector

	

	sin

	

	splitSelfIntersections

	

	triangulatePolygon

	Triangulate the given Shapely polygon.

	triangulatePolygon_mapbox

	

	viewAngleToPoint

	

Exceptions

	TriangulationError

	Signals that the installed triangulation libraries are insufficient.

Member Details

	
exception TriangulationError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Signals that the installed triangulation libraries are insufficient.

	
triangulatePolygon(polygon)

	Triangulate the given Shapely polygon.

Note that we can’t use shapely.ops.triangulate since it triangulates
point sets, not polygons (i.e., it doesn’t respect edges). We need an
algorithm for triangulation of polygons with holes (it doesn’t need to be a
Delaunay triangulation).

	Parameters:

	polygon (shapely.geometry.Polygon) – Polygon to triangulate.

	Returns:

	A list of disjoint (except for edges) triangles whose union is the
original polygon.

scenic.core.lazy_eval

Support for lazy evaluation of expressions and specifiers.

Lazy evaluation is necessary for expressions like 30 deg relative to roadDirection
where roadDirection is a vector field and so defines a different heading at
different positions. Scenic defers evaluation of such expressions until they are used in
the definition of an object, when the required context (here, a position) is available.
This is implemented by representing lazy values as special objects which capture all
operations applied to them (in a similar way to Distribution objects). The main class
of such objects is DelayedArgument: in the above example, the relative to
operator returns such an object. However, since lazy values can appear as arguments to
distributions, Distribution objects can also require lazy evaluation (prior to
sampling); therefore both of these classes derive from a common abstract class
LazilyEvaluable.

Summary of Module Members

Functions

	dependencies

	Dependencies which must be sampled before this value.

	isLazy

	Whether this value requires either sampling or lazy evaluation.

	makeDelayedFunctionCall

	Utility function for creating a lazily-evaluated function call.

	makeDelayedOperatorHandler

	

	needsLazyEvaluation

	Whether the given value requires lazy evaluation.

	needsSampling

	Whether this value requires sampling.

	requiredProperties

	Set of properties needed to evaluate the given value, if any.

	toLazyValue

	Wrap a Python object in a DelayedArgument if it needs lazy evaluation.

	valueInContext

	Evaluate something in the context of an object being constructed.

Classes

	DelayedArgument

	Specifier arguments requiring other properties to be evaluated first.

	LazilyEvaluable

	Values which may require evaluation in the context of an object being constructed.

Member Details

	
class LazilyEvaluable(requiredProps, dependencies=())

	Values which may require evaluation in the context of an object being constructed.

If a LazilyEvaluable specifies any properties it depends on, then it cannot be evaluated to a
normal value except during the construction of an object which already has values for those
properties.

	Parameters:

	
	requiredProps – sequence of strings naming all properties which this value can
depend on (formally, which must exist in the object passed as the context to
evaluateIn).

	dependencies – for internal use only (see Samplable).

	Attributes:

	_requiredProperties – set of strings as above.

	
evaluateIn(context)

	Evaluate this value in the context of an object being constructed.

The object must define all of the properties on which this value depends.

	
evaluateInner(context)

	Actually evaluate in the given context, which provides all required properties.

Overridden by subclasses.

	
static makeContext(**props)

	Make a context with the given properties.

	
class DelayedArgument(requiredProps, value, _internal=False)

	Bases: LazilyEvaluable

Specifier arguments requiring other properties to be evaluated first.

The value of a DelayedArgument is given by a function mapping the context (object under
construction) to a value.

Note

When called from a dynamic behavior, constructors for delayed arguments return
actual evaluations, not DelayedArgument objects. The agent running the
behavior is used as the evaluation context.

	Parameters:

	
	requiredProps – see LazilyEvaluable.

	value – function taking a single argument (the context) and returning the
corresponding evaluation of this object.

	_internal (bool [https://docs.python.org/3/library/functions.html#bool]) – set to True [https://docs.python.org/3/library/constants.html#True] for internal uses that need to suppress the
exceptional handling of calls from dynamic behaviors above.

	
makeDelayedFunctionCall(func, args, kwargs={})

	Utility function for creating a lazily-evaluated function call.

	
valueInContext(value, context)

	Evaluate something in the context of an object being constructed.

	
toLazyValue(thing)

	Wrap a Python object in a DelayedArgument if it needs lazy evaluation.

	
requiredProperties(thing)

	Set of properties needed to evaluate the given value, if any.

	
needsLazyEvaluation(thing)

	Whether the given value requires lazy evaluation.

	
dependencies(thing)

	Dependencies which must be sampled before this value.

	
needsSampling(thing)

	Whether this value requires sampling.

	
isLazy(thing)

	Whether this value requires either sampling or lazy evaluation.

scenic.core.object_types

Implementations of the built-in Scenic classes.

Defines the 3 Scenic classes Point, OrientedPoint, and Object, and associated
helper code (notably their base class Constructible, which implements the handling of
property definitions and Specifier Resolution).

Warning

In 2D Compatibility Mode, these classes are overwritten with 2D analogs. While
we make an effort to map imports to the correct class, this only works if imports
use the form import scenic.core.object_types as object_types followed by accessing
object_types.Object. If you instead use from scenic.core.object_types import Object,
you may get the wrong class.

Summary of Module Members

Module Attributes

	Interval

	Type alias for an interval (a pair of floats).

	DimensionLimits

	Type alias for limits on dimensions (a triple of intervals).

Functions

	defaultSideSurface

	Extracts a side surface from the occupiedSpace of an object.

	disableDynamicProxyFor

	

	enableDynamicProxyFor

	

	setDynamicProxyFor

	

Classes

	Constructible

	Abstract base class for Scenic objects.

	Mutator

	An object controlling how the mutate statement affects an Object.

	Object

	The Scenic class Object.

	Object2D

	A 2D version of Object, used for backwards compatibility with Scenic 2.0

	OrientationMutator

	Mutator adding Gaussian noise to yaw, pitch, and roll.

	OrientedPoint

	The Scenic class OrientedPoint.

	OrientedPoint2D

	A 2D version of OrientedPoint, used for backwards compatibility with Scenic 2.0

	Point

	The Scenic base class Point.

	Point2D

	A 2D version of Point, used for backwards compatibility with Scenic 2.0

	PositionMutator

	Mutator adding Gaussian noise to position.

Member Details

	
Interval

	Type alias for an interval (a pair of floats).

alias of Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
DimensionLimits

	Type alias for limits on dimensions (a triple of intervals).

alias of Tuple[Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]

	
class Constructible(properties, constProps=frozenset({}), _internal=False)

	Bases: Samplable

Abstract base class for Scenic objects.

Scenic objects, which are constructed using specifiers, are implemented
internally as instances of ordinary Python classes. This abstract class
implements the procedure to resolve specifiers and determine values for
the properties of an object, as well as several common methods supported
by objects.

Warning

This class is an implementation detail, and none of its methods should be
called directly from a Scenic program.

	
classmethod _withProperties(properties, constProps=None)

	Create an instance with the given property values.

Values of unspecified properties are determined by specifier resolution
as usual.

	
classmethod _withSpecifiers(specifiers, constProps=None, register=True)

	Create an instance from the given specifiers.

	
_copyWith(**overrides)

	Copy this object, possibly overriding some of its properties.

	
class Mutator

	An object controlling how the mutate statement affects an Object.

A Mutator can be assigned to the mutator property of an Object to
control the effect of the mutate statement. When mutation is enabled
for such an object using that statement, the mutator’s appliedTo method
is called to compute a mutated version. The appliedTo method can also decide
whether to apply mutators inherited from superclasses.

	
appliedTo(obj)

	Return a mutated copy of the given object. Implemented by subclasses.

The mutator may inspect the mutationScale attribute of the given object
to scale its effect according to the scale given in mutate O by S.

	Returns:

	A pair consisting of the mutated copy of the object (which is most easily
created using _copyWith) together with a Boolean indicating whether the
mutator inherited from the superclass (if any) should also be applied.

	
class PositionMutator(stddevs)

	Bases: Mutator

Mutator adding Gaussian noise to position. Used by Point.

	Attributes:

	stddevs (tuple[float,float,float]) – standard deviation of noise for each dimension (x,y,z).

	
class OrientationMutator(stddevs)

	Bases: Mutator

Mutator adding Gaussian noise to yaw, pitch, and roll. Used by OrientedPoint.

	Attributes:

	stddevs (tuple[float,float,float]) – standard deviation of noise for each angle (yaw, pitch, roll).

	
class Point <specifiers>

	Bases: Constructible

The Scenic base class Point.

The default mutator for Point adds Gaussian noise to position with
a standard deviation given by the positionStdDev property.

	Properties:

	
	position (Vector; dynamic) – Position of the point. Default value is the origin (0,0,0).

	width (float) – Default value 0 (only provided for compatibility with
operators that expect an Object).

	length (float) – Default value 0.

	height (float) – Default value 0.

	baseOffset (Vector) – Only provided for compatibility with the on (region | Object | vector) specifier.
Default value is (0,0,0).

	contactTolerance (float) – Only provided for compatibility with the specifiers
that expect an Object. Default value 0.

	onDirection (Vector) – The direction used to determine where to place
this Point on a region, when using the modifying on specifier.
See the on region page for more details. Default value is None,
indicating the direction will be inferred from the region this object is being placed on.

	visibleDistance (float) – Distance used to determine the visible range of this object.
Default value 50.

	viewRayDensity (float) – By default determines the number of rays used during visibility checks.
This value is the density of rays per degree of visible range in one dimension. The total
number of rays sent will be this value squared per square degree of this object’s view angles.
This value determines the default value for viewRayCount, so if viewRayCount is overwritten
this value is ignored. Default value 5.

	viewRayCount (None | tuple[float, float]) – The total number of horizontal and vertical view angles
to be sent, or None if this value should be computed automatically. Default value None.

	viewRayDistanceScaling (bool) – Whether or not the number of rays should scale with the distance to the
object. Ignored if viewRayCount is passed. Default value False.

	mutationScale (float) – Overall scale of mutations, as set by the
mutate statement. Default value 0 (mutations disabled).

	positionStdDev (tuple[float, float, float]) – Standard deviation of Gaussian noise
for each dimension (x,y,z) to be added to this object’s position
when mutation is enabled with scale 1. Default value (1,1,0), mutating only the x,y values
of the point.

	
property visibleRegion

	The visible region of this object.

The visible region of a Point is a sphere centered at its position with
radius visibleDistance.

	
canSee(other, occludingObjects=(), debug=False)

	Whether or not this Point can see other.

	Parameters:

	
	other – A Point, OrientedPoint, or Object to check
for visibility.

	occludingObjects – A list of objects that can occlude visibility.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class OrientedPoint <specifiers>

	Bases: Point

The Scenic class OrientedPoint.

The default mutator for OrientedPoint adds Gaussian noise to yaw, pitch
and roll, using the three standard deviations (for yaw/pitch/roll respectively)
given by the orientationStdDev property. It then also applies the mutator for Point.
By default the standard deviations for pitch and roll are zero so that, by
default, only yaw is mutated.

	Properties:

	
	yaw (float; dynamic) – Yaw of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

	pitch (float; dynamic) – Pitch of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

	roll (float; dynamic) – Roll of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

	parentOrientation (Orientation) – The local coordinate system that the OrientedPoint’s
yaw, pitch, and roll are interpreted in. Default
value is the global coordinate system, where an object is flat in the XY plane,
facing North.

	orientation (Orientation; dynamic; final) – The orientation of the OrientedPoint relative
to the global coordinate system. Derived from the yaw, pitch,
roll, and parentOrientation of this OrientedPoint and non-overridable.

	heading (float; dynamic; final) – Yaw value of this OrientedPoint in the global coordinate
system. Derived from orientation and non-overridable.

	viewAngles (tuple[float,float]) – Horizontal and vertical view angles of this OrientedPoint
in radians. Horizontal view angle can be up to 2π and vertical view angle can be
up to π. Values greater than these will be truncated. Default value is (2π, π)

	orientationStdDev (tuple[float,float,float]) – Standard deviation of Gaussian noise to add to this
object’s Euler angles (yaw, pitch, roll) when mutation is enabled with scale 1.
Default value (5°, 0, 0), mutating only the yaw of this OrientedPoint.

	
property visibleRegion

	The visible region of this object.

The visible region of an OrientedPoint restricts that of Point (a sphere with
radius visibleDistance) based on the value of viewAngles. In
general, it is a capped rectangular pyramid subtending an angle of
viewAngles[0] horizontally and viewAngles[1] vertically, as
long as those angles are less than π/2; larger angles yield various kinds of
wrap-around regions. See ViewRegion for details.

	
canSee(other, occludingObjects=(), debug=False)

	Whether or not this OrientedPoint can see other.

	Parameters:

	
	other – A Point, OrientedPoint, or Object to check
for visibility.

	occludingObjects – A list of objects that can occlude visibility.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
distancePast(vec)

	Distance past a given point, assuming we’ve been moving in a straight line.

	
class Object <specifiers>

	Bases: OrientedPoint

The Scenic class Object.

This is the default base class for Scenic classes.

	Properties:

	
	width (float) – Width of the object, i.e. extent along its X axis.
Default value of 1 inherited from the object’s shape.

	length (float) – Length of the object, i.e. extent along its Y axis.
Default value of 1 inherited from the object’s shape.

	height (float) – Height of the object, i.e. extent along its Z axis.
Default value of 1 inherited from the object’s shape.

	shape (Shape) – The shape of the object, which must be an instance of Shape.
The default shape is a box, with default unit dimensions.

	allowCollisions (bool) – Whether the object is allowed to intersect
other objects. Default value False.

	regionContainedIn (Region or None) – A Region the object is
required to be contained in. If None, the object need only be
contained in the scenario’s workspace.

	baseOffset (Vector) – An offset from the position of the Object
to the base of the object, used by the on (region | Object | vector) specifier. Default value
is (0, 0, -self.height/2), placing the base of the Object at the bottom
center of the Object’s bounding box.

	contactTolerance (float) – The maximum distance this object can be away from a
surface to be considered on the surface. Objects are placed at half this
distance away from a point when the on (region | Object | vector) specifier or a directional specifier
like (left | right) of Object [by scalar] is used. Default value 1e-4.

	sideComponentThresholds (DimensionLimits) – Used to determine the
various sides of an object (when using the default implementation).
The three interior 2-tuples represent the maximum and minimum bounds
for each dimension’s (x,y,z) surface. See defaultSideSurface for details.
Default value ((-0.5, 0.5), (-0.5, 0.5), (-0.5, 0.5)).

	cameraOffset (Vector) – Position of the camera for the can see
operator, relative to the object’s position. Default (0, 0, 0).

	requireVisible (bool) – Whether the object is required to be visible
from the ego object. Default value False.

	occluding (bool) – Whether or not this object can occlude other objects. Default
value True.

	showVisibleRegion (bool) – Whether or not to display the visible region in the
Scenic internal visualizer.

	color (tuple[float, float, float, float] or tuple[float, float, float] or None [https://docs.python.org/3/library/constants.html#None]) – An optional color (with optional alpha) property that is used by the internal
visualizer, or possibly simulators. All values should be between 0 and 1.
Default value None

	velocity (Vector; dynamic) – Velocity in dynamic simulations. Default value is
the velocity determined by speed and orientation.

	speed (float; dynamic) – Speed in dynamic simulations. Default value 0.

	angularVelocity (Vector; dynamic)

	angularSpeed (float; dynamic) – Angular speed in dynamic simulations. Default
value 0.

	behavior – Behavior for dynamic agents, if any (see Dynamic Scenarios). Default
value None.

	lastActions – Tuple of actions taken by this agent in the last time step
(or None [https://docs.python.org/3/library/constants.html#None] if the object is not an agent or this is the first time step).

	
startDynamicSimulation()

	Hook called when the object is created in a dynamic simulation.

Does nothing by default; provided for objects to do simulator-specific
initialization as needed.

Changed in version 3.0: This method is called on objects created in the middle of dynamic
simulations, not only objects present in the initial scene.

	
containsPoint(point)

	Whether or not the space this object occupies contains a point

	
distanceTo(point)

	The minimal distance from the space this object occupies to a given point

	
intersects(other)

	Whether or not this object intersects another object or region

	
property visibleRegion

	The visible region of this object.

The visible region of an Object is the same as that of an OrientedPoint (see
OrientedPoint.visibleRegion) except that it is offset by the value of
cameraOffset (which is the zero vector by default).

	
canSee(other, occludingObjects=(), debug=False)

	Whether or not this Object can see other.

	Parameters:

	
	other – A Point, OrientedPoint, or Object to check
for visibility.

	occludingObjects – A list of objects that can occlude visibility.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property corners

	A tuple containing the corners of this object’s bounding box

	
property occupiedSpace

	A region representing the space this object occupies

	
property _isConvex

	Whether this object’s shape is convex

	
property boundingBox

	A region representing this object’s bounding box

	
property inradius

	A lower bound on the inradius of this object

	
property planarInradius

	A lower bound on the planar inradius of this object.

This is defined as the inradius of the polygon of the occupiedSpace
of this object projected into the XY plane, assuming that pitch and
roll are both 0.

	
property surface

	A region containing the entire surface of this object

	
property onSurface

	The surface used by the on specifier.

This region is used to sample position when
another object is placed on this object. By default
the top surface of this object (topSurface), but can
be overwritten by subclasses.

	
property topSurface

	A region containing the top surface of this object

For how this surface is computed, see defaultSideSurface.

	
property rightSurface

	A region containing the right surface of this object

For how this surface is computed, see defaultSideSurface.

	
property leftSurface

	A region containing the left surface of this object

For how this surface is computed, see defaultSideSurface.

	
property frontSurface

	A region containing the front surface of this object

For how this surface is computed, see defaultSideSurface.

	
property backSurface

	A region containing the back surface of this object

For how this surface is computed, see defaultSideSurface.

	
property bottomSurface

	A region containing the bottom surface of this object

For how this surface is computed, see defaultSideSurface.

	
property _isPlanarBox

	Whether this object is a box aligned with the XY plane.

	
defaultSideSurface(occupiedSpace, dimension, positive, thresholds)

	Extracts a side surface from the occupiedSpace of an object.

This function is the default implementation for computing a region
representing a side surface of an object. This is done by keeping only the
faces of the object’s occupiedSpace mesh that have normal
vectors with a large/small enough x,y, or z component. For example,
for the front surface of an object we would would keep all faces that
had a normal vector with y component greater than thresholds[1][1]
and for the back surface of an object we would keep all faces that
had a normal vector with y component less than thresholds[1][0].

	Parameters:

	
	occupiedSpace – The occupiedSpace region of the object to
extract the side surface from.

	dimension – The target dimension who’s component will be checked.

	positive – If False [https://docs.python.org/3/library/constants.html#False], the target component must be less than
the first value in the appropriate tuple. If True [https://docs.python.org/3/library/constants.html#True], the
component must be greater than the second value in the
appropriate tuple.

	thresholds – A 3-tuple of 2-tuples, one for each dimension (x,y,z),
with each tuple containing the thresholds for a non-positive and
positive side, respectively, in each dimension.

	on_dimension – The on_dimension to be passed to the created surface.

	Return type:

	MeshSurfaceRegion

	
class Point2D <specifiers>

	Bases: Point

A 2D version of Point, used for backwards compatibility with Scenic 2.0

	
_3DClass

	alias of Point

	
property visibleRegion

	The visible region of this 2D point.

The visible region of a Point is a disc centered at its position with
radius visibleDistance.

	
class OrientedPoint2D <specifiers>

	Bases: Point2D, OrientedPoint

A 2D version of OrientedPoint, used for backwards compatibility with Scenic 2.0

	
_3DClass

	alias of OrientedPoint

	
property visibleRegion

	The visible region of this 2D oriented point.

The visible region of an OrientedPoint is a sector of the disc centered at its
position with radius visibleDistance, oriented along heading and
subtending an angle of viewAngle.

	
class Object2D <specifiers>

	Bases: OrientedPoint2D, Object

A 2D version of Object, used for backwards compatibility with Scenic 2.0

	
_3DClass

	alias of Object

	
property visibleRegion

	The visible region of this 2D object.

The visible region of a 2D Object is a circular sector as for OrientedPoint,
except that the base of the sector may be offset from position by the
cameraOffset property (to allow modeling cameras which are not located at the
center of the object).

scenic.core.propositions

Objects representing propositions that can be used to specify conditions

Summary of Module Members

Classes

	Always

	

	And

	

	Atomic

	

	Eventually

	

	Implies

	

	Next

	

	Not

	

	Or

	

	PropositionMonitor

	

	PropositionNode

	Base class for temporal and non-temporal propositions

	UnaryProposition

	Base class for temporal unary operators

	Until

	

Member Details

	
class PropositionNode(ltl_node)

	Base class for temporal and non-temporal propositions

	
is_temporal

	tells if the proposition is temporal

	
check_constrains_sampling()

	Checks if the proposition can be used for pruning.

A requirement can be used for pruning if it is evaluated on the scene generation phase before simulation, and
violation in that phase immediately results in discarding the scene and regenerating a new one.
For simplicity, we currently check two special cases:
1. requirements with no temporal requirement
2. requirements with only one always operator on top-level

	Returns:

	bool – True if the requirement is one of the forms above. False otherwise.

	
property children: List [https://docs.python.org/3/library/typing.html#typing.List][PropositionNode]

	Returns all children of proposition tree.

	Returns:

	list – proposition nodes that are directly under this node

	
flatten()

	Flattens the tree and return the list of nodes.

	Returns:

	list – list of all children nodes

	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][PropositionNode]

	
class UnaryProposition(ltl_node)

	Bases: PropositionNode

Base class for temporal unary operators

scenic.core.pruning

Pruning parts of the sample space which violate requirements.

The top-level function here, prune, is called as the very last step of scenario
compilation (from translator.constructScenarioFrom).

Summary of Module Members

Functions

	checkConditionedCycle

	Returns true if A depends on B

	conditionedDeps

	

	conditionedVal

	

	currentPropValue

	Get the current value of an object's property, taking into account prior pruning.

	feasibleRHPolygon

	Find where objects aligned to the given fields can satisfy the given RH bounds.

	isFunctionCall

	Match calls to a given function, taking into account distribution decorators.

	isMethodCall

	Match calls to a given method, taking into account distribution decorators.

	matchInRegion

	Match uniform samples from a Region

	matchPolygonalField

	Match orientation yaw defined by a PolygonalVectorField at the given position.

	maxDistanceBetween

	Upper bound the distance between the given Objects.

	percentagePruned

	

	prune

	Prune a Scenario, removing infeasible parts of the space.

	pruneContainment

	Prune based on the requirement that individual Objects fit within their container.

	pruneRelativeHeading

	Prune based on requirements bounding the relative heading of an Object.

	pruneVisibility

	

	relativeHeadingRange

	Lower/upper bound the possible RH between two headings with bounded disturbances.

	unpackWorkspace

	

	visibilityBound

	Upper bound the distance from an Object to another it can see.

Member Details

	
currentPropValue(obj, prop)

	Get the current value of an object’s property, taking into account prior pruning.

	
isMethodCall(thing, method)

	Match calls to a given method, taking into account distribution decorators.

	
isFunctionCall(thing, function)

	Match calls to a given function, taking into account distribution decorators.

	
matchInRegion(position)

	Match uniform samples from a Region

Returns the Region, if any, the offset that should be added to the base, and
the PointInRegionDistribution itself.

	
matchPolygonalField(heading, position)

	Match orientation yaw defined by a PolygonalVectorField at the given position.

Matches the yaw attribute of orientations exactly equal to a PolygonalVectorField,
or offset by a bounded disturbance. Returns a triple consisting of the matched field
if any, together with lower/upper bounds on the disturbance.

	
prune(scenario, verbosity=1)

	Prune a Scenario, removing infeasible parts of the space.

This function directly modifies the Distributions used in the Scenario,
but leaves the conditional distribution under the scenario’s requirements
unchanged. See Samplable.conditionTo.

Currently, the following pruning techniques are applied in order:

	Pruning based on containment (pruneContainment)

	Pruning based on relative heading bounds (pruneRelativeHeading)

	
pruneContainment(scenario, verbosity)

	Prune based on the requirement that individual Objects fit within their container.

Specifically, if O is positioned uniformly (with a possible offset) in region B and
has container C, then we can instead pick a position uniformly in their intersection.
If we can also lower bound the radius of O, then we can first erode C by that distance
minus that maximum offset distance.

	
pruneRelativeHeading(scenario, verbosity)

	Prune based on requirements bounding the relative heading of an Object.

Specifically, if an object O is:

	positioned uniformly within a polygonal region B;

	aligned to a polygonal vector field F (up to a bounded offset);

and another object O’ is:

	aligned to a polygonal vector field F’ (up to a bounded offset);

	at most some finite maximum distance from O;

	required to have relative heading within a bounded offset of that of O;

then we can instead position O uniformly in the subset of B intersecting the cells
of F which satisfy the relative heading requirements w.r.t. some cell of F’ which
is within the distance bound.

	
maxDistanceBetween(scenario, obj, target)

	Upper bound the distance between the given Objects.

	
visibilityBound(obj, target)

	Upper bound the distance from an Object to another it can see.

	
feasibleRHPolygon(field, offsetL, offsetR, tField, tOffsetL, tOffsetR, lowerBound, upperBound, maxDist)

	Find where objects aligned to the given fields can satisfy the given RH bounds.

	
relativeHeadingRange(baseHeading, offsetL, offsetR, targetHeading, tOffsetL, tOffsetR)

	Lower/upper bound the possible RH between two headings with bounded disturbances.

	
checkConditionedCycle(A, B)

	Returns true if A depends on B

scenic.core.regions

Objects representing regions in space.

Manipulations of polygons and line segments are done using the
shapely [https://github.com/shapely/shapely] package.

Manipulations of meshes is done using the
trimesh [https://trimsh.org/] package.

Summary of Module Members

Module Attributes

	everywhere

	A Region containing all points.

	nowhere

	A Region containing no points.

Functions

	convertToFootprint

	Recursively convert a region into it's footprint.

	orientationFor

	

	regionFromShapelyObject

	Build a 'Region' from Shapely geometry.

	toPolygon

	

Classes

	AllRegion

	Region consisting of all space.

	BoxRegion

	Region in the shape of a rectangular cuboid, i.e. a box.

	CircularRegion

	A circular region with a possibly-random center and radius.

	CylinderSectionRegion

	

	DifferenceRegion

	

	EmptyRegion

	Region containing no points.

	GridRegion

	A Region given by an obstacle grid.

	IntersectionRegion

	

	MeshRegion

	Region given by a scaled, positioned, and rotated mesh.

	MeshSurfaceRegion

	A region representing the surface of a mesh.

	MeshVolumeRegion

	A region representing the volume of a mesh.

	PathRegion

	A region composed of multiple polylines in 3D space.

	PointInRegionDistribution

	Uniform distribution over points in a Region

	PointSetRegion

	Region consisting of a set of discrete points.

	PolygonalFootprintRegion

	Region that contains all points in a polygonal footprint, regardless of their z value.

	PolygonalRegion

	Region given by one or more polygons (possibly with holes) at a fixed z coordinate.

	PolylineRegion

	Region given by one or more polylines (chain of line segments).

	RectangularRegion

	A rectangular region with a possibly-random position, heading, and size.

	Region

	An abstract base class for Scenic Regions

	SectorRegion

	A sector of a CircularRegion.

	SpheroidRegion

	Region in the shape of a spheroid.

	SurfaceCollisionTrimesh

	A Trimesh object that always returns non-convex.

	UnionRegion

	

	ViewRegion

	The viewing volume of a camera defined by a radius and horizontal/vertical view angles.

	ViewSectionRegion

	

	VoxelRegion

	(WIP) Region represented by a voxel grid in 3D space.

Exceptions

	UndefinedSamplingException

	

Member Details

	
class Region(name, *dependencies, orientation=None)

	Bases: Samplable, ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

An abstract base class for Scenic Regions

	
abstract uniformPointInner()

	Do the actual random sampling. Implemented by subclasses.

	
abstract containsPoint(point)

	Check if the Region contains a point. Implemented by subclasses.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract containsObject(obj)

	Check if the Region contains an Object

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract containsRegionInner(reg, tolerance)

	Check if the Region contains a Region

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract distanceTo(point)

	Distance to this region from a given point.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract projectVector(point, onDirection)

	Returns point projected onto this region along onDirection.

	
abstract property AABB

	Axis-aligned bounding box for this Region.

	
intersects(other)

	Check if this Region intersects another.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
intersect(other, triedReversed=False)

	Get a Region representing the intersection of this one with another.

If both regions have a preferred orientation, the one of self
is inherited by the intersection.

	Return type:

	Region

	
union(other, triedReversed=False)

	Get a Region representing the union of this one with another.

Not supported by all region types.

	Return type:

	Region

	
difference(other)

	Get a Region representing the difference of this one and another.

Not supported by all region types.

	Return type:

	Region

	
_trueContainsPoint(point)

	Whether or not this region could produce point when sampled.

By default this method calls containsPoint, but should be overwritten if
containsPoint does not properly represent the points that can be sampled.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
static uniformPointIn(region, tag=None)

	Get a uniform Distribution over points in a Region.

	
orient(vec)

	Orient the given vector along the region’s orientation, if any.

	
class PointInRegionDistribution(region, tag=None)

	Bases: VectorDistribution

Uniform distribution over points in a Region

	
class AllRegion(name, *dependencies, orientation=None)

	Bases: Region

Region consisting of all space.

	
class EmptyRegion(name, *dependencies, orientation=None)

	Bases: Region

Region containing no points.

	
everywhere = <AllRegion everywhere>

	A Region containing all points.

Points may not be sampled from this region, as no uniform distribution over it exists.

	
nowhere = <EmptyRegion nowhere>

	A Region containing no points.

Attempting to sample from this region causes the sample to be rejected.

	
regionFromShapelyObject(obj, orientation=None)

	Build a ‘Region’ from Shapely geometry.

	
class SurfaceCollisionTrimesh(vertices=None, faces=None, face_normals=None, vertex_normals=None, face_colors=None, vertex_colors=None, face_attributes=None, vertex_attributes=None, metadata=None, process=True, validate=False, merge_tex=None, merge_norm=None, use_embree=True, initial_cache=None, visual=None, **kwargs)

	Bases: Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh]

A Trimesh object that always returns non-convex.

Used so that fcl doesn’t find collision without an actual surface
intersection.

	Parameters:

	
	vertices (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]], _NestedSequence[_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], _NestedSequence[Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]]) –

	faces (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]], _NestedSequence[_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], _NestedSequence[Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]]) –

	face_normals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]], _NestedSequence[_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], _NestedSequence[Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]]) –

	vertex_normals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]], _NestedSequence[_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], _NestedSequence[Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]]) –

	face_colors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]], _NestedSequence[_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], _NestedSequence[Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]]) –

	vertex_colors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]], _NestedSequence[_SupportsArray[dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], _NestedSequence[Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]]) –

	face_attributes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][numpy._typing._array_like._SupportsArray[numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], numpy._typing._nested_sequence._NestedSequence[Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]]]) –

	vertex_attributes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][numpy._typing._array_like._SupportsArray[numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]], numpy._typing._nested_sequence._NestedSequence[numpy._typing._array_like._SupportsArray[numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype][Any [https://docs.python.org/3/library/typing.html#typing.Any]]]], bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], numpy._typing._nested_sequence._NestedSequence[Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]]]]) –

	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	process (bool [https://docs.python.org/3/library/functions.html#bool]) –

	validate (bool [https://docs.python.org/3/library/functions.html#bool]) –

	merge_tex (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	merge_norm (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]]) –

	use_embree (bool [https://docs.python.org/3/library/functions.html#bool]) –

	initial_cache (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]) –

	visual (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][ColorVisuals [https://trimesh.org/trimesh.visual.color.html#trimesh.visual.color.ColorVisuals], TextureVisuals [https://trimesh.org/trimesh.visual.texture.html#trimesh.visual.texture.TextureVisuals]]]) –

	
class MeshRegion(mesh, dimensions=None, position=None, rotation=None, orientation=None, tolerance=1e-06, centerMesh=True, onDirection=None, name=None, additionalDeps=[])

	Bases: Region

Region given by a scaled, positioned, and rotated mesh.

This is an abstract class and cannot be instantiated directly. Instead a subclass should be used, like
MeshVolumeRegion or MeshSurfaceRegion.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False).
The mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon,
and then rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note
that scaling and rotation transformations may not behave as expected, since they are performed around the origin.

	Parameters:

	
	mesh – The base mesh for this MeshRegion.

	name – An optional name to help with debugging.

	dimensions – An optional 3-tuple, with the values representing width, length, height respectively.
The mesh will be scaled such that the bounding box for the mesh has these dimensions.

	position – An optional position, which determines where the center of the region will be.

	rotation – An optional Orientation object which determines the rotation of the object in space.

	orientation – An optional vector field describing the preferred orientation at every point in
the region.

	tolerance – Tolerance for internal computations.

	centerMesh – Whether or not to center the mesh after copying and before transformations.

	onDirection – The direction to use if an object being placed on this region doesn’t specify one.

	additionalDeps – Any additional sampling dependencies this region relies on.

	
classmethod fromFile(path, unify=True, **kwargs)

	Load a mesh region from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file.
“foo.obj” is assumed to be an uncompressed .obj file. “foo” is an
unknown filetype, so unless a filetype is provided an exception will be raised.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file to import.

	filetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load [https://trimesh.org/trimesh.html#trimesh.load].

	compressed (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not this file is compressed (with bz2). This will be inferred
if not provided.

	binary (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to open the file as a binary file.

	unify (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to attempt to unify this mesh.

	kwargs – Additional arguments to the MeshRegion initializer.

	
projectVector(point, onDirection)

	Find the nearest point in the region following the onDirection or its negation.

Returns None if no such points exist.

	
property circumcircle

	Compute an upper bound on the radius of the region

	
property boundingPolygon

	A PolygonalRegion bounding the mesh

	
class MeshVolumeRegion(*args, **kwargs)

	Bases: MeshRegion

A region representing the volume of a mesh.

The mesh passed must be a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object that represents a well defined
volume (i.e. the is_volume property must be true), meaning the mesh must be watertight,
have consistent winding and have outward facing normals.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False).
The mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon,
and then rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note
that scaling and rotation transformations may not behave as expected, since they are performed around the origin.

	Parameters:

	
	mesh – The base mesh for this region.

	name – An optional name to help with debugging.

	dimensions – An optional 3-tuple, with the values representing width, length, height
respectively. The mesh will be scaled such that the bounding box for the mesh has
these dimensions.

	position – An optional position, which determines where the center of the region will be.

	rotation – An optional Orientation object which determines the rotation of the object in space.

	orientation – An optional vector field describing the preferred orientation at every point in
the region.

	tolerance – Tolerance for internal computations.

	centerMesh – Whether or not to center the mesh after copying and before transformations.

	onDirection – The direction to use if an object being placed on this region doesn’t specify one.

	
intersects(other, triedReversed=False)

	Check if this region intersects another.

This function handles intersect calculations for MeshVolumeRegion with:
* MeshVolumeRegion
* MeshSurfaceRegion
* PolygonalFootprintRegion

	
containsPoint(point)

	Check if this region’s volume contains a point.

	
containsObject(obj)

	Check if this region’s volume contains an Object.

	
intersect(other, triedReversed=False)

	Get a Region representing the intersection of this region with another.

This function handles intersection computation for MeshVolumeRegion with:
* MeshVolumeRegion
* PolygonalFootprintRegion
* PolygonalRegion
* PathRegion
* PolylineRegion

	
union(other, triedReversed=False)

	Get a Region representing the union of this region with another.

	This function handles union computation for MeshVolumeRegion with:
	
	MeshVolumeRegion

	
difference(other, debug=False)

	Get a Region representing the difference of this region with another.

This function handles union computation for MeshVolumeRegion with:
* MeshVolumeRegion
* PolygonalFootprintRegion

	
distanceTo(point)

	Get the minimum distance from this region to the specified point.

	
voxelized(pitch, lazy=False)

	Returns a VoxelRegion representing a filled voxelization of this mesh

	
_erodeOverapproximate(maxErosion, pitch)

	Compute an overapproximation of this region eroded.

Erode as much as possible, but no more than maxErosion, outputting
a VoxelRegion. Note that this can sometimes return a larger region
than the original mesh

	
_bufferOverapproximate(minBuffer, pitch)

	Compute an overapproximation of this region buffered.

Buffer as little as possible, but at least minBuffer. If pitch is
less than 1, the output is a VoxelRegion. If pitch is 1, a fast
path is taken which returns a BoxRegion.

	
getSurfaceRegion()

	Return a region equivalent to this one, except as a MeshSurfaceRegion

	
getVolumeRegion()

	Returns this object, as it is already a MeshVolumeRegion

	
class MeshSurfaceRegion(*args, orientation=True, **kwargs)

	Bases: MeshRegion

A region representing the surface of a mesh.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False).
The mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon,
and then rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note
that scaling and rotation transformations may not behave as expected, since they are performed around the origin.

If an orientation is not passed to this mesh, a default orientation is provided which provides an orientation
that aligns an object’s z axis with the normal vector of the face containing that point, and has a yaw aligned
with a yaw of 0 in the global coordinate system.

	Parameters:

	
	mesh – The base mesh for this region.

	name – An optional name to help with debugging.

	dimensions – An optional 3-tuple, with the values representing width, length, height respectively.
The mesh will be scaled such that the bounding box for the mesh has these dimensions.

	position – An optional position, which determines where the center of the region will be.

	rotation – An optional Orientation object which determines the rotation of the object in space.

	orientation – An optional vector field describing the preferred orientation at every point in
the region.

	tolerance – Tolerance for internal computations.

	centerMesh – Whether or not to center the mesh after copying and before transformations.

	onDirection – The direction to use if an object being placed on this region doesn’t specify one.

	
intersects(other, triedReversed=False)

	Check if this region’s surface intersects another.

This function handles intersection computation for MeshSurfaceRegion with:
* MeshSurfaceRegion
* PolygonalFootprintRegion

	
containsPoint(point)

	Check if this region’s surface contains a point.

	
distanceTo(point)

	Get the minimum distance from this object to the specified point.

	
getFlatOrientation(pos)

	Get a flat orientation at a point in the region.

Given a point on the surface of the mesh, returns an orientation that aligns
an instance’s z axis with the normal vector of the face containing that point.
Since there are infinitely many such orientations, the orientation returned
has yaw aligned with a global yaw of 0.

If pos is not within self.tolerance of the surface of the mesh, a
RejectionException is raised.

	
getVolumeRegion()

	Return a region equivalent to this one, except as a MeshVolumeRegion

	
getSurfaceRegion()

	Returns this object, as it is already a MeshSurfaceRegion

	
class BoxRegion(*args, **kwargs)

	Bases: MeshVolumeRegion

Region in the shape of a rectangular cuboid, i.e. a box.

By default the unit box centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh
parameter which is excluded.

	
class SpheroidRegion(*args, **kwargs)

	Bases: MeshVolumeRegion

Region in the shape of a spheroid.

By default the unit sphere centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh
parameter which is excluded.

	
class VoxelRegion(voxelGrid, orientation=None, name=None, lazy=False)

	Bases: Region

(WIP) Region represented by a voxel grid in 3D space.

NOTE: This region is a work in progress and is currently only recommended for internal use.

	Parameters:

	
	voxelGrid – The Trimesh voxelGrid to be used.

	orientation – An optional vector field describing the preferred orientation at every point in
the region.

	name – An optional name to help with debugging.

	lazy – Whether or not to be lazy about pre-computing internal values. Set this to True if this
VoxelRegion is unlikely to be used outside of an intermediate step in compiling/pruning.

	
dilation(iterations, structure=None)

	Returns a dilated/eroded version of this VoxelRegion.

	Parameters:

	
	iterations – How many times repeat the dilation/erosion. A positive
number indicates a dilation and a negative number indicates an
erosion.

	structure – The structure to use. If none is provided, a rank 3
structuring unit with connectivity 3 is used.

	
property mesh

	(WIP) Return a MeshVolumeRegion representation of this region.

NOTE: This region is a WIP and will sometimes return None if the transformation
is not feasible.

	
class PolygonalFootprintRegion(polygon, name=None)

	Bases: Region

Region that contains all points in a polygonal footprint, regardless of their z value.

This region cannot be sampled from, as it has infinite height and therefore infinite volume.

	Parameters:

	
	polygon – A shapely Polygon or MultiPolygon, that defines the footprint of this region.

	name – An optional name to help with debugging.

	
intersect(other, triedReversed=False)

	Get a Region representing the intersection of this region with another.

This function handles intersection computation for PolygonalFootprintRegion with:
* PolygonalFootprintRegion
* PolygonalRegion

	
union(other, triedReversed=False)

	Get a Region representing the union of this region with another.

This function handles union computation for PolygonalFootprintRegion with:
* PolygonalFootprintRegion

	
difference(other)

	Get a Region representing the difference of this region with another.

This function handles difference computation for PolygonalFootprintRegion with:
* PolygonalFootprintRegion

	
containsPoint(point)

	Checks if a point is contained in the polygonal footprint.

Equivalent to checking if the (x, y) values are contained in the polygon.

	Parameters:

	point – A point to be checked for containment.

	
containsObject(obj)

	Checks if an object is contained in the polygonal footprint.

	Parameters:

	obj – An object to be checked for containment.

	
distanceTo(point)

	Minimum distance from this polygonal footprint to the target point

	
approxBoundFootprint(centerZ, height)

	Returns an overapproximation of boundFootprint

Returns a volume that is guaranteed to contain the result of boundFootprint(centerZ, height),
but may be taller. Used to save time on recomputing boundFootprint.

	
boundFootprint(centerZ, height)

	Cap the footprint of the object to a given height, centered at a given z.

	Parameters:

	
	centerZ – The resulting mesh will be vertically centered at this height.

	height – The resulting mesh will have this height.

	
class PathRegion(points=None, polylines=None, tolerance=1e-08, orientation=True, name=None)

	Bases: Region

A region composed of multiple polylines in 3D space.

One of points or polylines should be provided.

	Parameters:

	
	points – A list of points defining a single polyline.

	polylines – A list of list of points, defining multiple polylines.

	orientation (optional) – preferred orientation to use, or True [https://docs.python.org/3/library/constants.html#True] to use an
orientation aligned with the direction of the path (the default).

	tolerance – Tolerance used internally.

	
_segmentDistanceHelper(point)

	Returns distance to point from each line segment

	
class PolygonalRegion(points=None, polygon=None, z=0, orientation=None, name=None, additionalDeps=[])

	Bases: Region

Region given by one or more polygons (possibly with holes) at a fixed z coordinate.

The region may be specified by giving either a sequence of points defining the
boundary of the polygon, or a collection of shapely polygons (a Polygon
or MultiPolygon).

	Parameters:

	
	points – sequence of points making up the boundary of the polygon (or None [https://docs.python.org/3/library/constants.html#None] if
using the polygon argument instead).

	polygon – shapely polygon or collection of polygons (or None [https://docs.python.org/3/library/constants.html#None] if using
the points argument instead).

	z – The z coordinate the polygon is located at.

	orientation (VectorField; optional) – preferred orientation to use.

	name (str; optional) – name for debugging.

	
property boundary: PolylineRegion

	Get the boundary of this region as a PolylineRegion.

	
class CircularRegion(center, radius, resolution=32, name=None)

	Bases: PolygonalRegion

A circular region with a possibly-random center and radius.

	Parameters:

	
	center (Vector) – center of the disc.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – radius of the disc.

	resolution (int; optional) – number of vertices to use when approximating this region as a
polygon.

	name (str; optional) – name for debugging.

	
class SectorRegion(center, radius, heading, angle, resolution=32, name=None)

	Bases: PolygonalRegion

A sector of a CircularRegion.

This region consists of a sector of a disc, i.e. the part of a disc subtended by a
given arc.

	Parameters:

	
	center (Vector) – center of the corresponding disc.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – radius of the disc.

	heading (float [https://docs.python.org/3/library/functions.html#float]) – heading of the centerline of the sector.

	angle (float [https://docs.python.org/3/library/functions.html#float]) – angle subtended by the sector.

	resolution (int; optional) – number of vertices to use when approximating this region as a
polygon.

	name (str; optional) – name for debugging.

	
class RectangularRegion(position, heading, width, length, name=None)

	Bases: PolygonalRegion

A rectangular region with a possibly-random position, heading, and size.

	Parameters:

	
	position (Vector) – center of the rectangle.

	heading (float [https://docs.python.org/3/library/functions.html#float]) – the heading of the length axis of the rectangle.

	width (float [https://docs.python.org/3/library/functions.html#float]) – width of the rectangle.

	length (float [https://docs.python.org/3/library/functions.html#float]) – length of the rectangle.

	name (str; optional) – name for debugging.

	
class PolylineRegion(points=None, polyline=None, orientation=True, name=None)

	Bases: Region

Region given by one or more polylines (chain of line segments).

The region may be specified by giving either a sequence of points or shapely
polylines (a LineString or MultiLineString).

	Parameters:

	
	points – sequence of points making up the polyline (or None [https://docs.python.org/3/library/constants.html#None] if using the
polyline argument instead).

	polyline – shapely polyline or collection of polylines (or None [https://docs.python.org/3/library/constants.html#None] if using
the points argument instead).

	orientation (optional) – preferred orientation to use, or True [https://docs.python.org/3/library/constants.html#True] to use an
orientation aligned with the direction of the polyline (the default).

	name (str; optional) – name for debugging.

	
property start

	Get an OrientedPoint at the start of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if
there is one (the default orientation pointing along the polyline).

	
property end

	Get an OrientedPoint at the end of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if
there is one (the default orientation pointing along the polyline).

	
signedDistanceTo(point)

	Compute the signed distance of the PolylineRegion to a point.

The distance is positive if the point is left of the nearest segment,
and negative otherwise.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
pointAlongBy(distance, normalized=False)

	Find the point a given distance along the polyline from its start.

If normalized is true, then distance should be between 0 and 1, and
is interpreted as a fraction of the length of the polyline. So for example
pointAlongBy(0.5, normalized=True) returns the polyline’s midpoint.

	Return type:

	Vector

	
class PointSetRegion(name, points, kdTree=None, orientation=None, tolerance=1e-06)

	Bases: Region

Region consisting of a set of discrete points.

No Object can be contained in a PointSetRegion, since the latter is discrete.
(This may not be true for subclasses, e.g. GridRegion.)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging

	points (arraylike) – set of points comprising the region

	kdTree (scipy.spatial.KDTree [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree], optional) – k-D tree for the points (one will
be computed if none is provided)

	orientation (VectorField; optional) – preferred orientation for the
region

	tolerance (float; optional) – distance tolerance for checking whether a point lies
in the region

	
convertToFootprint(region)

	Recursively convert a region into it’s footprint.

For a polygonal region, returns the footprint. For composed regions,
recursively reconstructs them using the footprints of their sub regions.

	
class GridRegion(name, grid, Ax, Ay, Bx, By, orientation=None)

	Bases: PointSetRegion

A Region given by an obstacle grid.

A point is considered to be in a GridRegion if the nearest grid point is
not an obstacle.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging

	grid – 2D list, tuple, or NumPy array of 0s and 1s, where 1 indicates an obstacle
and 0 indicates free space

	Ax (float [https://docs.python.org/3/library/functions.html#float]) – spacing between grid points along X axis

	Ay (float [https://docs.python.org/3/library/functions.html#float]) – spacing between grid points along Y axis

	Bx (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of leftmost grid column

	By (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of lowest grid row

	orientation (VectorField; optional) – orientation of region

	
class ViewRegion(visibleDistance, viewAngles, name=None, position=Vector(0, 0, 0), rotation=None, angleCutoff=0.017, tolerance=1e-08)

	Bases: MeshVolumeRegion

The viewing volume of a camera defined by a radius and horizontal/vertical view angles.

The default view region can take several forms, depending on the viewAngles parameter:

	Case 1: viewAngles[1] = 180 degrees

	Case 1.a viewAngles[0] = 360 degrees => Sphere

	Case 1.b viewAngles[0] < 360 degrees => Sphere & CylinderSectionRegion

	Case 2: viewAngles[1] < 180 degrees => Sphere & ViewSectionRegion

When making changes to this class you should run pytest -k test_viewRegion --exhaustive.

	Parameters:

	
	visibleDistance – The view distance for this region.

	viewAngles – The view angles for this region.

	name – An optional name to help with debugging.

	position – An optional position, which determines where the center of the region will be.

	rotation – An optional Orientation object which determines the rotation of the object in space.

	angleCutoff – How close to 180/360 degrees an angle has to be to be mapped to that value.

	tolerance – Tolerance for collision computations.

scenic.core.requirements

Support for hard and soft requirements.

Summary of Module Members

Functions

	getAllGlobals

	Find all names the given lambda depends on, along with their current bindings.

Classes

	BlanketCollisionRequirement

	

	BoundRequirement

	

	CompiledRequirement

	

	ContainmentRequirement

	

	DynamicMonitorRequirement

	

	DynamicRequirement

	

	IntersectionRequirement

	

	MonitorRequirement

	MonitorRequirement is a BoundRequirement with temporal proposition monitor

	NonVisibilityRequirement

	

	PendingRequirement

	

	RequirementType

	An enumeration.

	SamplingRequirement

	A requirement to be checked to validate a sample.

	VisibilityRequirement

	

Member Details

	
class RequirementType(value)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
getAllGlobals(req, restrictTo=None)

	Find all names the given lambda depends on, along with their current bindings.

	
class MonitorRequirement(compiledReq, sample, proposition)

	Bases: BoundRequirement

MonitorRequirement is a BoundRequirement with temporal proposition monitor

	
class SamplingRequirement(optional)

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

A requirement to be checked to validate a sample.

	Parameters:

	optional – Whether or not this requirement must be
checked to validate the sample. Optional samples
can be checked, and if False imply that the
sample is invalid, but do not need to be checked
if all non-optional requirements are satisfied.

	
abstract falsifiedByInner(sample)

	Returns False if the requirement is falsifed, True otherwise

	
abstract property violationMsg

	Message to be printed if the requirement is violated

scenic.core.sample_checking

The SampleChecker class and it’s implementations.

Summary of Module Members

Classes

	BasicChecker

	Basic requirement checker.

	SampleChecker

	

	WeightedAcceptanceChecker

	Picks the requirement with the lowest time-weighted acceptance chance.

Member Details

	
class BasicChecker(initialCollisionCheck)

	Bases: SampleChecker

Basic requirement checker.

Evaluates requirements in order, with a tiny bit of tuning.

	
class WeightedAcceptanceChecker(bufferSize=10)

	Bases: SampleChecker

Picks the requirement with the lowest time-weighted acceptance chance.

Incentivizes exploration by initializing all buffer values to 0.

	Parameters:

	bufferSize – Max samples to use when calculating time-weighted
rejection chance.

	
sortedRequirements()

	Return the list of requirements in sorted order

	
updateMetrics(req, new_metrics)

	Update the metrics for a given requirement

scenic.core.scenarios

Scenario and scene objects.

Summary of Module Members

Classes

	Scenario

	A compiled Scenic scenario, from which scenes can be sampled.

	Scene

	A scene generated from a Scenic scenario.

Member Details

	
class Scene

	A scene generated from a Scenic scenario.

To run a dynamic simulation from a scene, create an instance of Simulator for the
simulator you want to use, and pass the scene to its simulate method.

	Attributes:

	
	objects (tuple of Object) – All objects in the
scene. The ego object is first, if there is one.

	egoObject (Object or None [https://docs.python.org/3/library/constants.html#None]) – The ego object, if any.

	params (dict) – Dictionary mapping the name of each global parameter to its value.

	workspace (Workspace) – The workspace for the scenario.

Changed in version 3.0: The egoObject attribute can now be None [https://docs.python.org/3/library/constants.html#None].

	
dumpAsScenicCode(stream=sys.stdout)

	Dump Scenic code reproducing this scene to the given stream.

For non-human-readable but complete serialization of scenes see
Scenario.sceneToBytes and Scenario.sceneFromBytes.

Note

This function does not currently reproduce parts of the original Scenic
program defining behaviors, functions, etc. used in the scene. Also, if
the scene involves any user-defined types, they must provide a suitable
__repr__ [https://docs.python.org/3/reference/datamodel.html#object.__repr__] for this function to print them properly.

	Parameters:

	stream (text file [https://docs.python.org/3/glossary.html#term-text-file]) – Where to print the code (default sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout]).

	
show3D(axes)

	Render a 3D schematic of the scene for debugging.

	
show2D(zoom=None, block=True)

	Render a 2D schematic of the scene for debugging.

	
class Scenario

	A compiled Scenic scenario, from which scenes can be sampled.

	
generate(maxIterations=2000, verbosity=0, feedback=None)

	Sample a Scene from this scenario.

For a description of how scene generation is done, see Scene Generation.

	Parameters:

	
	maxIterations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of rejection sampling iterations.

	verbosity (int [https://docs.python.org/3/library/functions.html#int]) – Verbosity level.

	feedback (float [https://docs.python.org/3/library/functions.html#float]) – Feedback to pass to external samplers doing active sampling.
See scenic.core.external_params.

	Returns:

	A pair with the sampled Scene and the number of iterations used.

	Raises:

	RejectionException – if no valid sample is found in maxIterations iterations.

	
generateBatch(numScenes, maxIterations=inf, verbosity=0, feedback=None)

	Sample several Scene objects from this scenario.

For a description of how scene generation is done, see Scene Generation.

	Parameters:

	
	numScenes (int [https://docs.python.org/3/library/functions.html#int]) – Number of scenes to generate.

	maxIterations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of rejection sampling iterations (over all scenes).

	verbosity (int [https://docs.python.org/3/library/functions.html#int]) – Verbosity level.

	feedback (float [https://docs.python.org/3/library/functions.html#float]) – Feedback to pass to external samplers doing active sampling.
See scenic.core.external_params.

	Returns:

	A pair with a list of the sampled Scene objects and the total number
of iterations used.

	Raises:

	RejectionException – if not enough valid samples are found in maxIterations iterations.

	
resetExternalSampler()

	Reset the scenario’s external sampler, if any.

If the Python random seed is reset before calling this function, this
should cause the sequence of generated scenes to be deterministic.

	
conditionOn(scene=None, objects=(), params={})

	Condition the scenario on particular values for some objects or parameters.

This method changes the distribution of the scenario and should be used with
care: it does not attempt to check that the new distribution is equivalent to the
old one or that it has nonzero probability of satisfying the scenario’s
requirements.

For example, to sample object #5 in the scenario once and then leave it fixed in
all subsequent samples:

sceneA, _ = scenario.generate()
scenario.conditionOn(scene=sceneA, objects=(5,))
sceneB, _ = scenario.generate() # will have the same object 5 as sceneA

	Parameters:

	
	scene (Scene) – Scene from which to take values for the given objects,
if any.

	objects – Sequence of indices specifying which objects in this scenario should
be conditioned on the corresponding objects in scene (i.e. those with
the same index in the list of objects).

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of global parameters to condition and their new
values (which may be constants or distributions).

	
sceneToBytes(scene, allowPickle=False)

	Encode a Scene sampled from this scenario to a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object.

The serialized scene may be reconstituted with sceneFromBytes. The format used
is suitable for long-term storage of scenes, although it is not guaranteed to be
compatible across major versions of Scenic. For further discussion and usage
examples, see Storing Scenes/Simulations for Later Use.

	Raises:

	SerializationError – if the scene could not be properly encoded. This should
 not happen unless your scenario includes a user-defined Distribution
 subclass with an unusual value type. If you get this exception, see the
 documentation for the internal class Serializer for solutions.

	
sceneFromBytes(data, verify=True, allowPickle=False)

	Decode a Scene serialized with sceneToBytes.

	Parameters:

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Encoding of a Scene sampled from this scenario.

	verify (bool [https://docs.python.org/3/library/functions.html#bool]) – If true (the default), raise an exception if the scene
appears to have been generated from a different scenario (meaning
it will almost certainly not decode correctly).

	allowPickle (bool [https://docs.python.org/3/library/functions.html#bool]) – Enable using pickle [https://docs.python.org/3/library/pickle.html#module-pickle] to deserialize custom object
types. False by default because it allows malicious data to trigger
arbitrary code execution (see the pickle [https://docs.python.org/3/library/pickle.html#module-pickle] documentation). Use this
option only if you trust the source of the data and it is not practical
to implement serialization for the datatypes you need.

	Raises:

	SerializationError – if the scene could not be properly decoded.

	
simulationToBytes(simulation, allowPickle=False)

	Encode a Simulation sampled from this scenario to a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object.

The serialized simulation may be replayed with simulationFromBytes. As with
sceneToBytes, the format used is suitable for long-term storage but is not
guaranteed to be compatible across major versions of Scenic.

	Raises:

	SerializationError – if the simulation could not be properly encoded. This should
 not happen unless your scenario includes a user-defined Distribution
 subclass with an unusual value type. If you get this exception, see the
 documentation for the internal class Serializer for solutions.

Note

The returned data encodes both the scene comprising the initial condition for the
simulation and the simulation itself. If you will be running many simulations
starting from the same scene, you can save space by separately encoding the scene
and the various simulations: use sceneToBytes and Simulation.getReplay for
encoding, and the replay argument of Simulator.simulate for decoding.

	
simulationFromBytes(data, simulator, *, verify=True, allowPickle=False, **kwargs)

	Replay a Simulation serialized with simulationToBytes.

	Parameters:

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Encoding of a Simulation sampled from this scenario.

	simulator (Simulator) – Simulator in which to run the simulation. Using
a different simulator configuration than that used for the original
simulation may cause errors or unexpected behavior. If you need to do
this, see the enableDivergenceCheck option of Simulator.simulate.

	verify (bool [https://docs.python.org/3/library/functions.html#bool]) – As in sceneFromBytes.

	allowPickle (bool [https://docs.python.org/3/library/functions.html#bool]) – As in sceneFromBytes.

	kwargs – All additional keyword arguments are passed through to the simulator;
see Simulator.simulate for the available configuration options.

	Returns:

	A Simulation object representing the completed simulation.

	Raises:

	
	SerializationError – if the simulation could not be properly decoded.

	DivergenceError – if the replayed simulation has diverged from the original
 (requires the original to have been run with divergence-checking support;
 see Simulator.simulate).

scenic.core.serialization

Utilities to help serialize Scenic objects.

The functions in this module usually do not need to be used directly.
For high-level serialization APIs, see Scenario.sceneToBytes,
Scenario.simulationToBytes, and Scene.dumpAsScenicCode.

Summary of Module Members

Functions

	dumpAsScenicCode

	Utility function to help export Scenic objects as Scenic code.

	readBool

	

	readBytes

	

	readFloat

	

	readInt

	

	readStr

	

	scenicToJSON

	Utility function to help serialize Scenic objects to JSON.

	writeBool

	

	writeBytes

	

	writeFloat

	

	writeInt

	

	writeStr

	

Classes

	Serializer

	Class for (de)serializing scenes, etc.

Exceptions

	SerializationError

	An error occurring during serialization/deserialization of Scenic objects.

Member Details

	
scenicToJSON(obj)

	Utility function to help serialize Scenic objects to JSON.

Suitable for passing as the default argument to json.dump [https://docs.python.org/3/library/json.html#json.dump].
At the moment this only supports very basic types like scalars and vectors:
it does not allow encoding of an entire Object.

	
dumpAsScenicCode(value, stream)

	Utility function to help export Scenic objects as Scenic code.

	
exception SerializationError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

An error occurring during serialization/deserialization of Scenic objects.

	
class Serializer(data=b'', allowPickle=False, detectEnd=False)

	Class for (de)serializing scenes, etc.

Ordinary Scenic users do not need to know about this class: they can use public
APIs such as Scenario.sceneToBytes. If you have defined a custom type of
Distribution whose valueType isn’t one of the types used by the built-in
primitive distributions (i.e. int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], Vector), read on.

The sampled value of a Distribution is encoded as follows:

	If the Distribution is _deterministic, recursively encode the sampled
values of its dependencies.

	If its valueType is a type for which we have a “codec” (like int [https://docs.python.org/3/library/functions.html#int] or
float [https://docs.python.org/3/library/functions.html#float]), use the encoding function provided by the codec.

	If the valueType provides a encodeTo method, use that.

	If the user has allowed the use of pickle [https://docs.python.org/3/library/pickle.html#module-pickle], pickle the value.

	Otherwise raise a SerializationError.

Thus, you need only extend the serialization mechanism if your Distribution cannot
be made deterministic (by adding appropriate dependencies with simpler valueTypes)
and it has an unusual valueType. In that case, it’s best to have your valueType
implement encodeTo and decodeFrom methods: see Vector for example. If for
some reason you can’t add those methods to the class in question, you can use
Serializer.addCodec to register encoder/decoder functions. Finally, if you’re only
using serialization internally and aren’t concerned about security issues or making
the encoding as compact as possible, you can turn on the allowPickle option: this
will use pickle [https://docs.python.org/3/library/pickle.html#module-pickle] to encode any objects for which no specialized encoder is known.

	
classmethod sceneFormatVersion()

	Current version of the Scene serialization format.

Must be incremented if the writeScene method or any of its helper
methods (e.g. writeValue) change, or if a new codec is added.

	
classmethod replayFormatVersion()

	Current version of the Simulation replay serialization format.

Must be incremented if the writeReplayHeader or writeValue methods
change, or if a new codec is added.

	
writeScene(scenario, scene)

	Serialize a Scene.

	
writeReplayHeader(flags)

	Begin the encoding of a Simulation replay.

	
classmethod addCodec(ty, encoder, decoder)

	Register encoder and decoder functions for the given type.

The encoder function should have signature encoder(value, stream)
with stream a binary file-like object [https://docs.python.org/3/glossary.html#term-binary-file]. The decoder
function should have signature decoder(stream) and return the decoded
value.

	
writeValue(value, ty)

	Serialize a value of the given type.

scenic.core.shapes

Module containing the Shape class and its subclasses, which represent shapes of Objects

Summary of Module Members

Classes

	BoxShape

	A box shape with all dimensions 1 by default.

	ConeShape

	A cone shape with all dimensions 1 by default.

	CylinderShape

	A cylinder shape with all dimensions 1 by default.

	MeshShape

	A Shape subclass defined by a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object.

	Shape

	An abstract base class for Scenic shapes.

	SpheroidShape

	A spheroid shape with all dimensions 1 by default.

Member Details

	
class Shape(dimensions, scale)

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

An abstract base class for Scenic shapes.

Represents a physical shape in Scenic. Does not encode position or orientation,
which are handled by the Region class. Does contain dimension information, which
is used as a default value by any Object with this shape and can be overwritten.

If dimensions and scale are both specified the dimensions are first set by dimensions,
and then scaled by scale.

	Parameters:

	
	dimensions – The raw (before scaling) dimensions of the shape.

	scale – Scales all the dimensions of the shape by a multiplicative factor.

	
property containsCenter

	Whether or not this object contains its central point

	
class MeshShape(mesh, dimensions=None, scale=1, initial_rotation=None)

	Bases: Shape

A Shape subclass defined by a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object.

The mesh passed must be a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object that represents a well defined
volume (i.e. the is_volume property must be true), meaning the mesh must be watertight,
have consistent winding and have outward facing normals.

	Parameters:

	
	mesh – A mesh object.

	dimensions – The raw (before scaling) dimensions of the shape. If dimensions
and scale are both specified the dimensions are first set by dimensions, and then
scaled by scale.

	scale – Scales all the dimensions of the shape by a multiplicative factor.
If dimensions and scale are both specified the dimensions are first set by dimensions,
and then scaled by scale.

	initial_rotation – A 3-tuple containing the yaw, pitch, and roll respectively to apply when loading
the mesh. Note the initial_rotation must be fixed.

	
classmethod fromFile(path, unify=True, **kwargs)

	Load a mesh shape from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file.
“foo.obj” is assumed to be an uncompressed .obj file. “foo” is an
unknown filetype, so unless a filetype is provided an exception will be raised.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file to import.

	filetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load [https://trimesh.org/trimesh.html#trimesh.load].

	compressed (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not this file is compressed (with bz2). This will be inferred
if not provided.

	binary (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to open the file as a binary file.

	unify (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to attempt to unify this mesh.

	kwargs – Additional arguments to the MeshShape initializer.

	
class BoxShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)

	Bases: MeshShape

A box shape with all dimensions 1 by default.

	
class CylinderShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None, sections=24)

	Bases: MeshShape

A cylinder shape with all dimensions 1 by default.

	
class ConeShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)

	Bases: MeshShape

A cone shape with all dimensions 1 by default.

	
class SpheroidShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)

	Bases: MeshShape

A spheroid shape with all dimensions 1 by default.

scenic.core.simulators

Interface between Scenic and simulators.

This module defines the core classes Simulator and Simulation which
orchestrate dynamic simulations. Each simulator interface defines subclasses
of these classes for their particular simulator.

Ordinary Scenic users only need to know about the top-level simulation API
Simulator.simulate and the attributes of the Simulation class (in particular
the result attribute, which captures information about the result of the
simulation as a SimulationResult object).

Summary of Module Members

Classes

	DummySimulation

	Minimal Simulation subclass for DummySimulator.

	DummySimulator

	Simulator which does (almost) nothing, for testing and debugging purposes.

	ReplayMode

	An enumeration.

	Simulation

	A single simulation run.

	SimulationResult

	Result of running a simulation.

	Simulator

	A simulator which can execute dynamic simulations from Scenic scenes.

	TerminationType

	Enum describing the possible ways a simulation can end.

Exceptions

	DivergenceError

	Exception indicating simulation replay failed due to simulator nondeterminism.

	SimulationCreationError

	Exception indicating a simulation could not be run from the given scene.

	SimulatorInterfaceWarning

	Warning indicating an issue with the interface to an external simulator.

Member Details

	
exception SimulatorInterfaceWarning

	Bases: UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning]

Warning indicating an issue with the interface to an external simulator.

	
exception SimulationCreationError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception indicating a simulation could not be run from the given scene.

Can also be issued during a simulation if dynamic object creation fails.

	
exception DivergenceError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception indicating simulation replay failed due to simulator nondeterminism.

	
class Simulator

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

A simulator which can execute dynamic simulations from Scenic scenes.

Simulator interfaces which support dynamic simulations should implement a
subclass of Simulator. An instance of the class represents a connection to
the simulator suitable for running multiple simulations (not necessarily of
the same Scenic program). For an example of how to implement this class,
and its counterpart Simulation for individual simulations, see
scenic.simulators.webots.simulator.

Users who create an instance of Simulator should call its destroy method
when they are finished running simulations to allow the interface to do any
necessary cleanup.

	
simulate(scene, maxSteps=None, maxIterations=1, *, timestep=None, verbosity=None, raiseGuardViolations=False, replay=None, enableReplay=True, enableDivergenceCheck=False, divergenceTolerance=0, continueAfterDivergence=False, allowPickle=False)

	Run a simulation for a given scene.

For details on how simulations are run, see Execution of Dynamic Scenarios.

	Parameters:

	
	scene (Scene) – Scene from which to start the simulation (sampled using
Scenario.generate).

	maxSteps (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of time steps for the simulation, or None [https://docs.python.org/3/library/constants.html#None] to
not impose a time bound.

	maxIterations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of rejection sampling iterations.

	timestep (float [https://docs.python.org/3/library/functions.html#float]) – Length of a time step in seconds, or None [https://docs.python.org/3/library/constants.html#None] to use a
default provided by the simulator interface. Some interfaces may not
allow arbitrary time step lengths or may require the timestep to be set
when creating the Simulator and not customized per-simulation.

	verbosity (int [https://docs.python.org/3/library/functions.html#int]) – If not None [https://docs.python.org/3/library/constants.html#None], override Scenic’s global verbosity level
(from the --verbosity option or scenic.setDebuggingOptions).

	raiseGuardViolations (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether violations of preconditions/invariants
of scenarios/behaviors should cause this method to raise an exception,
instead of only rejecting the simulation (the default behavior).

	replay (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – If not None [https://docs.python.org/3/library/constants.html#None], must be replay data output by Simulation.getReplay:
we will then replay the saved simulation rather than randomly generating
one as usual. If maxSteps is larger than that of the original
simulation, then once the replay is exhausted the simulation will continue
to run in the usual randomized manner.

	enableReplay (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to save data from the simulation so that it can
be serialized for later replay using Scenario.simulationToBytes or
Simulation.getReplay. Enabled by default as the overhead is generally low.

	enableDivergenceCheck (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to save the values of every
dynamic property at each time step, so that when the simulation is
replayed, nondeterminism in the simulator (or replaying the simulation in
the wrong simulator) can be detected. Disabled by default as this option
greatly increases the size of replay objects (~100 bytes per object per step).

	divergenceTolerance (float [https://docs.python.org/3/library/functions.html#float]) – Amount by which a dynamic property can deviate in
a replay from its original value before we consider the replay to have
diverged. The default value is zero: no deviation is allowed. If finer
control over divergences is required, see Simulation.valuesHaveDiverged.

	continueAfterDivergence (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to continue simulating after a
divergence is detected instead of raising a DivergenceError. If this is
true, then a divergence ends the replaying of the saved scenario but the
simulation will continue in the usual randomized manner (i.e., it is as
if the replay data ran out at the moment of the divergence).

	allowPickle (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use pickle [https://docs.python.org/3/library/pickle.html#module-pickle] to (de)serialize custom object
types. See sceneFromBytes for a discussion of when this may be needed
(rarely) and its security implications.

	Returns:

	A Simulation object representing the completed simulation, or None [https://docs.python.org/3/library/constants.html#None] if no
simulation satisfying the requirements could be found within
maxIterations iterations.

	Raises:

	
	SimulationCreationError – if an error occurred while trying to run a
 simulation (e.g. some assumption made by the simulator was violated, like
 trying to create an object inside another).

	GuardViolation – if raiseGuardViolations is true and a precondition or
 invariant was violated during the simulation.

	DivergenceError – if replaying a simulation (via the replay option) and
 the replay has diverged from the original; requires the original simulation
 to have been run with enableDivergenceCheck.

	SerializationError – if writing or reading replay data fails. This could happen
 if your scenario uses an unusual custom distribution (see sceneToBytes)
 or if the replayed scenario has diverged without divergence-checking
 enabled.

Changed in version 3.0: maxIterations is now 1 by default.

New in version 3.0: The timestep argument.

	
replay(scene, replay, **kwargs)

	Replay a simulation.

This convenience method simply calls simulate (and so takes all the same
arguments), but makes the replay argument positional so you can write
simulator.replay(scene, replay) instead of
simulator.simulate(scene, replay=replay).

	
abstract createSimulation(scene, **kwargs)

	Create a Simulation from a Scenic scene.

This should be overridden by subclasses to return instances of their own
specialized subclass of Simulation. The given scene and kwargs
(together making up all the arguments passed to simulate except for
maxIterations) should be passed through to the initializer of that
instance.

Changed in version 3.0: This method is now called with all the arguments to simulate except for
maxIterations; these should be passed through as described above.

	
destroy()

	Clean up as needed when shutting down the simulator interface.

Subclasses should call the parent implementation, which will catch this
method being called twice on the same Simulator.

	
class Simulation(scene, *, maxSteps, name, timestep, replay=None, enableReplay=True, allowPickle=False, enableDivergenceCheck=False, divergenceTolerance=0, continueAfterDivergence=False, verbosity=0)

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

A single simulation run.

These objects are not manipulated manually, but are created by a Simulator.
Simulator interfaces should subclass this class, implementing various abstract
methods to call the appropriate simulator APIs. In particular, the following
methods must be implemented:

	createObjectInSimulator, to create an object;

	step, to run the simulation for one time step;

	getProperties, to read back the new state of an object.

Other methods can be overridden if necessary, e.g. setup for initialization
at the start of the simulation and destroy for cleanup afterward.

Changed in version 3.0: The __init__ method of subclasses should no longer create objects;
the createObjectInSimulator method will be called instead. Other
initialization which needs to take place after object creation should be
done in setup after calling the superclass implementation.

The arguments to __init__ are the same as those to simulate, except
that maxIterations is omitted.

	Attributes:

	
	currentTime (int) – Number of time steps elapsed so far.

	timestep (float) – Length of each time step in seconds.

	objects – List of Scenic objects (instances of Object) existing in the
simulation. This list will change if objects are created dynamically.

	agents – List of agents in the simulation.

	result (SimulationResult) – Result of the simulation, or None [https://docs.python.org/3/library/constants.html#None] if it has not
yet completed. This is the primary object which should be inspected to get
data out of the simulation: the other undocumented attributes of this class
are for internal use only.

	Raises:

	RejectSimulationException – if a requirement is violated.

	
setup()

	Set up the simulation to run in the simulator.

Subclasses may override this method to perform custom initialization,
but should call the parent implementation to create the objects in the
initial scene (through createObjectInSimulator).

	
abstract createObjectInSimulator(obj)

	Create the given object in the simulator.

Implemented by subclasses. Should raise SimulationCreationError if creating
the object fails.

	Parameters:

	obj (Object) – the Scenic object to create.

	Raises:

	SimulationCreationError – if unable to create the object in the simulator.

	
scheduleForAgents()

	Compute the order for the agents to run in the next time step.

The default order is the order in which the agents were created.

	Returns:

	An iterable [https://docs.python.org/3/glossary.html#term-iterable] which is a permutation of self.agents.

	
actionsAreCompatible(agent, actions)

	Check whether the given actions can be taken simultaneously by an agent.

The default is to consider all actions compatible with each other, and to
call Action.canBeTakenBy to determine if an agent can take an action.
Subclasses should override this method as appropriate.

	Parameters:

	
	agent (Object) – the agent which wants to take the given actions.

	actions (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – tuple of actions to be taken.

	
executeActions(allActions)

	Execute the actions selected by the agents.

The default implementation calls the applyTo method of each Action to apply
it to the appropriate agent.
Subclasses may override this method to make additional simulator API calls as
needed, but should call this implementation too or otherwise emulate its
functionality.

	Parameters:

	allActions – an OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] mapping each agent to a tuple
of actions. The order of agents in the dict should be respected in case
the order of actions matters.

	
abstract step()

	Run the simulation for one step and return the next trajectory element.

Implemented by subclasses. This should cause the simulator to simulate physics
for self.timestep seconds.

	
updateObjects()

	Update the positions and other properties of objects from the simulation.

Subclasses likely do not need to override this method: they should implement its
subroutine getProperties below.

	
valuesHaveDiverged(obj, prop, expected, actual)

	Decide whether the value of a dynamic property has diverged from the replay.

The default implementation considers scalar and vector properties to have diverged
if the distance between the actual and expected values is greater than
self.divergenceTolerance (which is 0 by default); other types of properties
use the != operator.

Subclasses may override this function to provide more specialized criteria (e.g.
allowing some properties to diverge more than others).

	Parameters:

	
	obj (Object) – The object being considered.

	prop (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the dynamic property being considered.

	expected – The value of the property saved in the replay currently being run.

	actual – The value of the property in the current simulation.

	Returns:

	True [https://docs.python.org/3/library/constants.html#True] if the actual value should be considered as having diverged from the
expected one; otherwise False [https://docs.python.org/3/library/constants.html#False].

	
abstract getProperties(obj, properties)

	Read the values of the given properties of the object from the simulator.

Implemented by subclasses.

	Parameters:

	
	obj (Object) – Scenic object in question.

	properties (set [https://docs.python.org/3/library/stdtypes.html#set]) – Set of names of properties to read from the simulator.
It is safe to destructively iterate through the set if you want.

	Returns:

	A dict [https://docs.python.org/3/library/stdtypes.html#dict] mapping each of the given properties to its current value.

	
currentState()

	Return the current state of the simulation.

The definition of ‘state’ is up to the simulator; the ‘state’ is simply saved
at each time step to define the ‘trajectory’ of the simulation.

The default implementation returns a tuple of the positions of all objects.

	
property currentRealTime

	Current simulation time, in seconds.

	
destroy()

	Perform any cleanup necessary to reset the simulator after a simulation.

The default implementation does nothing by default; it may be overridden
by subclasses.

	
getReplay()

	Encode this simulation to a bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object for future replay.

Requires that the simulation was run with enableReplay=True (the default).

	
class ReplayMode(value)

	Bases: IntFlag [https://docs.python.org/3/library/enum.html#enum.IntFlag]

An enumeration.

	
class DummySimulator(drift=0)

	Bases: Simulator

Simulator which does (almost) nothing, for testing and debugging purposes.

To allow testing the change of dynamic properties over time, all objects drift
upward by drift every time step.

	
class DummySimulation(scene, drift=0, **kwargs)

	Bases: Simulation

Minimal Simulation subclass for DummySimulator.

	
class TerminationType(value)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Enum describing the possible ways a simulation can end.

	
timeLimit = 'reached simulation time limit'

	Simulation reached the specified time limit.

	
scenarioComplete = 'the top-level scenario finished'

	The top-level scenario finished executing.

(Either its compose block completed, one of its termination
conditions was met, or it was terminated with terminate.)

	
simulationTerminationCondition = 'a simulation termination condition was met'

	A user-specified simulation termination condition was met.

	
terminatedByMonitor = 'a monitor terminated the simulation'

	A monitor used terminate simulation to end the simulation.

	
terminatedByBehavior = 'a behavior terminated the simulation'

	A dynamic behavior used terminate simulation to end the simulation.

	
class SimulationResult(trajectory, actions, terminationType, terminationReason, records)

	Result of running a simulation.

	Attributes:

	
	trajectory – A tuple giving for each time step the simulation’s ‘state’: by
default the positions of every object. See Simulation.currentState.

	finalState – The last ‘state’ of the simulation, as above.

	actions – A tuple giving for each time step a dict specifying for each agent the
(possibly-empty) tuple of actions it took at that time step.

	terminationType (TerminationType) – The way the simulation ended.

	terminationReason (str) – A human-readable string giving the reason why the
simulation ended, possibly including debugging info.

	records (dict) – For each record statement, the value or time series of
values its expression took during the simulation.

scenic.core.specifiers

Specifiers and associated objects.

Summary of Module Members

Classes

	ModifyingSpecifier

	Specifier providing values (or modifying) properties.

	PropertyDefault

	A default value, possibly with dependencies.

	Specifier

	Specifier providing values for properties.

Member Details

	
class Specifier(name, priorities, value, deps=None)

	Specifier providing values for properties.

Each property is set to a value, at a given priority,
given dependencies.

	Parameters:

	
	name – The name of this specifier.

	priorities – A dictionary mapping properties to the priority
they are being specified with.

	value – A dictionary mapping properties to the values they are
being specified as.

	deps – An iterable containing all properties that this
specifier relies on.

	
getValuesFor(obj)

	Get the values specified for a given object.

	
class ModifyingSpecifier(name, priorities, value, modifiable_props, deps=None)

	Bases: Specifier

Specifier providing values (or modifying) properties.

	Parameters:

	
	name – The name of this specifier.

	priorities – A dictionary mapping properties to the priority
they are being specified with.

	value – A dictionary mapping properties to the values they are
being specified as.

	modifiable_props – What properties specified by this specifier
can be modified.

	deps – An iterable containing all properties that this
specifier relies on.

	
class PropertyDefault(requiredProperties, attributes, value)

	A default value, possibly with dependencies.

	
resolveFor(prop, overriddenDefs)

	Create a Specifier for a property from this default and any superclass defaults.

scenic.core.type_support

Support for checking Scenic types.

This module provides a system for checking that values passed to Scenic operators and
functions have the expected types. The top-level function toTypes and its
specializations toType, toVector, toScalar, etc. can also coerce closely-related
types into the desired type in some cases. For lazily-evaluated values (random values and
delayed arguments of specifiers), it may not be possible to determine the type at object
creation time: in such cases these functions return a lazily-evaluated object that
performs the type check either during specifier resolution or sampling as needed.

In general, the only objects which are coercible to a type T are instances of that type,
together with Distribution objects whose _valueType is a type coercible to T (and
therefore whose sampled value can be coerced to T). However, we also have the following
exceptional rules:

	
	Coercible to a scalar (type float [https://docs.python.org/3/library/functions.html#float]):
	
	Instances of numbers.Real [https://docs.python.org/3/library/numbers.html#numbers.Real] (coerced by calling float [https://docs.python.org/3/library/functions.html#float] on them);
this includes NumPy types such as numpy.single [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.single]

	
	Coercible to a heading (type Heading):
	
	Anything coercible to a scalar

	Any type with a toHeading method (including OrientedPoint)

	
	Coercible to a vector (type Vector):
	
	Tuples and lists of length 2 or 3

	Any type with a toVector method (including Point)

	
	Coercible to a Behavior:
	
	Subclasses of Behavior (coerced by calling them with no arguments)

	None [https://docs.python.org/3/library/constants.html#None] (considered to have type Behavior for convenience)

Summary of Module Members

Functions

	canCoerce

	Can this value be coerced into the given type?

	canCoerceType

	Can values of typeA be coerced into typeB?

	coerce

	Coerce something into the given type.

	coerceToAny

	Coerce something into any of the given types, raising an error if impossible.

	coerceToFloat

	

	coerceToHeading

	

	evaluateRequiringEqualTypes

	Evaluate the func, assuming thingA and thingB have the same type.

	isA

	Is this guaranteed to evaluate to a member of the given Scenic type?

	is_typing_generic

	Whether this is a pre-3.9 generic type from the typing module.

	toHeading

	Convert something to a heading, raising an error if impossible.

	toOrientation

	Convert something to an orientation, raising an error if impossible.

	toScalar

	Convert something to a scalar, raising an error if impossible.

	toType

	Convert something to a given type, raising an error if impossible.

	toTypes

	Convert something to any of the given types, raising an error if impossible.

	toVector

	Convert something to a vector, raising an error if impossible.

	underlyingType

	What type this value ultimately evaluates to, if we can tell.

	unifierOfTypes

	Most specific type unifying the given types.

	unifyingType

	Most specific type unifying the given values.

Classes

	Heading

	Dummy class used as a target for type coercions to headings.

	TypeChecker

	Checks that a given lazy value has one of a given list of types.

	TypeEqualityChecker

	Evaluates a function after checking that two lazy values have the same type.

	TypecheckedDistribution

	Distribution which typechecks its value at sampling time.

Exceptions

	CoercionFailure

	Raised by coercion functions when coercion is impossible.

Member Details

	
class Heading(x=0, /)

	Bases: float [https://docs.python.org/3/library/functions.html#float]

Dummy class used as a target for type coercions to headings.

	
underlyingType(thing)

	What type this value ultimately evaluates to, if we can tell.

	
isA(thing, ty)

	Is this guaranteed to evaluate to a member of the given Scenic type?

	
unifyingType(opts)

	Most specific type unifying the given values.

	
unifierOfTypes(types)

	Most specific type unifying the given types.

	
canCoerceType(typeA, typeB)

	Can values of typeA be coerced into typeB?

	
canCoerce(thing, ty, exact=False)

	Can this value be coerced into the given type?

	
coerce(thing, ty, error='wrong type')

	Coerce something into the given type.

Used internally by toType, etc.; this function should not otherwise be
called directly.

	
exception CoercionFailure

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised by coercion functions when coercion is impossible.

Only used internally; will be converted to a parse error for reporting to
the user.

	
class TypecheckedDistribution(dist, ty, errorMessage, coercer=None)

	Bases: Distribution

Distribution which typechecks its value at sampling time.

Only for internal use by the typechecking system; introduced by coerce when it is
unable to guarantee that a random value will have the correct type after sampling.
Note that the type check is not a purely passive operation, and may actually
transform the sampled value according to the coercion rules above (e.g. a sampled
Point will be converted to a Vector in a context which expects the latter).

	
coerceToAny(thing, types, error)

	Coerce something into any of the given types, raising an error if impossible.

Only for internal use by the typechecking system; called from toTypes.

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if it is impossible to coerce the value into any of the types.

	
toTypes(thing, types, typeError='wrong type')

	Convert something to any of the given types, raising an error if impossible.

Types are tried in the order they are given: the first one compatible with the given
value is used. Coercions of closely-related types may take place as described in the
module documentation above.

If the given value requires lazy evaluation, this function returns a TypeChecker
object that performs the type conversion after specifier resolution.

	Parameters:

	
	thing – Value to convert.

	types – Sequence of one or more destination types.

	typeError (str [https://docs.python.org/3/library/stdtypes.html#str]) – Message included in exception raised on failure.

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the given value is not one of the given types and cannot
 be converted to any of them.

	
toType(thing, ty, typeError='wrong type')

	Convert something to a given type, raising an error if impossible.

Equivalent to toTypes with a single destination type.

	
toScalar(thing, typeError='non-scalar in scalar context')

	Convert something to a scalar, raising an error if impossible.

See toTypes for details.

	
toHeading(thing, typeError='non-heading in heading context')

	Convert something to a heading, raising an error if impossible.

See toTypes for details.

	
toOrientation(thing, typeError='non-orientation in orientation context')

	Convert something to an orientation, raising an error if impossible.

See toTypes for details.

	
toVector(thing, typeError='non-vector in vector context')

	Convert something to a vector, raising an error if impossible.

See toTypes for details.

	
evaluateRequiringEqualTypes(func, thingA, thingB, typeError='type mismatch')

	Evaluate the func, assuming thingA and thingB have the same type.

If func produces a lazy value, it should not have any required properties beyond
those of thingA and thingB.

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if thingA and thingB do not have the same type.

	
class TypeChecker(*args, _internal=False, **kwargs)

	Bases: DelayedArgument

Checks that a given lazy value has one of a given list of types.

	
class TypeEqualityChecker(*args, _internal=False, **kwargs)

	Bases: DelayedArgument

Evaluates a function after checking that two lazy values have the same type.

	
is_typing_generic(tp)

	Whether this is a pre-3.9 generic type from the typing module.

scenic.core.utils

Assorted utility functions.

Summary of Module Members

Functions

	alarm

	

	argsToString

	

	batched

	

	cached

	Decorator for making a method with no arguments cache its result

	cached_method

	Decorator for making a method cache its result on a per-object basis.

	cached_property

	

	repairMesh

	Attempt to repair a mesh, returning a proper 2-manifold.

	unifyMesh

	Attempt to merge mesh bodies, raising a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if something fails.

Classes

	DefaultIdentityDict

	Dictionary which is the identity map by default.

Member Details

	
cached(oldMethod)

	Decorator for making a method with no arguments cache its result

	
cached_method(oldMethod)

	Decorator for making a method cache its result on a per-object basis.

Like functools.lru_cache(maxsize=None) except using a separate cache
for each object, with the cache automatically deallocated when the object
is garbage collected.

	
unifyMesh(mesh, verbose=False)

	Attempt to merge mesh bodies, raising a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if something fails.

Should only be used with meshes that are volumes.

If a mesh is composed of multiple bodies, the following process
is applied:
1. Split mesh into volumes and holes.
2. From each volume, subtract each hole that is fully contained.
3. Union all the resulting volumes.

	
repairMesh(mesh, pitch=0.015625, verbose=True)

	Attempt to repair a mesh, returning a proper 2-manifold.

Repair is attempted via several steps, each sacrificing more accuracy
but with a higher chance of returning a proper volumetric mesh.

Repair is first attempted with easy fixes, like merging vertices and fixing
winding. These will usually not deteriorate the quality of the mesh.

Repair is then attempted by voxelizing the mesh, filling it, and then running
marching cubes on the mesh. This approach is somewhat accurate but always
produces solid objects. (This is to be expected since non watertight hollow
objects aren’t well defined).

Repair is finally attempted by using the convex hull, which is unlikely to
be accurate but is guaranteed to result in a volume.

NOTE: For planar meshes, this function will throw an error.

	Parameters:

	
	mesh – The input mesh to be repaired.

	pitch – The target pitch to be used when attempting to repair the mesh via
voxelization. A lower pitch uses smaller voxels, and thus a closer
approximation, but can require significant additional processsing time.
The actual pitch used may be larger if needed to get a manifold mesh.

	verbose – Whether or not to print warnings describing attempts to repair the mesh.

	
class DefaultIdentityDict

	Dictionary which is the identity map by default.

The map works on all objects, even unhashable ones, but doesn’t support all
of the standard mapping operations.

scenic.core.vectors

Scenic vectors and vector fields.

Summary of Module Members

Functions

	alwaysGlobalOrientation

	Whether this orientation is always aligned with the global coordinate system.

	makeVectorOperatorHandler

	

	scalarOperator

	Decorator for vector operators that yield scalars.

	vectorDistributionMethod

	Decorator for methods that produce vectors.

	vectorOperator

	Decorator for vector operators that yield vectors.

	zeroIdentityVectorOperator

	

	zeroPreservingVectorOperator

	

Classes

	Orientation

	An orientation in 3D space.

	OrientedVector

	

	PiecewiseVectorField

	A vector field defined by patching together several regions.

	PolygonalVectorField

	A piecewise-constant vector field defined over polygonal cells.

	PolyhedronVectorField

	

	Vector

	A 3D vector, whose coordinates can be distributions.

	VectorDistribution

	A distribution over Vectors.

	VectorField

	A vector field, providing an orientation at every point.

	VectorMethodDistribution

	Vector version of MethodDistribution.

	VectorOperatorDistribution

	Vector version of OperatorDistribution.

Member Details

	
class VectorDistribution(*dependencies, valueType=None)

	Bases: Distribution

A distribution over Vectors.

	
_defaultValueType

	alias of Vector

	
class VectorOperatorDistribution(operator, obj, operands)

	Bases: VectorDistribution

Vector version of OperatorDistribution.

	
class VectorMethodDistribution(method, obj, args, kwargs)

	Bases: VectorDistribution

Vector version of MethodDistribution.

	
scalarOperator(method)

	Decorator for vector operators that yield scalars.

	
vectorOperator(method, preservesZero=False, zeroIdentity=False)

	Decorator for vector operators that yield vectors.

	
vectorDistributionMethod(method)

	Decorator for methods that produce vectors. See distributionMethod.

	
class Orientation(rotation)

	An orientation in 3D space.

	
classmethod fromQuaternion(quaternion)

	Create an Orientation from a quaternion (of the form (x,y,z,w))

	Return type:

	Orientation

	
classmethod fromEuler(yaw, pitch, roll)

	Create an Orientation from yaw, pitch, and roll angles (in radians).

	Return type:

	Orientation

	
property yaw: float [https://docs.python.org/3/library/functions.html#float]

	Yaw in the global coordinate system.

	
property pitch: float [https://docs.python.org/3/library/functions.html#float]

	Pitch in the global coordinate system.

	
property roll: float [https://docs.python.org/3/library/functions.html#float]

	Roll in the global coordinate system.

	
property eulerAngles: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	Global intrinsic Euler angles yaw, pitch, roll.

	
localAnglesFor(orientation)

	Get local Euler angles for an orientation w.r.t. this orientation.

That is, considering self as the parent orientation, find the Euler angles
expressing the given orientation.

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
globalToLocalAngles(yaw, pitch, roll)

	Convert global Euler angles to local angles w.r.t. this orientation.

Equivalent to localAnglesFor but takes Euler angles as input.

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
alwaysGlobalOrientation(orientation)

	Whether this orientation is always aligned with the global coordinate system.

Returns False if the orientation is a distribution or delayed argument, since
then the value cannot be known at this time.

	
class Vector(x, y, z=0)

	Bases: Samplable, Sequence [https://trimesh.org/trimesh.typed.html#trimesh.typed.Sequence]

A 3D vector, whose coordinates can be distributions.

	
sphericalCoordinates()

	Returns this vector in spherical coordinates (rho, theta, phi)

	
rotatedBy(angleOrOrientation)

	Return a vector equal to this one rotated counterclockwise by angle/orientation.

	Return type:

	Vector

	
angleWith(other)

	Compute the signed angle between self and other.

The angle is positive if other is counterclockwise of self (considering
the smallest possible rotation to align them).

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class VectorField(name, value, minSteps=4, defaultStepSize=5)

	A vector field, providing an orientation at every point.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging.

	value – function computing the heading at the given Vector.

	minSteps (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of steps for followFrom; default 4.

	defaultStepSize (float [https://docs.python.org/3/library/functions.html#float]) – Default step size for followFrom; default 5.
This is an upper bound: more steps will be taken as needed to ensure that no
single step is longer than this value, but if the distance to travel is small
then the steps may be smaller.

	
followFrom(pos, dist, steps=None, stepSize=None)

	Follow the field from a point for a given distance.

Uses the forward Euler approximation, covering the given distance with
equal-size steps. The number of steps can be given manually, or computed
automatically from a desired step size.

	Parameters:

	
	pos (Vector) – point to start from.

	dist (float [https://docs.python.org/3/library/functions.html#float]) – distance to travel.

	steps (int [https://docs.python.org/3/library/functions.html#int]) – number of steps to take, or None [https://docs.python.org/3/library/constants.html#None] to compute the number of
steps based on the distance (default None [https://docs.python.org/3/library/constants.html#None]).

	stepSize (float [https://docs.python.org/3/library/functions.html#float]) – length used to compute how many steps to take, or
None [https://docs.python.org/3/library/constants.html#None] to use the field’s default step size.

	
static forUnionOf(regions, tolerance=0)

	Creates a PiecewiseVectorField from the union of the given regions.

If none of the regions have an orientation, returns None [https://docs.python.org/3/library/constants.html#None] instead.

	
class PolygonalVectorField(name, cells, headingFunction=None, defaultHeading=None)

	Bases: VectorField

A piecewise-constant vector field defined over polygonal cells.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging.

	cells – a sequence of cells, with each cell being a pair consisting of a Shapely
geometry and a heading. If the heading is None [https://docs.python.org/3/library/constants.html#None], we call the given
headingFunction for points in the cell instead.

	headingFunction – function computing the heading for points in cells without
specified headings, if any (default None [https://docs.python.org/3/library/constants.html#None]).

	defaultHeading – heading for points not contained in any cell (default
None [https://docs.python.org/3/library/constants.html#None], meaning reject such points).

	
class PiecewiseVectorField(name, regions, tolerance=0, defaultHeading=None)

	Bases: VectorField

A vector field defined by patching together several regions.

The heading at a point is determined by checking each region in turn to see if it has
an orientation and contains the point, returning the corresponding heading if so. If
we get through all the regions, and tolerance is nonzero, we try again, this time
allowing the point to be up to tolerance away from each region. If we still fail
to find a region “containing” the point, then we return the defaultHeading, if
any, and otherwise reject the scene.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging.

	regions (sequence of Region objects) – the regions making up the field.

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – maximum distance at which to consider a point as being
in one of the regions, if it is not otherwise contained (default 0).

	defaultHeading (float [https://docs.python.org/3/library/functions.html#float]) – the heading for points not in any region with an
orientation (default None [https://docs.python.org/3/library/constants.html#None], meaning reject such points).

scenic.core.visibility

Implementations of Scenic’s visibility functions.

Summary of Module Members

Functions

	canSee

	Perform visibility checks on Points, OrientedPoints, or Objects, accounting for occlusion.

Member Details

	
canSee(position, orientation, visibleDistance, viewAngles, rayCount, rayDensity, distanceScaling, target, occludingObjects, debug=False)

	Perform visibility checks on Points, OrientedPoints, or Objects, accounting for occlusion.

For visibilty of Objects:

	Do several quick checks to see if the object is naively visible
or not visible:

	If the object contains its position and its position is visible,
the object is visible.

	If the viewer is inside the object, the object is visible.

	If the closest distance from the object to the viewer is greater
than the visible distance, the object is not visible.

	Check if the object crosses the back and/or front of the viewing
object.

	Compute the spherical coordinates of all vertices in the mesh of
the region we are trying to view, with the goal of using this to
send rays only where they have a chance of hitting the region.

	Compute 2 ranges of angles (horizontal/vertical) in which rays have
a chance of hitting the object, as follows:

	If the object does not cross behind the viewer, take the min and
max of the the spherical coordinate angles, while noting that this range
is centered on the front of the viewer.

	If the object crosses behind the viewer but not in front, transform
the spherical angles so they are coming from the back of the object,
while noting that this range is centered on the back of the object.

	If it crosses both, we do not optimize the amount of rays sent.

	Compute the intersection of the optimizated range from step 4 and
the viewAngles range, accounting for where the optimization range is centered.
If it is empty, the object cannot be visible. If it is not empty, shoot rays at
the desired density in the intersection region. Keep all rays that intersect
the object (candidate rays).

	If there are no candidate rays, the object is not visible.

	For each occluding object in occludingObjects: check if any candidate rays
intersect the occluding object at a distance less than the distance they intersected
the target object. If they do, remove them from the candidate rays.

	If any candidate rays remain, the object is visible. If not, it is occluded
and not visible.

For visibility of Points/OrientedPoints:

	Check if distance from the viewer to the point is greater than visibleDistance.
If so, the point cannot be visible

	Create a single candidate ray, using the vector from the viewer to the target.
If this ray is outside of the bounds of viewAngles, the point cannot be visible.

	For each occluding object in occludingObjets: check if the candidate ray hits
the occluding object at a distance less than the distance from the viewer to the
target point. If so, then the object is not visible. Otherwise, the object is visible.

	Parameters:

	
	position – Position of the viewer, accounting for any offsets.

	orientation – Orientation of the viewer.

	visibleDistance – The maximum distance the viewer can view objects from.

	viewAngles – The horizontal and vertical view angles, in radians, of the viewer.

	rayCount – The total number of rays in each dimension used in visibility calculations..

	target – The target being viewed. Currently supports Point, OrientedPoint, and Object.

	occludingObjects – An optional list of objects which can occlude the target.

scenic.core.workspaces

Workspaces.

Summary of Module Members

Classes

	Workspace

	A workspace describing the fixed world of a scenario.

Member Details

	
class Workspace(region=<AllRegion everywhere>)

	Bases: Region

A workspace describing the fixed world of a scenario.

	Parameters:

	region (Region) – The region defining the extent of the workspace
(default everywhere).

	
show3D(viewer)

	Render a schematic of the workspace (in 3D) for debugging

	
show2D(plt)

	Render a schematic of the workspace (in 2D) for debugging

	
zoomAround(plt, objects, expansion=1)

	Zoom the schematic around the specified objects

	
scenicToSchematicCoords(coords)

	Convert Scenic coordinates to those used for schematic rendering.

scenic.domains

General scenario domains used across simulators.

Submodules

	driving

	Domain for driving scenarios.

scenic.domains.driving

Domain for driving scenarios.

This domain must currently be used in 2D Compatibility Mode.

The world model defines Scenic classes for cars,
pedestrians, etc., actions for dynamic agents which walk or drive, as well as simple
behaviors like lane-following. Scenarios for the driving domain should import the model
as follows:

model scenic.domains.driving.model

Scenarios written for the driving domain should work without changes [1] in any of the
following simulators:

	CARLA, using the model scenic.simulators.carla.model

	LGSVL, using the model scenic.simulators.lgsvl.model

	the built-in Newtonian simulator, using the model
scenic.simulators.newtonian.driving_model

For example, the examples/driving/badlyParkedCarPullingIn.scenic scenario is
written for the driving domain and can be run in multiple simulators:

	no simulator, for viewing the initial scene:

$ scenic examples/driving/badlyParkedCarPullingIn.scenic

	the built-in Newtonian simulator, for quick debugging without having to install an
external simulator:

$ scenic -S --model scenic.simulators.newtonian.driving_model \
 examples/driving/badlyParkedCarPullingIn.scenic

	CARLA, using the default map specified in the scenario:

$ scenic -S --model scenic.simulators.carla.model \
 examples/driving/badlyParkedCarPullingIn.scenic

	LGSVL, specifying a map which it supports:

$ scenic -S --model scenic.simulators.lgsvl.model \
 --param map tests/formats/opendrive/maps/LGSVL/borregasave.xodr \
 --param lgsvl_map BorregasAve \
 examples/driving/badlyParkedCarPullingIn.scenic

Footnotes

[1]
Assuming the simulator supports the selected map. If necessary, the map may be
changed from the command line using the --param option; see the
model documentation for details.

Submodules

	actions

	Actions for dynamic agents in the driving domain.

	behaviors

	Library of useful behaviors for dynamic agents in driving scenarios.

	controllers

	Low-level controllers useful for vehicles.

	model

	Scenic world model for scenarios using the driving domain.

	roads

	Library for representing road network geometry and traffic information.

	simulators

	Abstract interface to simulators supporting the driving domain.

	workspace

	Workspaces for the driving domain.

scenic.domains.driving.actions

Actions for dynamic agents in the driving domain.

These actions are automatically imported when using the driving domain.

The RegulatedControlAction is based on code from the CARLA [https://carla.org/] project, licensed under
the following terms:

Copyright (c) 2018-2020 CVC.

This work is licensed under the terms of the MIT license.
For a copy, see <https://opensource.org/licenses/MIT>.

Summary of Module Members

Classes

	OffsetAction

	Teleports actor forward (in direction of its heading) by some offset.

	RegulatedControlAction

	Regulated control of throttle, braking, and steering.

	SetBrakeAction

	Set the amount of brake.

	SetHandBrakeAction

	Set or release the hand brake.

	SetPositionAction

	Teleport an agent to the given position.

	SetReverseAction

	Engage or release reverse gear.

	SetSpeedAction

	Set the speed of an agent (keeping its heading fixed).

	SetSteerAction

	Set the steering 'angle'.

	SetThrottleAction

	Set the throttle.

	SetVelocityAction

	Set the velocity of an agent.

	SetWalkingDirectionAction

	Set the walking direction.

	SetWalkingSpeedAction

	Set the walking speed.

	SteeringAction

	Abstract class for actions usable by agents which can steer.

	Steers

	Mixin protocol for agents which can steer.

	WalkingAction

	Abstract class for actions usable by agents which can walk.

	Walks

	Mixin protocol for agents which can walk with a given direction and speed.

Member Details

	
class Steers

	Mixin protocol for agents which can steer.

Specifically, agents must support throttling, braking, steering, setting the hand
brake, and going into reverse.

	
class Walks

	Mixin protocol for agents which can walk with a given direction and speed.

We provide a simplistic implementation which directly sets the velocity of the agent.
This implementation needs to be explicitly opted-into, since simulators may provide a
more sophisticated API that properly animates pedestrians.

	
class SetPositionAction(pos)

	Bases: Action

Teleport an agent to the given position.

	Parameters:

	pos (Vector) –

	
class OffsetAction(offset)

	Bases: Action

Teleports actor forward (in direction of its heading) by some offset.

	Parameters:

	offset (Vector) –

	
class SetVelocityAction(xVel, yVel, zVel=0)

	Bases: Action

Set the velocity of an agent.

	Parameters:

	
	xVel (float [https://docs.python.org/3/library/functions.html#float]) –

	yVel (float [https://docs.python.org/3/library/functions.html#float]) –

	zVel (float [https://docs.python.org/3/library/functions.html#float]) –

	
class SetSpeedAction(speed)

	Bases: Action

Set the speed of an agent (keeping its heading fixed).

	Parameters:

	speed (float [https://docs.python.org/3/library/functions.html#float]) –

	
class SteeringAction

	Bases: Action

Abstract class for actions usable by agents which can steer.

Such agents must implement the Steers protocol.

	
class SetThrottleAction(throttle)

	Bases: SteeringAction

Set the throttle.

	Parameters:

	throttle (float [https://docs.python.org/3/library/functions.html#float]) – Throttle value between 0 and 1.

	
class SetSteerAction(steer)

	Bases: SteeringAction

Set the steering ‘angle’.

	Parameters:

	steer (float [https://docs.python.org/3/library/functions.html#float]) – Steering ‘angle’ between -1 and 1.

	
class SetBrakeAction(brake)

	Bases: SteeringAction

Set the amount of brake.

	Parameters:

	brake (float [https://docs.python.org/3/library/functions.html#float]) – Amount of braking between 0 and 1.

	
class SetHandBrakeAction(handBrake)

	Bases: SteeringAction

Set or release the hand brake.

	Parameters:

	handBrake (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the hand brake is set.

	
class SetReverseAction(reverse)

	Bases: SteeringAction

Engage or release reverse gear.

	Parameters:

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the car is in reverse.

	
class RegulatedControlAction(throttle, steer, past_steer, max_throttle=0.5, max_brake=0.5, max_steer=0.8)

	Bases: SteeringAction

Regulated control of throttle, braking, and steering.

Controls throttle and braking using one signal that may be positive or negative.
Useful with simple controllers that output a single value.

	Parameters:

	
	throttle (float [https://docs.python.org/3/library/functions.html#float]) – Control signal for throttle and braking (will be clamped as below).

	steer (float [https://docs.python.org/3/library/functions.html#float]) – Control signal for steering (also clamped).

	past_steer (float [https://docs.python.org/3/library/functions.html#float]) – Previous steering signal, for regulating abrupt changes.

	max_throttle (float [https://docs.python.org/3/library/functions.html#float]) – Maximum value for throttle, when positive.

	max_brake (float [https://docs.python.org/3/library/functions.html#float]) – Maximum (absolute) value for throttle, when negative.

	max_steer (float [https://docs.python.org/3/library/functions.html#float]) – Maximum absolute value for steer.

	
class WalkingAction

	Bases: Action

Abstract class for actions usable by agents which can walk.

Such agents must implement the Walks protocol.

	
class SetWalkingDirectionAction(heading)

	Bases: WalkingAction

Set the walking direction.

	
class SetWalkingSpeedAction(speed)

	Bases: WalkingAction

Set the walking speed.

scenic.domains.driving.behaviors

Library of useful behaviors for dynamic agents in driving scenarios.

These behaviors are automatically imported when using the driving domain.

Summary of Module Members

Functions

	concatenateCenterlines

	

Behaviors

	AccelerateForwardBehavior

	

	ConstantThrottleBehavior

	

	DriveAvoidingCollisions

	

	FollowLaneBehavior

	Follow's the lane on which the vehicle is at, unless the laneToFollow is specified.

	FollowTrajectoryBehavior

	Follows the given trajectory.

	LaneChangeBehavior

	is_oppositeTraffic should be specified as True only if the laneSectionToSwitch to has the opposite traffic direction to the initial lane from which the vehicle started LaneChangeBehavior e.g.

	TurnBehavior

	This behavior uses a controller specifically tuned for turning at an intersection.

	WalkForwardBehavior

	Walk forward behavior for pedestrians.

Member Details

	
behavior FollowLaneBehavior(target_speed=10, laneToFollow=None, is_oppositeTraffic=False)

	Follow’s the lane on which the vehicle is at, unless the laneToFollow is specified.
Once the vehicle reaches an intersection, by default, the vehicle will take the straight route.
If straight route is not available, then any availble turn route will be taken, uniformly randomly.
If turning at the intersection, the vehicle will slow down to make the turn, safely.

This behavior does not terminate. A recommended use of the behavior is to accompany it with condition,
e.g. do FollowLaneBehavior() until …

	Parameters:

	
	target_speed – Its unit is in m/s. By default, it is set to 10 m/s

	laneToFollow – If the lane to follow is different from the lane that the vehicle is on, this parameter can be used to specify that lane. By default, this variable will be set to None, which means that the vehicle will follow the lane that it is currently on.

	
behavior FollowTrajectoryBehavior(target_speed=10, trajectory=None, turn_speed=None)

	Follows the given trajectory. The behavior terminates once the end of the trajectory is reached.

	Parameters:

	
	target_speed – Its unit is in m/s. By default, it is set to 10 m/s

	trajectory – It is a list of sequential lanes to track, from the lane that the vehicle is initially on to the lane it should end up on.

	
behavior LaneChangeBehavior(laneSectionToSwitch, is_oppositeTraffic=False, target_speed=10)

	is_oppositeTraffic should be specified as True only if the laneSectionToSwitch to has
the opposite traffic direction to the initial lane from which the vehicle started LaneChangeBehavior
e.g. refer to the use of this flag in examples/carla/Carla_Challenge/carlaChallenge6.scenic

	
behavior TurnBehavior(trajectory, target_speed=6)

	This behavior uses a controller specifically tuned for turning at an intersection.
This behavior is only operational within an intersection,
it will terminate if the vehicle is outside of an intersection.

	
behavior WalkForwardBehavior()

	Walk forward behavior for pedestrians.

It will uniformly randomly choose either end of the sidewalk that the pedestrian is on, and have the pedestrian walk towards the endpoint.

scenic.domains.driving.controllers

Low-level controllers useful for vehicles.

The Lateral/Longitudinal PID controllers are adapted from CARLA [https://carla.org/]’s PID controllers,
which are licensed under the following terms:

Copyright (c) 2018-2020 CVC.

This work is licensed under the terms of the MIT license.
For a copy, see <https://opensource.org/licenses/MIT>.

Summary of Module Members

Classes

	PIDLateralController

	Lateral control using a PID to track a trajectory.

	PIDLongitudinalController

	Longitudinal control using a PID to reach a target speed.

Member Details

	
class PIDLongitudinalController(K_P=0.5, K_D=0.1, K_I=0.2, dt=0.1)

	Longitudinal control using a PID to reach a target speed.

	Parameters:

	
	K_P – Proportional gain

	K_D – Derivative gain

	K_I – Integral gain

	dt – time step

	
run_step(speed_error)

	Estimate the throttle/brake of the vehicle based on the PID equations.

	Parameters:

	speed_error – target speed minus current speed

	Returns:

	a signal between -1 and 1, with negative values indicating braking.

	
class PIDLateralController(K_P=0.3, K_D=0.2, K_I=0, dt=0.1)

	Lateral control using a PID to track a trajectory.

	Parameters:

	
	K_P – Proportional gain

	K_D – Derivative gain

	K_I – Integral gain

	dt – time step

	
run_step(cte)

	Estimate the steering angle of the vehicle based on the PID equations.

	Parameters:

	cte – cross-track error (distance to right of desired trajectory)

	Returns:

	a signal between -1 and 1, with -1 meaning maximum steering to the left.

scenic.domains.driving.model

Scenic world model for scenarios using the driving domain.

Imports actions and behaviors for dynamic agents from
scenic.domains.driving.actions and scenic.domains.driving.behaviors.

The map file to use for the scenario must be specified before importing this model by
defining the global parameter map. This path is passed to the Network.fromFile
function to create a Network object representing the road network. Extra options may be
passed to the function by defining the global parameter map_options, which should be
a dictionary of keyword arguments. For example, we could write:

param map = localPath('mymap.xodr')
param map_options = { 'tolerance': 0.1 }
model scenic.domains.driving.model

If you are writing a generic scenario that supports multiple maps, you may leave the
map parameter undefined; then running the scenario will produce an error unless the
user uses the --param command-line option to specify the map.

Note

If you are using a simulator, you may have to also define simulator-specific global
parameters to tell the simulator which world to load. For example, our LGSVL
interface uses a parameter lgsvl_map to specify the name of the Unity scene.
See the documentation of the simulator interfaces for
details.

Summary of Module Members

Module Attributes

	network

	The road network being used for the scenario, as a Network object.

	road

	The union of all drivable roads, including intersections but not shoulders or parking lanes.

	curb

	The union of all curbs.

	sidewalk

	The union of all sidewalks.

	shoulder

	The union of all shoulders, including parking lanes.

	roadOrShoulder

	All drivable areas, including both ordinary roads and shoulders.

	intersection

	The union of all intersections.

	roadDirection

	A VectorField representing the nominal traffic direction at a given point.

Functions

	is2DMode

	

	withinDistanceToAnyCars

	returns boolean

	withinDistanceToAnyObjs

	checks whether there exists any obj (1) in front of the vehicle, (2) within thresholdDistance

	withinDistanceToObjsInLane

	checks whether there exists any obj (1) in front of the vehicle, (2) on the same lane, (3) within thresholdDistance

Classes

	Car

	A car.

	DrivingObject

	Abstract class for objects in a road network.

	NPCCar

	Car for which accurate physics is not required.

	Pedestrian

	A pedestrian.

	Vehicle

	Vehicles which drive, such as cars.

Member Details

	
network: Network

	The road network being used for the scenario, as a Network object.

	
road: Region

	The union of all drivable roads, including intersections but not shoulders
or parking lanes.

	
curb: Region

	The union of all curbs.

	
sidewalk: Region = <EmptyRegion nowhere>

	The union of all sidewalks.

	
shoulder: Region = <EmptyRegion nowhere>

	The union of all shoulders, including parking lanes.

	
roadOrShoulder: Region

	All drivable areas, including both ordinary roads and shoulders.

	
intersection: Region = <EmptyRegion nowhere>

	The union of all intersections.

	
roadDirection: VectorField

	A VectorField representing the nominal traffic direction at a given point.

Inside intersections or anywhere else where there can be multiple nominal
traffic directions, the choice is arbitrary. At such points, the function
Network.nominalDirectionsAt can be used to get all nominal directions.

	
class DrivingObject <specifiers>

	Bases: Object2D

Abstract class for objects in a road network.

Provides convenience properties for the lane, road, intersection, etc. at the
object’s current position (if any).

Also defines the elevation property as a standard way to access the Z
component of an object’s position, since the Scenic built-in property
position is only 2D. If elevation is set to None [https://docs.python.org/3/library/constants.html#None], the simulator is
responsible for choosing an appropriate Z coordinate so that the object is
on the ground, then updating the property. 2D simulators should set the
property to zero.

	Properties:

	
	elevation (float or None; dynamic) – default None (see above).

	requireVisible (bool) – Default value False (overriding the default
from Object).

	
property lane: Lane

	The Lane at the object’s current position.

The simulation is rejected if the object is not in a lane.
(Use DrivingObject._lane to get None [https://docs.python.org/3/library/constants.html#None] instead.)

	
property _lane: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Lane]

	The Lane at the object’s current position, if any.

	
property laneSection: LaneSection

	The LaneSection at the object’s current position.

The simulation is rejected if the object is not in a lane.

	
property _laneSection: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	The LaneSection at the object’s current position, if any.

	
property laneGroup: LaneGroup

	The LaneGroup at the object’s current position.

The simulation is rejected if the object is not in a lane.

	
property _laneGroup: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneGroup]

	The LaneGroup at the object’s current position, if any.

	
property oppositeLaneGroup: LaneGroup

	The LaneGroup on the other side of the road from the object.

The simulation is rejected if the object is not on a two-way road.

	
property road: Road

	The Road at the object’s current position.

The simulation is rejected if the object is not on a road.

	
property _road: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Road]

	The Road at the object’s current position, if any.

	
property intersection: Intersection

	The Intersection at the object’s current position.

The simulation is rejected if the object is not in an intersection.

	
property _intersection: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Intersection]

	The Intersection at the object’s current position, if any.

	
property crossing: PedestrianCrossing

	The PedestrianCrossing at the object’s current position.

The simulation is rejected if the object is not in a crosswalk.

	
property _crossing: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][PedestrianCrossing]

	The PedestrianCrossing at the object’s current position, if any.

	
property element: NetworkElement

	The highest-level NetworkElement at the object’s current position.

See Network.elementAt for the details of how this is determined.
The simulation is rejected if the object is not in any network element.

	
property _element: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NetworkElement]

	The highest-level NetworkElement at the object’s current position, if any.

	
distanceToClosest(type)

	Compute the distance to the closest object of the given type.

For example, one could write self.distanceToClosest(Car) in a behavior.

	Parameters:

	type (type [https://docs.python.org/3/library/functions.html#type]) –

	Return type:

	Object2D

	
class Vehicle <specifiers>

	Bases: DrivingObject

Vehicles which drive, such as cars.

	Properties:

	
	position – The default position is uniformly random over the road.

	heading – The default heading is aligned with roadDirection, plus an offset
given by roadDeviation.

	roadDeviation (float) – Relative heading with respect to the road direction at
the Vehicle’s position. Used by the default value for heading.

	regionContainedIn – The default container is roadOrShoulder.

	viewAngle – The default view angle is 90 degrees.

	width – The default width is 2 meters.

	length – The default length is 4.5 meters.

	color (Color or RGB tuple) – Color of the vehicle. The default value is a
distribution derived from car color popularity statistics; see
Color.defaultCarColor.

	
class Car <specifiers>

	Bases: Vehicle

A car.

	
class NPCCar <specifiers>

	Bases: Car

Car for which accurate physics is not required.

	
class Pedestrian <specifiers>

	Bases: DrivingObject

A pedestrian.

	Properties:

	
	position – The default position is uniformly random over sidewalks and crosswalks.

	heading – The default heading is uniformly random.

	viewAngle – The default view angle is 90 degrees.

	width – The default width is 0.75 m.

	length – The default length is 0.75 m.

	color – The default color is turquoise. Pedestrian colors are not necessarily
used by simulators, but do appear in the debugging diagram.

	
withinDistanceToAnyCars(car, thresholdDistance)

	returns boolean

	
withinDistanceToAnyObjs(vehicle, thresholdDistance)

	checks whether there exists any obj
(1) in front of the vehicle, (2) within thresholdDistance

	
withinDistanceToObjsInLane(vehicle, thresholdDistance)

	checks whether there exists any obj
(1) in front of the vehicle, (2) on the same lane, (3) within thresholdDistance

scenic.domains.driving.roads

Library for representing road network geometry and traffic information.

A road network is represented by an instance of the Network class, which can
be created from a map file using Network.fromFile.

Note

This library is a prototype under active development. We will try not to make
backwards-incompatible changes, but the API may not be entirely stable.

Summary of Module Members

Module Attributes

	Vectorlike

	Alias for types which can be interpreted as positions in Scenic.

Classes

	Intersection

	An intersection where multiple roads meet.

	Lane

	A lane for cars, bicycles, or other vehicles.

	LaneGroup

	A group of parallel lanes with the same type and direction.

	LaneSection

	Part of a lane in a single RoadSection.

	LinearElement

	A part of a road network with (mostly) linear 1- or 2-way flow.

	Maneuver

	A maneuver which can be taken upon reaching the end of a lane.

	ManeuverType

	A type of Maneuver, e.g., going straight or turning left.

	Network

	A road network.

	NetworkElement

	Abstract class for part of a road network.

	PedestrianCrossing

	A pedestrian crossing (crosswalk).

	Road

	A road consisting of one or more lanes.

	RoadSection

	Part of a road with a fixed number of lanes.

	Shoulder

	A shoulder of a road, including parking lanes by default.

	Sidewalk

	A sidewalk.

	Signal

	Traffic lights, stop signs, etc.

	VehicleType

	A type of vehicle, including pedestrians.

Member Details

	
Vectorlike

	Alias for types which can be interpreted as positions in Scenic.

This includes instances of Point and Object, and pairs of numbers.

alias of Union [https://docs.python.org/3/library/typing.html#typing.Union][Vector, Point2D, Tuple[Real [https://docs.python.org/3/library/numbers.html#numbers.Real], Real [https://docs.python.org/3/library/numbers.html#numbers.Real]]]

	
class VehicleType(value)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

A type of vehicle, including pedestrians. Used to classify lanes.

	
class ManeuverType(value)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

A type of Maneuver, e.g., going straight or turning left.

	
STRAIGHT = 1

	Straight, including one lane merging into another.

	
LEFT_TURN = 2

	Left turn.

	
RIGHT_TURN = 3

	Right turn.

	
U_TURN = 4

	U-turn.

	
static guessTypeFromLanes(start, end, connecting, turnThreshold=0.3490658503988659)

	For formats lacking turn information, guess it from the geometry.

	Parameters:

	
	start (Lane) – starting lane of the maneuver.

	end (Lane) – ending lane of the maneuver.

	connecting (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Lane]) – connecting lane of the maneuver, if any.

	turnThreshold (float [https://docs.python.org/3/library/functions.html#float]) – angle beyond which to consider a maneuver a turn.

	
class Maneuver

	A maneuver which can be taken upon reaching the end of a lane.

	Parameters:

	
	type (ManeuverType) –

	startLane (Lane) –

	endLane (Lane) –

	connectingLane (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Lane]) –

	intersection (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Intersection]) –

	
type: ManeuverType

	type of maneuver (straight, left turn, etc.)

	
startLane: Lane

	starting lane of the maneuver

	
endLane: Lane

	ending lane of the maneuver

	
connectingLane: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Lane]

	connecting lane from the start to the end lane, if any (None [https://docs.python.org/3/library/constants.html#None] for lane mergers)

	
intersection: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Intersection]

	intersection where the maneuver takes place, if any (None [https://docs.python.org/3/library/constants.html#None] for lane mergers)

	
property conflictingManeuvers: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Maneuver]

	Maneuvers whose connecting lanes intersect this one’s.

	
property reverseManeuvers: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Maneuver]

	Maneuvers whose start and end roads are the reverse of this one’s.

	
class NetworkElement

	Bases: PolygonalRegion

Abstract class for part of a road network.

Includes roads, lane groups, lanes, sidewalks, pedestrian crossings,
and intersections.

This is a subclass of Region, so you can do things like Car in lane
or Car on road if lane and road are elements, as well as computing
distances to an element, etc.

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Human-readable name, if any.

	
uid: str [https://docs.python.org/3/library/stdtypes.html#str]

	Unique identifier; from underlying format, if possible.
(In OpenDRIVE, for example, ids are not necessarily unique, so we invent our own.)

	
id: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Identifier from underlying format, if any.

	
network: Network

	Link to parent network.

	
vehicleTypes: FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]

	Which types of vehicles (car, bicycle, etc.) can be here.

	
speedLimit: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]

	Optional speed limit, which may be inherited from parent.

	
tags: FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Uninterpreted semantic tags, e.g. ‘roundabout’.

	
nominalDirectionsAt(point)

	Get nominal traffic direction(s) at a point in this element.

There must be at least one such direction. If there are multiple, we
pick one arbitrarily to be the orientation of the element as a Region.
(So Object in element will align by default to that orientation.)

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Orientation]

	
class LinearElement

	Bases: NetworkElement

A part of a road network with (mostly) linear 1- or 2-way flow.

Includes roads, lane groups, lanes, sidewalks, and pedestrian crossings,
but not intersections.

LinearElements have a direction, namely from the first point on their centerline
to the last point. This is called ‘forward’, even for 2-way roads. The ‘left’ and
‘right’ edges are interpreted with respect to this direction.

The left/right edges are oriented along the direction of traffic near them; so
for 2-way roads they will point opposite directions.

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	centerline (PolylineRegion) –

	leftEdge (PolylineRegion) –

	rightEdge (PolylineRegion) –

	successor (Union[NetworkElement, None]) –

	predecessor (Union[NetworkElement, None]) –

	
flowFrom(point, distance, steps=None, stepSize=5)

	Advance a point along this element by a given distance.

Equivalent to follow element.orientation from point for distance, but
possibly more accurate. The default implementation uses the forward
Euler approximation with a step size of 5 meters; subclasses may ignore
the steps and stepSize parameters if they can compute the flow
exactly.

	Parameters:

	
	point (`scenic.domains.driving.roads.Vectorlike`) – point to start from.

	distance (float [https://docs.python.org/3/library/functions.html#float]) – distance to travel.

	steps (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – number of steps to take, or None [https://docs.python.org/3/library/constants.html#None] to compute the
number of steps based on the distance (default None [https://docs.python.org/3/library/constants.html#None]).

	stepSize (float [https://docs.python.org/3/library/functions.html#float]) – length used to compute how many steps to take, if steps is not
specified (default 5 meters).

	Return type:

	Vector

	
class Road

	Bases: LinearElement

A road consisting of one or more lanes.

Lanes are grouped into 1 or 2 instances of LaneGroup:

	forwardLanes: the lanes going the same direction as the road

	backwardLanes: the lanes going the opposite direction

One of these may be None if there are no lanes in that direction.

Because of splits and mergers, the Lanes of a Road do not necessarily start
or end at the same point as the Road. Such intermediate branching points
cause the Road to be partitioned into multiple road sections, within which
the configuration of lanes is fixed.

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	centerline (PolylineRegion) –

	leftEdge (PolylineRegion) –

	rightEdge (PolylineRegion) –

	successor (Union[NetworkElement, None]) –

	predecessor (Union[NetworkElement, None]) –

	lanes (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Lane]) –

	forwardLanes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneGroup]) –

	backwardLanes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneGroup]) –

	laneGroups (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][LaneGroup]) –

	sections (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][RoadSection]) –

	signals (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Signal]) –

	crossings (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][PedestrianCrossing]) –

	sidewalks (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Sidewalk]) –

	sidewalkRegion (PolygonalRegion) –

	
lanes: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Lane]

	All lanes of this road, in either direction.

The order of the lanes is arbitrary. To access lanes in order according to their
geometry, use LaneGroup.lanes.

	
forwardLanes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneGroup]

	Group of lanes aligned with the direction of the road, if any.

	
backwardLanes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneGroup]

	Group of lanes going in the opposite direction, if any.

	
laneGroups: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][LaneGroup]

	All LaneGroups of this road, with forwardLanes being first if it exists.

	
sections: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][RoadSection]

	All sections of this road, ordered from start to end.

	
crossings: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][PedestrianCrossing]

	All crosswalks of this road, ordered from start to end.

	
sidewalks: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Sidewalk]

	All sidewalks of this road, with the one adjacent to forwardLanes being first.

	
sidewalkRegion: PolygonalRegion

	Possibly-empty region consisting of all sidewalks of this road.

	
sectionAt(point, reject=False)

	Get the RoadSection passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][RoadSection]

	
laneSectionAt(point, reject=False)

	Get the LaneSection passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	
laneAt(point, reject=False)

	Get the Lane passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Lane]

	
laneGroupAt(point, reject=False)

	Get the LaneGroup passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneGroup]

	
crossingAt(point, reject=False)

	Get the PedestrianCrossing passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][PedestrianCrossing]

	
shiftLanes(point, offset)

	Find the point equivalent to this one but shifted over some # of lanes.

	Parameters:

	
	point (`scenic.domains.driving.roads.Vectorlike`) –

	offset (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Vector]

	
class LaneGroup

	Bases: LinearElement

A group of parallel lanes with the same type and direction.

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	centerline (PolylineRegion) –

	leftEdge (PolylineRegion) –

	rightEdge (PolylineRegion) –

	successor (Union[NetworkElement, None]) –

	predecessor (Union[NetworkElement, None]) –

	road (Road) –

	lanes (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Lane]) –

	curb (PolylineRegion) –

	sidewalk (Union[Sidewalk, None]) –

	bikeLane (Union[Lane, None]) –

	shoulder (Union[Shoulder, None]) –

	opposite (Union[LaneGroup, None]) –

	
road: Road

	Parent road.

	
lanes: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Lane]

	Lanes, partially ordered with lane 0 being closest to the curb.

	
curb: PolylineRegion

	Region representing the associated curb, which is not necessarily adjacent if
there are parking lanes or some other kind of shoulder.

	
_sidewalk: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sidewalk]

	Adjacent sidewalk, if any.

	
_shoulder: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Shoulder]

	Adjacent shoulder, if any.

	
_opposite: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneGroup]

	Opposite lane group of the same road, if any.

	
property sidewalk: Sidewalk

	The adjacent sidewalk; rejects if there is none.

	
property shoulder: Shoulder

	The adjacent shoulder; rejects if there is none.

	
property opposite: LaneGroup

	The opposite lane group of the same road; rejects if there is none.

	
laneAt(point, reject=False)

	Get the Lane passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Lane]

	
class Lane

	Bases: LinearElement

A lane for cars, bicycles, or other vehicles.

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	centerline (PolylineRegion) –

	leftEdge (PolylineRegion) –

	rightEdge (PolylineRegion) –

	successor (Union[NetworkElement, None]) –

	predecessor (Union[NetworkElement, None]) –

	group (LaneGroup) –

	road (Road) –

	sections (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][LaneSection]) –

	adjacentLanes (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Lane]) –

	maneuvers (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Maneuver]) –

	
sectionAt(point, reject=False)

	Get the LaneSection passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	
class RoadSection

	Bases: LinearElement

Part of a road with a fixed number of lanes.

A RoadSection has a fixed number of lanes: when a lane begins or ends, we
move to a new section (which will be the successor of the current one).

	Parameters:

	
	polygon (Union[Polygon, MultiPolygon]) –

	orientation (Optional[VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet[VehicleType]) –

	speedLimit (Union[float [https://docs.python.org/3/library/functions.html#float], None]) –

	tags (FrozenSet[str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	centerline (PolylineRegion) –

	leftEdge (PolylineRegion) –

	rightEdge (PolylineRegion) –

	successor (Union[NetworkElement, None]) –

	predecessor (Union[NetworkElement, None]) –

	road (Road) –

	lanes (Tuple[LaneSection]) –

	forwardLanes (Tuple[LaneSection]) –

	backwardLanes (Tuple[LaneSection]) –

	lanesByOpenDriveID (Dict[LaneSection]) –

	
laneAt(point, reject=False)

	Get the lane section passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	
class LaneSection

	Bases: LinearElement

Part of a lane in a single RoadSection.

Since the lane configuration in a RoadSection is fixed, a LaneSection can have
at most one adjacent lane to left or right. These are accessible using the
laneToLeft and laneToRight properties, which for convenience reject the
simulation if the desired lane does not exist. If rejection is not desired (for
example if you want to handle the case where there is no lane to the left yourself),
you can use the _laneToLeft and _laneToRight properties instead.

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	centerline (PolylineRegion) –

	leftEdge (PolylineRegion) –

	rightEdge (PolylineRegion) –

	successor (Union[NetworkElement, None]) –

	predecessor (Union[NetworkElement, None]) –

	lane (Lane) –

	group (LaneGroup) –

	road (Road) –

	openDriveID (int [https://docs.python.org/3/library/functions.html#int]) –

	isForward (bool [https://docs.python.org/3/library/functions.html#bool]) –

	adjacentLanes (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][LaneSection]) –

	laneToLeft (Union[LaneSection, None]) –

	laneToRight (Union[LaneSection, None]) –

	fasterLane (Union[LaneSection, None]) –

	slowerLane (Union[LaneSection, None]) –

	
lane: Lane

	Parent lane.

	
group: LaneGroup

	Grandparent lane group.

	
road: Road

	Great-grandparent road.

	
isForward: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this lane has the same direction as its parent road.

	
adjacentLanes: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][LaneSection]

	Adjacent lanes of the same type, if any.

	
_laneToLeft: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	Adjacent lane of same type to the left, if any.

	
_laneToRight: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	Adjacent lane of same type to the right, if any.

	
_fasterLane: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	Faster adjacent lane of same type, if any.
Could be to left or right depending on the country.

	
_slowerLane: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	Slower adjacent lane of same type, if any.

	
property laneToLeft: LaneSection

	The adjacent lane of the same type to the left; rejects if there is none.

	
property laneToRight: LaneSection

	The adjacent lane of the same type to the right; rejects if there is none.

	
property fasterLane: LaneSection

	The faster adjacent lane of the same type; rejects if there is none.

	
property slowerLane: LaneSection

	The slower adjacent lane of the same type; rejects if there is none.

	
shiftedBy(offset)

	Find the lane a given number of lanes over from this lane.

	Parameters:

	offset (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	
class Sidewalk

	Bases: LinearElement

A sidewalk.

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	centerline (PolylineRegion) –

	leftEdge (PolylineRegion) –

	rightEdge (PolylineRegion) –

	successor (Union[NetworkElement, None]) –

	predecessor (Union[NetworkElement, None]) –

	road (Road) –

	crossings (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][PedestrianCrossing]) –

	
class PedestrianCrossing

	Bases: LinearElement

A pedestrian crossing (crosswalk).

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	centerline (PolylineRegion) –

	leftEdge (PolylineRegion) –

	rightEdge (PolylineRegion) –

	successor (Union[NetworkElement, None]) –

	predecessor (Union[NetworkElement, None]) –

	parent (Union [https://docs.python.org/3/library/typing.html#typing.Union][Road, Intersection]) –

	startSidewalk (Sidewalk) –

	endSidewalk (Sidewalk) –

	
class Shoulder

	Bases: LinearElement

A shoulder of a road, including parking lanes by default.

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	centerline (PolylineRegion) –

	leftEdge (PolylineRegion) –

	rightEdge (PolylineRegion) –

	successor (Union[NetworkElement, None]) –

	predecessor (Union[NetworkElement, None]) –

	road (Road) –

	
class Intersection

	Bases: NetworkElement

An intersection where multiple roads meet.

	Parameters:

	
	polygon (Union [https://docs.python.org/3/library/typing.html#typing.Union][Polygon, MultiPolygon]) –

	orientation (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][VectorField]) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	network (Network) –

	vehicleTypes (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][VehicleType]) –

	speedLimit (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) –

	tags (FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	roads (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Road]) –

	incomingLanes (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Lane]) –

	outgoingLanes (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Lane]) –

	maneuvers (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Maneuver]) –

	signals (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Signal]) –

	crossings (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][PedestrianCrossing]) –

	
property is3Way: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not this is a 3-way intersection.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property is4Way: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not this is a 4-way intersection.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property isSignalized: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not this is a signalized intersection.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
maneuversAt(point)

	Get all maneuvers possible at a given point in the intersection.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][Maneuver]

	
class Signal(*, uid=None, openDriveID, country, type)

	Traffic lights, stop signs, etc.

Warning

Signal parsing is a work in progress and the API is likely to change in the future.

	Parameters:

	
	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	openDriveID (int [https://docs.python.org/3/library/functions.html#int]) –

	country (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
openDriveID: int [https://docs.python.org/3/library/functions.html#int]

	ID number as in OpenDRIVE (unique ID of the signal within the database)

	
country: str [https://docs.python.org/3/library/stdtypes.html#str]

	Country code of the signal

	
type: str [https://docs.python.org/3/library/stdtypes.html#str]

	Type identifier according to country code.

	
property isTrafficLight: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not this signal is a traffic light.

	
class Network

	A road network.

Networks are composed of roads, intersections, sidewalks, etc., which are all
instances of NetworkElement.

Road networks can be loaded from standard formats using Network.fromFile.

	Parameters:

	
	elements (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], NetworkElement]) –

	roads (Tuple[Road]) –

	connectingRoads (Tuple[Road]) –

	allRoads (Tuple[Road]) –

	laneGroups (Tuple[LaneGroup]) –

	lanes (Tuple[Lane]) –

	intersections (Tuple[Intersection]) –

	crossings (Tuple[PedestrianCrossing]) –

	sidewalks (Tuple[Sidewalk]) –

	shoulders (Tuple[Shoulder]) –

	roadSections (Tuple[RoadSection]) –

	laneSections (Tuple[LaneSection]) –

	driveOnLeft (bool [https://docs.python.org/3/library/functions.html#bool]) –

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) –

	drivableRegion (PolygonalRegion) –

	walkableRegion (PolygonalRegion) –

	roadRegion (PolygonalRegion) –

	laneRegion (PolygonalRegion) –

	intersectionRegion (PolygonalRegion) –

	crossingRegion (PolygonalRegion) –

	sidewalkRegion (PolygonalRegion) –

	curbRegion (PolylineRegion) –

	shoulderRegion (PolygonalRegion) –

	roadDirection (VectorField) –

	
elements: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], NetworkElement]

	All network elements, indexed by unique ID.

	
roads: Tuple[Road]

	All ordinary roads in the network (i.e. those not part of an intersection).

	
connectingRoads: Tuple[Road]

	All roads connecting one exit of an intersection to another.

	
allRoads: Tuple[Road]

	All roads of either type.

	
laneGroups: Tuple[LaneGroup]

	All lane groups in the network.

	
lanes: Tuple[Lane]

	All lanes in the network.

	
intersections: Tuple[Intersection]

	All intersections in the network.

	
crossings: Tuple[PedestrianCrossing]

	All pedestrian crossings in the network.

	
sidewalks: Tuple[Sidewalk]

	All sidewalks in the network.

	
shoulders: Tuple[Shoulder]

	All shoulders in the network (by default, includes parking lanes).

	
roadSections: Tuple[RoadSection]

	All sections of ordinary roads in the network.

	
laneSections: Tuple[LaneSection]

	All sections of lanes in the network.

	
driveOnLeft: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not cars drive on the left in this network.

	
tolerance: float [https://docs.python.org/3/library/functions.html#float]

	Distance tolerance for testing inclusion in network elements.

	
roadDirection: VectorField

	Traffic flow vector field aggregated over all roads (0 elsewhere).

	
pickledExt = '.snet'

	File extension for cached versions of processed networks.

	
exception DigestMismatchError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception raised when loading a cached map not matching the original file.

	
classmethod fromFile(path, useCache=True, writeCache=True, **kwargs)

	Create a Network from a map file.

This function calls an appropriate parsing routine based on the extension of the
given file. Supported map formats are:

	OpenDRIVE (.xodr): Network.fromOpenDrive

See the functions listed above for format-specific options to this function.
If no file extension is given in path, this function searches for any file
with the given name in one of the formats above (in order).

	Parameters:

	
	path – A string or other path-like object [https://docs.python.org/3/glossary.html#term-path-like-object] giving a path to a file.
If no file extension is included, we search for any file type we know how
to parse.

	useCache (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use a cached version of the map, if one exists
and matches the given map file (default true; note that if the map file
changes, the cached version will still not be used).

	writeCache (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to save a cached version of the processed map
after parsing has finished (default true).

	kwargs – Additional keyword arguments specific to particular map formats.

	Raises:

	
	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – no readable map was found at the given path.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – the given map is of an unknown format.

	
classmethod fromOpenDrive(path, ref_points=20, tolerance=0.05, fill_gaps=True, fill_intersections=True, elide_short_roads=False)

	Create a Network from an OpenDRIVE file.

	Parameters:

	
	path – Path to the file, as in Network.fromFile.

	ref_points (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to discretize continuous reference lines
into.

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for merging nearby geometries.

	fill_gaps (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to fill gaps between adjacent lanes.

	fill_intersections (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to fill gaps inside
intersections.

	elide_short_roads (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to attempt to fix geometry artifacts by
eliding roads with length less than tolerance.

	
findPointIn(point, elems, reject)

	Find the first of the given elements containing the point.

Elements which actually contain the point have priority; if none contain the
point, then we search again allowing an error of up to tolerance. If there
are still no matches, we return None, unless reject is true, in which case we
reject the current sample.

	Parameters:

	
	point (`scenic.domains.driving.roads.Vectorlike`) –

	elems (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][NetworkElement]) –

	reject (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NetworkElement]

	
elementAt(point, reject=False)

	Get the highest-level NetworkElement at a given point, if any.

If the point lies in an Intersection, we return that; otherwise if the point
lies in a Road, we return that; otherwise we return None [https://docs.python.org/3/library/constants.html#None], or reject the
simulation if reject is true (default false).

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NetworkElement]

	
roadAt(point, reject=False)

	Get the Road passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Road]

	
laneAt(point, reject=False)

	Get the Lane passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Lane]

	
laneSectionAt(point, reject=False)

	Get the LaneSection passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneSection]

	
laneGroupAt(point, reject=False)

	Get the LaneGroup passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LaneGroup]

	
crossingAt(point, reject=False)

	Get the PedestrianCrossing passing through a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][PedestrianCrossing]

	
intersectionAt(point, reject=False)

	Get the Intersection at a given point.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Intersection]

	
nominalDirectionsAt(point, reject=False)

	Get the nominal traffic direction(s) at a given point, if any.

There can be more than one such direction in an intersection, for example: a car
at a given point could be going straight, turning left, etc.

	Parameters:

	point (`scenic.domains.driving.roads.Vectorlike`) –

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Orientation]

	
show(labelIncomingLanes=False)

	Render a schematic of the road network for debugging.

If you call this function directly, you’ll need to subsequently call
matplotlib.pyplot.show [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show] to actually display the diagram.

	Parameters:

	labelIncomingLanes (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to label the incoming lanes of
intersections with their indices in incomingLanes.

scenic.domains.driving.simulators

Abstract interface to simulators supporting the driving domain.

Summary of Module Members

Classes

	DrivingSimulation

	A Simulation with a simulator supporting the driving domain.

	DrivingSimulator

	A Simulator supporting the driving domain.

Member Details

	
class DrivingSimulator

	Bases: Simulator

A Simulator supporting the driving domain.

	
class DrivingSimulation(scene, *, maxSteps, name, timestep, replay=None, enableReplay=True, allowPickle=False, enableDivergenceCheck=False, divergenceTolerance=0, continueAfterDivergence=False, verbosity=0)

	Bases: Simulation

A Simulation with a simulator supporting the driving domain.

This subclass of Simulation provides no special behavior by itself; it
just provides convenience methods for creating controllers to be used by
FollowLaneBehavior and related behaviors, so that the parameters of these
controllers can be customized for different simulators.

	
getLaneFollowingControllers(agent)

	Get longitudinal and lateral controllers for lane following.

The default controllers are simple PID controllers with parameters that
work reasonably well for cars in simulators with realistic physics. See the
classes PIDLongitudinalController and PIDLateralController for details,
and NewtonianSimulation for an example of how to override this function.

	Returns:

	A pair of controllers for throttle and steering respectively.

	
getTurningControllers(agent)

	Get longitudinal and lateral controllers for turning.

	
getLaneChangingControllers(agent)

	Get longitudinal and lateral controllers for lane changing.

scenic.domains.driving.workspace

Workspaces for the driving domain.

Summary of Module Members

Classes

	DrivingWorkspace

	Workspace created from a road Network.

Member Details

	
class DrivingWorkspace(network)

	Bases: Workspace

Workspace created from a road Network.

scenic.formats

Support for file formats not specific to particular simulators.

Submodules

	opendrive

	Support for loading OpenDRIVE maps.

scenic.formats.opendrive

Support for loading OpenDRIVE maps.

Submodules

	workspace

	Workspaces based on OpenDRIVE maps.

	xodr_parser

	Parser for OpenDRIVE (.xodr) files.

scenic.formats.opendrive.workspace

Workspaces based on OpenDRIVE maps.

Summary of Module Members

Classes

	OpenDriveWorkspace

	

Member Details

scenic.formats.opendrive.xodr_parser

Parser for OpenDRIVE (.xodr) files.

Summary of Module Members

Functions

	buffer_union

	

	warn

	

Classes

	Clothoid

	An Euler spiral with curvature varying linearly between CURV0 and CURV1.

	Cubic

	A curve defined by the cubic polynomial a + bu + cu^2 + du^3.

	Curve

	Geometric elements which compose road reference lines.

	Junction

	

	Lane

	

	LaneSection

	

	Line

	A line segment between (x0, y0) and (x1, y1).

	ParamCubic

	A curve defined by the parametric equations u = a_u + b_up + c_up^2 + d_up^3, v = a_v + b_vp + c_vp^2 + d_up^3, with p in [0, p_range].

	Poly3

	Cubic polynomial.

	Road

	

	RoadLink

	Indicates Roads a and b, with ids id_a and id_b respectively, are connected.

	RoadMap

	

	Signal

	Traffic lights, stop signs, etc.

	SignalReference

	

Exceptions

	OpenDriveWarning

	

Member Details

	
class Poly3(a, b, c, d)

	Cubic polynomial.

	
class Curve(x0, y0, hdg, length)

	Geometric elements which compose road reference lines.
See the OpenDRIVE Format Specification for coordinate system details.

	
to_points(num, extra_points=[])

	Sample NUM evenly-spaced points from curve.

Points are tuples of (x, y, s) with (x, y) absolute coordinates
and s the arc length along the curve. Additional points at s values in
extra_points are included if they are contained in the curve (unless
they are extremely close to one of the equally-spaced points).

	
abstract point_at(s)

	Get an (x, y, s) point along the curve at the given s coordinate.

	
rel_to_abs(point)

	Convert from relative coordinates of curve to absolute coordinates.
I.e. rotate counterclockwise by self.hdg and translate by (x0, x1).

	
class Cubic(x0, y0, hdg, length, a, b, c, d)

	Bases: Curve

A curve defined by the cubic polynomial a + bu + cu^2 + du^3.
The curve starts at (X0, Y0) in direction HDG, with length LENGTH.

	
class ParamCubic(x0, y0, hdg, length, au, bu, cu, du, av, bv, cv, dv, p_range=1)

	Bases: Curve

A curve defined by the parametric equations
u = a_u + b_up + c_up^2 + d_up^3,
v = a_v + b_vp + c_vp^2 + d_up^3,
with p in [0, p_range].
The curve starts at (X0, Y0) in direction HDG, with length LENGTH.

	
class Clothoid(x0, y0, hdg, length, curv0, curv1)

	Bases: Curve

An Euler spiral with curvature varying linearly between CURV0 and CURV1.
The spiral starts at (X0, Y0) in direction HDG, with length LENGTH.

	
class Line(x0, y0, hdg, length)

	Bases: Curve

A line segment between (x0, y0) and (x1, y1).

	
class RoadLink(id_a, id_b, contact_a, contact_b)

	Indicates Roads a and b, with ids id_a and id_b respectively, are connected.

	
class Signal(id_, country, type_, subtype, orientation, validity=None)

	Traffic lights, stop signs, etc.

scenic.simulators

World models and interfaces for particular simulators.

Submodules

	carla

	Interface to the CARLA driving simulator.

	gta

	Scenic world model for Grand Theft Auto V (GTAV).

	lgsvl

	Interface to the LGSVL driving simulator.

	newtonian

	Simple Newtonian physics simulator.

	utils

	Various utilities useful across multiple simulators.

	webots

	Scenic world models for the Webots robotics simulator.

	xplane

	Scenic world model for the X-Plane flight simulator.

scenic.simulators.carla

Interface to the CARLA driving simulator.

This interface must currently be used in 2D Compatibility Mode.

This interface has been tested with CARLA [https://carla.org/] versions 0.9.9,
0.9.10, and 0.9.11.
It supports dynamic scenarios involving vehicles, pedestrians, and props.

The interface implements the scenic.domains.driving abstract domain, so any
object types, behaviors, utility functions, etc. from that domain may be used freely.
For details of additional CARLA-specific functionality, see the world model
scenic.simulators.carla.model.

Submodules

	actions

	Actions for dynamic agents in CARLA scenarios.

	behaviors

	Behaviors for dynamic agents in CARLA scenarios.

	blueprints

	CARLA blueprints for cars, pedestrians, etc.

	misc

	Module with auxiliary functions.

	model

	Scenic world model for traffic scenarios in CARLA.

	simulator

	Simulator interface for CARLA.

scenic.simulators.carla.actions

Actions for dynamic agents in CARLA scenarios.

Summary of Module Members

Classes

	PedestrianAction

	

	SetAngularVelocityAction

	

	SetAutopilotAction

	

	SetGearAction

	

	SetJumpAction

	

	SetManualFirstGearShiftAction

	

	SetManualGearShiftAction

	

	SetTrafficLightAction

	Set the traffic light to desired color.

	SetTransformAction

	

	SetVehicleLightStateAction

	Set the vehicle lights' states.

	SetWalkAction

	

	TrackWaypointsAction

	

	VehicleAction

	

Member Details

	
class SetTrafficLightAction(color, distance=100, group=False)

	Bases: VehicleAction

Set the traffic light to desired color. It will only take
effect if the car is within a given distance of the traffic light.

	Parameters:

	
	color – the string red/yellow/green/off/unknown

	distance – the maximum distance to search for traffic lights from the current position

	
class SetVehicleLightStateAction(vehicleLightState)

	Bases: VehicleAction

Set the vehicle lights’ states.

	Parameters:

	vehicleLightState – Which lights are on.

scenic.simulators.carla.behaviors

Behaviors for dynamic agents in CARLA scenarios.

	
behavior AutopilotBehavior()

	Behavior causing a vehicle to use CARLA’s built-in autopilot.

	
behavior CrossingBehavior(reference_actor, min_speed=1, threshold=10, final_speed=None)

	This behavior dynamically controls the speed of an actor that will perpendicularly (or close to)
cross the road, so that it arrives at a spot in the road at the same time as a reference actor.

	Parameters:

	
	min_speed (float [https://docs.python.org/3/library/functions.html#float]) – minimum speed of the crossing actor. As this is a type of “synchronization action”,
a minimum speed is needed, to allow the actor to keep moving even if the reference actor has stopped

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – starting distance at which the crossing actor starts moving

	final_speed (float [https://docs.python.org/3/library/functions.html#float]) – speed of the crossing actor after the reference one surpasses it

scenic.simulators.carla.blueprints

CARLA blueprints for cars, pedestrians, etc.

Summary of Module Members

Module Attributes

	oldBlueprintNames

	Mapping from current names of blueprints to ones in old CARLA versions.

	carModels

	blueprints for cars

	bicycleModels

	blueprints for bicycles

	motorcycleModels

	blueprints for motorcycles

	truckModels

	blueprints for trucks

	trashModels

	blueprints for trash cans

	coneModels

	blueprints for traffic cones

	debrisModels

	blueprints for road debris

	vendingMachineModels

	blueprints for vending machines

	chairModels

	blueprints for chairs

	busStopModels

	blueprints for bus stops

	advertisementModels

	blueprints for roadside billboards

	garbageModels

	blueprints for pieces of trash

	containerModels

	blueprints for containers

	tableModels

	blueprints for tables

	barrierModels

	blueprints for traffic barriers

	plantpotModels

	blueprints for flowerpots

	mailboxModels

	blueprints for mailboxes

	gnomeModels

	blueprints for garden gnomes

	creasedboxModels

	blueprints for creased boxes

	caseModels

	blueprints for briefcases, suitcases, etc.

	boxModels

	blueprints for boxes

	benchModels

	blueprints for benches

	barrelModels

	blueprints for barrels

	atmModels

	blueprints for ATMs

	kioskModels

	blueprints for kiosks

	ironplateModels

	blueprints for iron plates

	trafficwarningModels

	blueprints for traffic warning signs

	walkerModels

	blueprints for pedestrians

Member Details

	
oldBlueprintNames = {'vehicle.dodge.charger_police': ('vehicle.dodge_charger.police',), 'vehicle.ford.mustang': ('vehicle.mustang.mustang',), 'vehicle.lincoln.mkz_2017': ('vehicle.lincoln.mkz2017',), 'vehicle.mercedes.coupe': ('vehicle.mercedes-benz.coupe',), 'vehicle.mini.cooper_s': ('vehicle.mini.cooperst',)}

	Mapping from current names of blueprints to ones in old CARLA versions.

We provide a tuple of old names in case they change more than once.

	
carModels = ['vehicle.audi.a2', 'vehicle.audi.etron', 'vehicle.audi.tt', 'vehicle.bmw.grandtourer', 'vehicle.chevrolet.impala', 'vehicle.citroen.c3', 'vehicle.dodge.charger_police', 'vehicle.jeep.wrangler_rubicon', 'vehicle.lincoln.mkz_2017', 'vehicle.mercedes.coupe', 'vehicle.mini.cooper_s', 'vehicle.ford.mustang', 'vehicle.nissan.micra', 'vehicle.nissan.patrol', 'vehicle.seat.leon', 'vehicle.tesla.model3', 'vehicle.toyota.prius', 'vehicle.volkswagen.t2']

	blueprints for cars

	
bicycleModels = ['vehicle.bh.crossbike', 'vehicle.diamondback.century', 'vehicle.gazelle.omafiets']

	blueprints for bicycles

	
motorcycleModels = ['vehicle.harley-davidson.low_rider', 'vehicle.kawasaki.ninja', 'vehicle.yamaha.yzf']

	blueprints for motorcycles

	
truckModels = ['vehicle.carlamotors.carlacola', 'vehicle.tesla.cybertruck']

	blueprints for trucks

	
trashModels = ['static.prop.trashcan01', 'static.prop.trashcan02', 'static.prop.trashcan03', 'static.prop.trashcan04', 'static.prop.trashcan05', 'static.prop.bin']

	blueprints for trash cans

	
coneModels = ['static.prop.constructioncone', 'static.prop.trafficcone01', 'static.prop.trafficcone02']

	blueprints for traffic cones

	
debrisModels = ['static.prop.dirtdebris01', 'static.prop.dirtdebris02', 'static.prop.dirtdebris03']

	blueprints for road debris

	
vendingMachineModels = ['static.prop.vendingmachine']

	blueprints for vending machines

	
chairModels = ['static.prop.plasticchair']

	blueprints for chairs

	
busStopModels = ['static.prop.busstop']

	blueprints for bus stops

	
advertisementModels = ['static.prop.advertisement', 'static.prop.streetsign', 'static.prop.streetsign01', 'static.prop.streetsign04']

	blueprints for roadside billboards

	
garbageModels = ['static.prop.colacan', 'static.prop.garbage01', 'static.prop.garbage02', 'static.prop.garbage03', 'static.prop.garbage04', 'static.prop.garbage05', 'static.prop.garbage06', 'static.prop.plasticbag', 'static.prop.trashbag']

	blueprints for pieces of trash

	
containerModels = ['static.prop.container', 'static.prop.clothcontainer', 'static.prop.glasscontainer']

	blueprints for containers

	
tableModels = ['static.prop.table', 'static.prop.plastictable']

	blueprints for tables

	
barrierModels = ['static.prop.streetbarrier', 'static.prop.chainbarrier', 'static.prop.chainbarrierend']

	blueprints for traffic barriers

	
plantpotModels = ['static.prop.plantpot01', 'static.prop.plantpot02', 'static.prop.plantpot03', 'static.prop.plantpot04', 'static.prop.plantpot05', 'static.prop.plantpot06', 'static.prop.plantpot07', 'static.prop.plantpot08']

	blueprints for flowerpots

	
mailboxModels = ['static.prop.mailbox']

	blueprints for mailboxes

	
gnomeModels = ['static.prop.gnome']

	blueprints for garden gnomes

	
creasedboxModels = ['static.prop.creasedbox01', 'static.prop.creasedbox02', 'static.prop.creasedbox03']

	blueprints for creased boxes

	
caseModels = ['static.prop.travelcase', 'static.prop.briefcase', 'static.prop.guitarcase']

	blueprints for briefcases, suitcases, etc.

	
boxModels = ['static.prop.box01', 'static.prop.box02', 'static.prop.box03']

	blueprints for boxes

	
benchModels = ['static.prop.bench01', 'static.prop.bench02', 'static.prop.bench03']

	blueprints for benches

	
barrelModels = ['static.prop.barrel']

	blueprints for barrels

	
atmModels = ['static.prop.atm']

	blueprints for ATMs

	
kioskModels = ['static.prop.kiosk_01']

	blueprints for kiosks

	
ironplateModels = ['static.prop.ironplank']

	blueprints for iron plates

	
trafficwarningModels = ['static.prop.trafficwarning']

	blueprints for traffic warning signs

	
walkerModels = ['walker.pedestrian.0001', 'walker.pedestrian.0002', 'walker.pedestrian.0003', 'walker.pedestrian.0004', 'walker.pedestrian.0005', 'walker.pedestrian.0006', 'walker.pedestrian.0007', 'walker.pedestrian.0008', 'walker.pedestrian.0009', 'walker.pedestrian.0010', 'walker.pedestrian.0011', 'walker.pedestrian.0012', 'walker.pedestrian.0013', 'walker.pedestrian.0014']

	blueprints for pedestrians

scenic.simulators.carla.misc

Module with auxiliary functions.

Summary of Module Members

Functions

	compute_distance

	Euclidean distance between 3D points

	compute_magnitude_angle

	Compute relative angle and distance between a target_location and a current_location

	distance_vehicle

	Returns the 2D distance from a waypoint to a vehicle

	draw_waypoints

	Draw a list of waypoints at a certain height given in z.

	get_speed

	Compute speed of a vehicle in Km/h.

	is_within_distance

	Check if a target object is within a certain distance from a reference object.

	is_within_distance_ahead

	Check if a target object is within a certain distance in front of a reference object.

	positive

	Return the given number if positive, else 0

	vector

	Returns the unit vector from location_1 to location_2

Member Details

	
draw_waypoints(world, waypoints, z=0.5)

	Draw a list of waypoints at a certain height given in z.

	param world:

	carla.world object

	param waypoints:

	list or iterable container with the waypoints to draw

	param z:

	height in meters

	
get_speed(vehicle)

	Compute speed of a vehicle in Km/h.

	param vehicle:

	the vehicle for which speed is calculated

	return:

	speed as a float in Km/h

	
is_within_distance_ahead(target_transform, current_transform, max_distance)

	Check if a target object is within a certain distance in front of a reference object.

	Parameters:

	
	target_transform – location of the target object

	current_transform – location of the reference object

	orientation – orientation of the reference object

	max_distance – maximum allowed distance

	Returns:

	True if target object is within max_distance ahead of the reference object

	
is_within_distance(target_location, current_location, orientation, max_distance, d_angle_th_up, d_angle_th_low=0)

	Check if a target object is within a certain distance from a reference object.
A vehicle in front would be something around 0 deg, while one behind around 180 deg.

	param target_location:

	location of the target object

	param current_location:

	location of the reference object

	param orientation:

	orientation of the reference object

	param max_distance:

	maximum allowed distance

	param d_angle_th_up:

	upper thereshold for angle

	param d_angle_th_low:

	low thereshold for angle (optional, default is 0)

	return:

	True if target object is within max_distance ahead of the reference object

	
compute_magnitude_angle(target_location, current_location, orientation)

	Compute relative angle and distance between a target_location and a current_location

	param target_location:

	location of the target object

	param current_location:

	location of the reference object

	param orientation:

	orientation of the reference object

	return:

	a tuple composed by the distance to the object and the angle between both objects

	
distance_vehicle(waypoint, vehicle_transform)

	Returns the 2D distance from a waypoint to a vehicle

	param waypoint:

	actual waypoint

	param vehicle_transform:

	transform of the target vehicle

	
vector(location_1, location_2)

	Returns the unit vector from location_1 to location_2

	param location_1, location_2:

	carla.Location objects

	
compute_distance(location_1, location_2)

	Euclidean distance between 3D points

	param location_1, location_2:

	3D points

	
positive(num)

	Return the given number if positive, else 0

	param num:

	value to check

scenic.simulators.carla.model

Scenic world model for traffic scenarios in CARLA.

The model currently supports vehicles, pedestrians, and props. It implements the
basic Car and Pedestrian classes from the scenic.domains.driving domain,
while also providing convenience classes for specific types of objects like bicycles,
traffic cones, etc. Vehicles and pedestrians support the basic actions and behaviors
from the driving domain; several more are automatically imported from
scenic.simulators.carla.actions and scenic.simulators.carla.behaviors.

The model defines several global parameters, whose default values can be overridden
in scenarios using the param statement or on the command line using the
--param option:

	Global Parameters:

	
	carla_map (str) – Name of the CARLA map to use, e.g. ‘Town01’. Can also be set
to None, in which case CARLA will attempt to create a world from the
map file used in the scenario (which must be an .xodr file).

	timestep (float) – Timestep to use for simulations (i.e., how frequently Scenic
interrupts CARLA to run behaviors, check requirements, etc.), in seconds. Default
is 0.1 seconds.

	weather (str or dict) – Weather to use for the simulation. Can be either a
string identifying one of the CARLA weather presets (e.g. ‘ClearSunset’) or a
dictionary specifying all the weather parameters (see carla.WeatherParameters [https://carla.readthedocs.io/en/latest/python_api/#carlaweatherparameters]).
Default is a uniform distribution over all the weather presets.

	address (str) – IP address at which to connect to CARLA. Default is localhost
(127.0.0.1).

	port (int) – Port on which to connect to CARLA. Default is 2000.

	timeout (float) – Maximum time to wait when attempting to connect to CARLA, in
seconds. Default is 10.

	render (int) – Whether or not to have CARLA create a window showing the
simulations from the point of view of the ego object: 1 for yes, 0
for no. Default 1.

	record (str) – If nonempty, folder in which to save CARLA record files for
replaying the simulations.

Summary of Module Members

Functions

	freezeTrafficLights

	Freezes all traffic lights in the scene.

	getClosestTrafficLightStatus

	

	getTrafficLightStatus

	

	setAllIntersectionTrafficLightsStatus

	

	setClosestTrafficLightStatus

	

	setTrafficLightStatus

	

	unfreezeTrafficLights

	Unfreezes all traffic lights in the scene.

	withinDistanceToRedYellowTrafficLight

	

	withinDistanceToTrafficLight

	

Classes

	ATM

	

	Advertisement

	

	Barrel

	

	Barrier

	

	Bench

	

	Bicycle

	

	Box

	

	BusStop

	

	Car

	A car.

	CarlaActor

	Abstract class for CARLA objects.

	Case

	

	Chair

	

	Cone

	

	Container

	

	CreasedBox

	

	Debris

	

	Garbage

	

	Gnome

	

	IronPlate

	

	Kiosk

	

	Mailbox

	

	Motorcycle

	

	NPCCar

	

	Pedestrian

	A pedestrian.

	PlantPot

	

	Prop

	Abstract class for props, i.e. non-moving objects.

	Table

	

	TrafficWarning

	

	Trash

	

	Truck

	

	Vehicle

	Abstract class for steerable vehicles.

	VendingMachine

	

Member Details

	
class CarlaActor <specifiers>

	Bases: DrivingObject

Abstract class for CARLA objects.

	Properties:

	
	carlaActor (dynamic) – Set during simulations to the carla.Actor representing this
object.

	blueprint (str) – Identifier of the CARLA blueprint specifying the type of object.

	rolename (str) – Can be used to differentiate specific actors during runtime. Default
value None.

	physics (bool) – Whether physics is enabled for this object in CARLA. Default true.

	
class Vehicle <specifiers>

	Bases: Vehicle, CarlaActor, Steers

Abstract class for steerable vehicles.

	
class Car <specifiers>

	Bases: Vehicle

A car.

The default blueprint (see CarlaActor) is a uniform distribution over the
blueprints listed in scenic.simulators.carla.blueprints.carModels.

	
class Pedestrian <specifiers>

	Bases: Pedestrian, CarlaActor, Walks

A pedestrian.

The default blueprint (see CarlaActor) is a uniform distribution over the
blueprints listed in scenic.simulators.carla.blueprints.walkerModels.

	
class Prop <specifiers>

	Bases: CarlaActor

Abstract class for props, i.e. non-moving objects.

	Properties:

	
	heading (float) – Default value overridden to be uniformly random.

	physics (bool) – Default value overridden to be false.

	
freezeTrafficLights()

	Freezes all traffic lights in the scene.

Frozen traffic lights can be modified by the user
but the time will not update them until unfrozen.

	
unfreezeTrafficLights()

	Unfreezes all traffic lights in the scene.

	
_getClosestTrafficLight(vehicle, distance=100)

	Returns the closest traffic light affecting ‘vehicle’, up to a maximum of ‘distance’

scenic.simulators.carla.simulator

Simulator interface for CARLA.

Summary of Module Members

Classes

	CarlaSimulation

	

	CarlaSimulator

	Implementation of Simulator for CARLA.

Member Details

	
class CarlaSimulator(carla_map, map_path, address='127.0.0.1', port=2000, timeout=10, render=True, record='', timestep=0.1, traffic_manager_port=None)

	Bases: DrivingSimulator

Implementation of Simulator for CARLA.

scenic.simulators.gta

Scenic world model for Grand Theft Auto V (GTAV).

This interface must be used in 2D Compatibility Mode.

Importing scenes generated using this model into GTA V requires a GTA V plugin,
which you can find here [https://github.com/xyyue/scenic2gta].

Submodules

	center_detection

	This file contains helper functions

	img_modf

	This file has basic image modification functions

	interface

	Python supporting code for the GTA model.

	map

	

	messages

	

	model

	World model for GTA.

scenic.simulators.gta.center_detection

This file contains helper functions

Summary of Module Members

Functions

	compute_bb

	

	compute_gradient_sobel

	

	compute_midpoints

	

	find_center

	Find which edge x lies in

	generate_circle

	

	generate_connected_edges

	

	generate_neighbors

	

	transform_center

	

Classes

	EdgeData

	

Member Details

	
find_center(x, theta, collected_edges, all_edges, num_samples, bw_image)

	Find which edge x lies in

	
class EdgeData(init_theta, tangent, opp_loc, mid_loc)

	Bases: NamedTuple [https://docs.python.org/3/library/typing.html#typing.NamedTuple]

	Parameters:

	
	init_theta (float [https://docs.python.org/3/library/functions.html#float]) –

	tangent (float [https://docs.python.org/3/library/functions.html#float]) –

	opp_loc (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]) –

	mid_loc (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]) –

	
init_theta: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 0

	
tangent: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 1

	
opp_loc: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	Alias for field number 2

	
mid_loc: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	Alias for field number 3

	
_asdict()

	Return a new dict which maps field names to their values.

	
classmethod _make(iterable)

	Make a new EdgeData object from a sequence or iterable

	
_replace(**kwds)

	Return a new EdgeData object replacing specified fields with new values

scenic.simulators.gta.img_modf

This file has basic image modification functions

Summary of Module Members

Functions

	convert_black_white

	

	get_edges

	

Member Details

scenic.simulators.gta.interface

Python supporting code for the GTA model.

Summary of Module Members

Classes

	CarModel

	A model of car in GTA.

	GTA

	

	Map

	Represents roads and obstacles in GTA, extracted from a map image.

	MapWorkspace

	Workspace whose rendering is handled by a Map

Member Details

	
class Map(imagePath, Ax, Ay, Bx, By)

	Represents roads and obstacles in GTA, extracted from a map image.

This code handles images from the GTA V Interactive Map [https://gta-5-map.com/],
rendered with the “Road” setting.

	Parameters:

	
	imagePath (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to image file

	Ax (float [https://docs.python.org/3/library/functions.html#float]) – width of one pixel in GTA coordinates

	Ay (float [https://docs.python.org/3/library/functions.html#float]) – height of one pixel in GTA coordinates

	Bx (float [https://docs.python.org/3/library/functions.html#float]) – GTA X-coordinate of bottom-left corner of image

	By (float [https://docs.python.org/3/library/functions.html#float]) – GTA Y-coordinate of bottom-left corner of image

	
class MapWorkspace(mappy, region)

	Bases: Workspace

Workspace whose rendering is handled by a Map

	
class CarModel(name, width, length, viewAngle=1.5707963267948966)

	A model of car in GTA.

	Attributes:

	
	name (str) – name of model in GTA

	width (float) – width of this model of car

	length (float) – length of this model of car

	viewAngle (float) – view angle in radians (default is 90 degrees)

	Class Attributes:

	models – dict mapping model names to the corresponding CarModel

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	width (float [https://docs.python.org/3/library/functions.html#float]) –

	length (float [https://docs.python.org/3/library/functions.html#float]) –

	viewAngle (float [https://docs.python.org/3/library/functions.html#float]) –

scenic.simulators.gta.map

Summary of Module Members

Functions

	setLocalMap

	

Member Details

scenic.simulators.gta.messages

Summary of Module Members

Functions

	frame2numpy

	

	obj_dict

	

Classes

	Commands

	

	Config

	

	Dataset

	

	Formal_Config

	

	Formal_Configs

	

	Scenario

	

	Start

	

	Stop

	

	Vehicle

	

Member Details

scenic.simulators.gta.model

World model for GTA.

Summary of Module Members

Module Attributes

	roadDirection

	Vector field representing the nominal traffic direction at a point on the road

	road

	Region representing the roads in the GTA map.

	curb

	Region representing the curbs in the GTA map.

Functions

	createPlatoonAt

	Create a platoon starting from the given car.

Classes

	Bus

	Convenience subclass for buses.

	Car

	Scenic class for cars.

	Compact

	Convenience subclass for compact cars.

	EgoCar

	Convenience subclass with defaults for ego cars.

Member Details

	
roadDirection

	Vector field representing the nominal traffic direction at a point on the road

	
road

	Region representing the roads in the GTA map.

	
curb

	Region representing the curbs in the GTA map.

	
class Car <specifiers>

	Bases: Object2D

Scenic class for cars.

	Properties:

	
	position – The default position is uniformly random over the road.

	heading – The default heading is aligned with roadDirection, plus an offset
given by roadDeviation.

	roadDeviation (float) – Relative heading with respect to the road direction
at the Car’s position. Used by the default value for heading.

	model (CarModel) – Model of the car.

	color (Color or RGB tuple) – Color of the car.

	
class EgoCar <specifiers>

	Bases: Car

Convenience subclass with defaults for ego cars.

	
class Bus <specifiers>

	Bases: Car

Convenience subclass for buses.

	
class Compact <specifiers>

	Bases: Car

Convenience subclass for compact cars.

	
createPlatoonAt(car, numCars, model=None, dist=Range(2.0, 8.0), shift=Range(-0.5, 0.5), wiggle=0)

	Create a platoon starting from the given car.

scenic.simulators.lgsvl

Interface to the LGSVL driving simulator.

The LGSVL Simulator interface was deprecated in Scenic 3. To continue to use the interface, please use Scenic 2.

Submodules

	actions

	Actions for agents in the LGSVL model.

	behaviors

	Behaviors for dynamic agents in LGSVL.

	model

	Scenic world model for the LGSVL Simulator.

	simulator

	Dynamic simulator interface for LGSVL.

	utils

	Common LGSVL interface.

scenic.simulators.lgsvl.actions

Actions for agents in the LGSVL model.

Summary of Module Members

Classes

	CancelWaypointsAction

	

	FollowWaypointsAction

	

	SetDestinationAction

	

	TrackWaypointsAction

	

Member Details

scenic.simulators.lgsvl.behaviors

Behaviors for dynamic agents in LGSVL.

scenic.simulators.lgsvl.model

Scenic world model for the LGSVL Simulator.

Summary of Module Members

Functions

	LGSVLSimulator

	

Classes

	ApolloCar

	

	Bus

	

	Car

	alias of EgoCar

	EgoCar

	

	LGSVLObject

	

	NPCCar

	

	Pedestrian

	

	Vehicle

	

	Waypoint

	

Member Details

scenic.simulators.lgsvl.simulator

Dynamic simulator interface for LGSVL.

Summary of Module Members

Classes

	LGSVLSimulation

	Subclass of Simulation for LGSVL.

	LGSVLSimulator

	A connection to an instance of LGSVL.

Member Details

	
class LGSVLSimulator(sceneID, address='localhost', port=8181, alwaysReload=False)

	Bases: Simulator

A connection to an instance of LGSVL.

See the SVL documentation [https://www.svlsimulator.com/docs/python-api/python-api] for details on how to set the parameters below.

Uses a default timestep of 0.1 seconds.

	Parameters:

	
	sceneID (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier for the map (“scene”) to load in SVL.

	address (str [https://docs.python.org/3/library/stdtypes.html#str]) – Address where SVL is running.

	port (int [https://docs.python.org/3/library/functions.html#int]) – Port on which to connect to SVL.

	alwaysReload (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to force reloading the map upon connecting,
even if the simulator already has the desired map loaded.

	
class LGSVLSimulation(scene, client, *, timestep, **kwargs)

	Bases: Simulation

Subclass of Simulation for LGSVL.

	
initApolloFor(obj, lgsvlObj)

	Initialize Apollo for an ego vehicle.

Uses LG’s interface which injects packets into Dreamview.

scenic.simulators.lgsvl.utils

Common LGSVL interface.

Summary of Module Members

Functions

	gpsToScenicPosition

	Convert GPS positions to Scenic positions.

	lgsvlToScenicAngularSpeed

	

	lgsvlToScenicElevation

	Convert LGSVL positions to Scenic elevations.

	lgsvlToScenicPosition

	Convert LGSVL positions to Scenic positions.

	lgsvlToScenicRotation

	Convert LGSVL rotations to Scenic headings.

	scenicToLGSVLPosition

	

	scenicToLGSVLRotation

	

Member Details

	
lgsvlToScenicPosition(pos)

	Convert LGSVL positions to Scenic positions.

	
gpsToScenicPosition(northing, easting)

	Convert GPS positions to Scenic positions.

	
lgsvlToScenicElevation(pos)

	Convert LGSVL positions to Scenic elevations.

	
lgsvlToScenicRotation(rot)

	Convert LGSVL rotations to Scenic headings.

Drops all but the Y component.

scenic.simulators.newtonian

Simple Newtonian physics simulator.

This interface must be used in 2D Compatibility Mode.

This simulator allows dynamic scenarios to be tested without installing an
external simulator. It is currently very simplistic (e.g. not modeling
collisions).

The simulator provides two world models: a generic one, and a more specialized
model supporting traffic scenarios using the scenic.domains.driving
abstract domain.

Submodules

	driving_model

	Scenic world model for traffic scenarios in the Newtonian simulator.

	model

	Scenic world model for the Newtonian simulator.

	simulator

	Newtonian simulator implementation.

scenic.simulators.newtonian.driving_model

Scenic world model for traffic scenarios in the Newtonian simulator.

This model implements the basic Car class from the
scenic.domains.driving domain.
Vehicles support the basic actions and behaviors from the driving domain.

A path to a map file for the scenario should be provided as the map global parameter;
see the driving domain’s documentation for details.

Summary of Module Members

Classes

	Car

	

	Debris

	Abstract class for debris scattered randomly in the workspace.

	NewtonianActor

	

	Pedestrian

	

	Vehicle

	

Member Details

	
class Debris <specifiers>

	Bases: Object2D

Abstract class for debris scattered randomly in the workspace.

scenic.simulators.newtonian.model

Scenic world model for the Newtonian simulator.

This is a completely generic model that does not assume the scenario takes
place in a road network (unlike scenic.simulators.newtonian.driving_model).

scenic.simulators.newtonian.simulator

Newtonian simulator implementation.

Summary of Module Members

Classes

	NewtonianSimulation

	Implementation of Simulation for the Newtonian simulator.

	NewtonianSimulator

	Implementation of Simulator for the Newtonian simulator.

Member Details

	
class NewtonianSimulator(network=None, render=False)

	Bases: DrivingSimulator

Implementation of Simulator for the Newtonian simulator.

	Parameters:

	
	network (Network) – road network to display in the background, if any.

	render (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to render the simulation in a window.

Changed in version 3.0: The timestep argument is removed: it can be specified when calling
simulate instead. The default timestep for the Newtonian simulator
when not otherwise specified is still 0.1 seconds.

	
class NewtonianSimulation(scene, network, render, timestep, **kwargs)

	Bases: DrivingSimulation

Implementation of Simulation for the Newtonian simulator.

scenic.simulators.utils

Various utilities useful across multiple simulators.

Submodules

	colors

	A basic color type.

scenic.simulators.utils.colors

A basic color type.

This used for example to represent car colors in the abstract driving domain,
as well as in the interfaces to GTA and Webots.

Summary of Module Members

Classes

	Color

	A color as an RGB tuple.

	ColorMutator

	Mutator that adds Gaussian HSL noise to the color property.

	NoisyColorDistribution

	A distribution given by HSL noise around a base color.

Member Details

	
class Color(r, g, b)

	Bases: Color

A color as an RGB tuple.

	
static uniformColor()

	Return a uniformly random color.

	
static defaultCarColor()

	Default color distribution for cars.

The distribution starts with a base distribution over 9 discrete colors,
then adds Gaussian HSL noise. The base distribution uses color popularity
statistics from a 2012 DuPont survey [https://web.archive.org/web/20121229065631/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf].

	
class NoisyColorDistribution(baseColor, hueNoise, satNoise, lightNoise)

	Bases: Distribution

A distribution given by HSL noise around a base color.

	Parameters:

	
	baseColor (RGB tuple) – base color

	hueNoise (float [https://docs.python.org/3/library/functions.html#float]) – noise to add to base hue

	satNoise (float [https://docs.python.org/3/library/functions.html#float]) – noise to add to base saturation

	lightNoise (float [https://docs.python.org/3/library/functions.html#float]) – noise to add to base lightness

	
class ColorMutator

	Bases: Mutator

Mutator that adds Gaussian HSL noise to the color property.

scenic.simulators.webots

Scenic world models for the Webots robotics simulator.

This module contains common code for working with Webots, e.g. parsing WBT files,
as well as a generic dynamic simulator interface and world model for Webots.
More detailed world models for particular types of scenarios are in submodules.

Submodules

	actions

	Actions for dynamic agents in Webots simulations.

	guideways

	World model for road intersection scenarios in Webots.

	model

	Generic Scenic world model for the Webots simulator.

	road

	World model and associated code for traffic scenarios in Webots.

	simulator

	Interface to Webots for dynamic simulations.

	utils

	Various utilities for working with Webots scenarios.

	WBTLexer

	

	WBTParser

	

	WBTVisitor

	

	world_parser

	Parser for WBT files using ANTLR.

scenic.simulators.webots.actions

Actions for dynamic agents in Webots simulations.

Summary of Module Members

Classes

	ApplyForceAction

	Apply a given force to the object.

	OffsetAction

	Move an object by the given offset relative to its current heading.

	WriteFileAction

	Pickle the given data and write the result to a file.

Member Details

	
class OffsetAction(offset)

	Bases: Action

Move an object by the given offset relative to its current heading.

	
class ApplyForceAction(force, relative=False)

	Bases: Action

Apply a given force to the object.

	
class WriteFileAction(path, data)

	Bases: Action

Pickle the given data and write the result to a file.

For use in communication with external controllers or other code.

scenic.simulators.webots.guideways

World model for road intersection scenarios in Webots.

This is a more specialized version of the scenic.simulators.webots.road model which also includes guideway information from the Intelligent Intersections Toolkit [https://github.com/ucbtrans/intelligent_intersection].

Submodules

	interface

	

	intersection

	

	model

	

scenic.simulators.webots.guideways.interface

Summary of Module Members

Functions

	localize

	

	projectionAt

	

	toWebots

	

Classes

	Bordered

	

	ConflictZone

	

	Crosswalk

	

	Guideway

	

	Intersection

	

	IntersectionWorkspace

	

Member Details

scenic.simulators.webots.guideways.intersection

Summary of Module Members

Functions

	setLocalIntersection

	

Member Details

scenic.simulators.webots.guideways.model

Summary of Module Members

Classes

	Car

	

	Marker

	

Member Details

scenic.simulators.webots.model

Generic Scenic world model for the Webots simulator.

This model provides a general type of object WebotsObject corresponding to a
node in the Webots scene tree, as well as a few more specialized objects.

Scenarios using this model cannot be launched directly from the command line
using the --simulate option. Instead, Webots should be started first,
with a .wbt file that includes nodes for all the objects in the scenario
(see the WebotsObject documentation for how to specify which objects
correspond to which nodes). A supervisor node can then invoke Scenic to compile
the scenario and run dynamic simulations: see
scenic.simulators.webots.simulator for details.

Summary of Module Members

Functions

	is2DMode

	

Classes

	Ground

	Special kind of object representing a (possibly irregular) ground surface.

	Hill

	Terrain shaped like a Gaussian.

	Terrain

	Abstract class for objects added together to make a Ground.

	WebotsObject

	Abstract class for Webots objects.

Member Details

	
class WebotsObject <specifiers>

	Bases: Object

Abstract class for Webots objects.

There several ways to specify which Webots node this object corresponds to:

	Set the webotsName property to the DEF name of the Webots node,
which must already exist in the world loaded into Webots.

	Set the webotsType property to a prefix like ‘ROCK’: the
interface will then search for nodes called ‘ROCK_0’, ‘ROCK_1’, etc.
Again the nodes must already exist in the world loaded into Webots.

	Set the webotsAdhoc property to a dictionary of parameters. This will
cause Scenic to dynamically create an Object in Webots, according to the
parameters in the dictionary. This is currently the only way to create
objects in Webots that do not correspond to an existing node. The parameters
that can be contained in the dictionary are:

	physics: Whether or not physics should be enabled for this object.
Default value is True.

	Properties:

	
	elevation (float or None; dynamic) – default None (see above).

	requireVisible (bool) – Default value False (overriding the default
from Object).

	webotsAdhoc (None | dict) – None implies this object is not Adhoc. A dictionary
implies this is an object that Scenic should create in Webots..
If a dictionary, provides parameters for how to instantiate the adhoc object.
See scenic.simulators.webots.model for more details.

	webotsName (str) – ‘DEF’ name of the Webots node to use for this object.

	webotsType (str) – If webotsName is not set, the first available
node with ‘DEF’ name consisting of this string followed by ‘_0’,
‘_1’, etc. will be used for this object.

	webotsObject – Is set at runtime to a handle to the Webots node for the
object, for use with the Supervisor API [https://www.cyberbotics.com/doc/reference/supervisor?tab-language=python]. Primarily for internal
use.

	controller (str or None) – name of the Webots controller to use for
this object, if any (instead of a Scenic behavior).

	resetController (bool) – Whether to restart the controller for each
simulation (default True).

	positionOffset (Vector) – Offset to add when computing the object’s
position in Webots; for objects whose Webots translation field
is not aligned with the center of the object.

	rotationOffset (tuple[float, float, float]) – Offset to add when computing the object’s
orientation in Webots; for objects whose front is not aligned with the
Webots North axis.

	density (float) – Density of this object in kg/m^3. The corresponding Webots object
must have the density field.

	
class Ground <specifiers>

	Bases: WebotsObject

Special kind of object representing a (possibly irregular) ground surface.

Implemented using an ElevationGrid [https://www.cyberbotics.com/doc/reference/elevationgrid] node in Webots.

	Attributes:

	
	allowCollisions (bool) – default value True [https://docs.python.org/3/library/constants.html#True] (overriding default from Object).

	webotsName (str) – default value ‘Ground’

	
class Terrain <specifiers>

	Bases: Object

Abstract class for objects added together to make a Ground.

This is not a WebotsObject since it doesn’t actually correspond to a
Webots node. Only the overall Ground has a node.

	
class Hill <specifiers>

	Bases: Terrain

Terrain shaped like a Gaussian.

	Attributes:

	
	height (float) – height of the hill (default 1).

	spread (float) – standard deviation as a fraction of the hill’s size
(default 3).

scenic.simulators.webots.road

World model and associated code for traffic scenarios in Webots.

This model handles Webots world files generated from Open Street Map data using the Webots OSM importer.

Submodules

	car_models

	Car models built into Webots.

	interface

	Python library supporting the main Scenic module.

	model

	Scenic world model for traffic scenarios in Webots.

	world

	Stub to allow changing the Webots world without changing the model.

scenic.simulators.webots.road.car_models

Car models built into Webots.

Summary of Module Members

Classes

	CarModel

	

Member Details

	
class CarModel(name: str [https://docs.python.org/3/library/stdtypes.html#str], width: float [https://docs.python.org/3/library/functions.html#float], length: float [https://docs.python.org/3/library/functions.html#float], height: float [https://docs.python.org/3/library/functions.html#float])

	
	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	width (float [https://docs.python.org/3/library/functions.html#float]) –

	length (float [https://docs.python.org/3/library/functions.html#float]) –

	height (float [https://docs.python.org/3/library/functions.html#float]) –

scenic.simulators.webots.road.interface

Python library supporting the main Scenic module.

Summary of Module Members

Functions

	polygonWithPoints

	

	regionWithPolygons

	

	scenicToWebotsPosition

	Convert a Scenic position to a Webots position.

	scenicToWebotsRotation

	Convert a Scenic heading to a Webots rotation vector.

	webotsToScenicPosition

	Convert a Webots position to a Scenic position.

	webotsToScenicRotation

	Convert a Webots rotation vector to a Scenic heading.

Classes

	Crossroad

	OSM crossroads

	OSMObject

	Objects with OSM id tags

	PedestrianCrossing

	PedestrianCrossing nodes

	Road

	OSM roads

	WebotsWorkspace

	

Member Details

	
class OSMObject(attrs)

	Objects with OSM id tags

	
class Road(attrs, driveOnLeft=False)

	Bases: OSMObject

OSM roads

	
class Crossroad(attrs)

	Bases: OSMObject

OSM crossroads

	
class PedestrianCrossing(attrs)

	PedestrianCrossing nodes

	
webotsToScenicPosition(pos)

	Convert a Webots position to a Scenic position.
Drops the Webots Y coordinate.

Deprecated since version 2.1.0: Use WebotsCoordinateSystem instead.

	
scenicToWebotsPosition(pos, y=0, coordinateSystem='ENU')

	Convert a Scenic position to a Webots position.

Deprecated since version 2.1.0: Use WebotsCoordinateSystem instead.

	
webotsToScenicRotation(rot, tolerance2D=None)

	Convert a Webots rotation vector to a Scenic heading.
Assumes the object lies in the Webots X-Z plane, with a rotation axis
close to the Y axis. If tolerance2D is given, returns None if the
orientation of the object is not sufficiently close to being 2D.

Deprecated since version 2.1.0: Use WebotsCoordinateSystem instead.

	
scenicToWebotsRotation(heading)

	Convert a Scenic heading to a Webots rotation vector.

Deprecated since version 2.1.0: Use WebotsCoordinateSystem instead.

scenic.simulators.webots.road.model

Scenic world model for traffic scenarios in Webots.

Summary of Module Members

Classes

	BmwX5

	

	Bus

	

	Car

	

	CitroenCZero

	

	LincolnMKZ

	

	Motorcycle

	

	OilBarrel

	

	Pedestrian

	

	RangeRoverSportSVR

	

	SmallCar

	

	SolidBox

	

	ToyotaPrius

	

	Tractor

	

	TrafficCone

	

	Truck

	

	WebotsObject

	

	WorkBarrier

	

Member Details

scenic.simulators.webots.road.world

Stub to allow changing the Webots world without changing the model.

Summary of Module Members

Module Attributes

	worldPath

	Path to the WBT file to load the Webots world from

Functions

	setLocalWorld

	Select a WBT file relative to the given module.

Member Details

	
worldPath = '../tests/simulators/webots/road/simple.wbt'

	Path to the WBT file to load the Webots world from

	
setLocalWorld(module, relpath)

	Select a WBT file relative to the given module.

This function is intended to be used with __file__ as the module.

scenic.simulators.webots.simulator

Interface to Webots for dynamic simulations.

This interface is intended to be instantiated from inside the controller script
of a Webots Robot node [https://www.cyberbotics.com/doc/reference/robot] with the supervisor field set to true. Such a
script can create a WebotsSimulator (passing in a reference to the supervisor
node) and then call its simulate method as usual to run a simulation. For an
example, see examples/webots/generic/controllers/scenic_supervisor.py.

Scenarios written for this interface should use our generic Webots world model
scenic.simulators.webots.model or a model derived from it. Objects which
are instances of WebotsObject will be matched to Webots nodes; see the model
documentation for details.

Summary of Module Members

Functions

	getFieldSafe

	Get field from webots object.

	isPhysicsEnabled

	Whether or not physics is enabled for this WebotsObject

Classes

	WebotsSimulation

	Simulation object for Webots.

	WebotsSimulator

	Simulator object for Webots.

Member Details

	
class WebotsSimulator(supervisor)

	Bases: Simulator

Simulator object for Webots.

	Parameters:

	supervisor – Supervisor node handle from the Webots Python API.

	
class WebotsSimulation(scene, supervisor, coordinateSystem=<scenic.simulators.webots.utils.WebotsCoordinateSystem object>, *, timestep, **kwargs)

	Bases: Simulation

Simulation object for Webots.

	Attributes:

	supervisor – Webots supervisor node used for the simulation. This is
exposed for the use of scenarios which need to call Webots APIs
directly; e.g. simulation().supervisor.setLabel(...).

	
getFieldSafe(webotsObject, fieldName)

	Get field from webots object. Return null if no such field exists.

Needed to workaround this issue (https://github.com/cyberbotics/webots/issues/5646)

	Parameters:

	
	webotsObject – webots object

	fieldName – name of the field to look for

	Returns:

	Field|None – Field object if the field with the given name exists. None otherwise.

	
isPhysicsEnabled(webotsObject)

	Whether or not physics is enabled for this WebotsObject

scenic.simulators.webots.utils

Various utilities for working with Webots scenarios.

Summary of Module Members

Module Attributes

	ENU

	The ENU coordinate system (the Webots default).

	NUE

	The NUE coordinate system.

	EUN

	The EUN coordinate system.

Classes

	WebotsCoordinateSystem

	A Webots coordinate system into which Scenic positions can be converted.

Member Details

	
class WebotsCoordinateSystem(system='ENU')

	A Webots coordinate system into which Scenic positions can be converted.

See the Webots documentation of WorldInfo.coordinateSystem [https://cyberbotics.com/doc/reference/worldinfo] for a discussion
of the possible coordinate systems. Since Webots R2022a, the default coordinate
axis convention is ENU (X-Y-Z=East-North-Up), which is the same as Scenic’s.

	
positionToScenic(pos)

	Convert a Webots position to a Scenic position.

	
positionFromScenic(pos)

	Convert a Scenic position to a Webots position.

	
ENU = <scenic.simulators.webots.utils.WebotsCoordinateSystem object>

	The ENU coordinate system (the Webots default).

	
NUE = <scenic.simulators.webots.utils.WebotsCoordinateSystem object>

	The NUE coordinate system.

	
EUN = <scenic.simulators.webots.utils.WebotsCoordinateSystem object>

	The EUN coordinate system.

scenic.simulators.webots.WBTLexer

Summary of Module Members

Functions

	serializedATN

	

Classes

	WBTLexer

	

Member Details

scenic.simulators.webots.WBTParser

Summary of Module Members

Functions

	serializedATN

	

Classes

	WBTParser

	

Member Details

scenic.simulators.webots.WBTVisitor

Summary of Module Members

Classes

	WBTVisitor

	

Member Details

scenic.simulators.webots.world_parser

Parser for WBT files using ANTLR.

The ANTLR parser itself, consisting of the WBTLexer.py, WBTParser.py, and WBTVisitor.py files, is autogenerated from WBT.g4.

Summary of Module Members

Functions

	findNodeTypesIn

	Find all nodes of the given types in a world

	parse

	Parse a world from a WBT file

Classes

	ErrorReporter

	ANTLR listener for reporting parse errors

	Evaluator

	Constructs an object representing the given value from the parse tree

	Node

	A generic VRML node

Member Details

	
class Node(nodeType, attrs)

	A generic VRML node

	
class ErrorReporter

	Bases: ErrorListener

ANTLR listener for reporting parse errors

	
class Evaluator(nodeClasses)

	Bases: WBTVisitor

Constructs an object representing the given value from the parse tree

	
parse(path)

	Parse a world from a WBT file

	
findNodeTypesIn(types, world, nodeClasses={})

	Find all nodes of the given types in a world

scenic.simulators.xplane

Scenic world model for the X-Plane flight simulator.

See the VerifAI distribution [https://github.com/BerkeleyLearnVerify/VerifAI] for examples of how to use Scenic with X-Plane.

Submodules

	model

	Scenic world model for the X-Plane simulator.

scenic.simulators.xplane.model

Scenic world model for the X-Plane simulator.

At the moment this is extremely simple, since the current interface does not
allow changing the type of aircraft, adding other objects, etc.

Summary of Module Members

Classes

	Plane

	Placeholder object for the plane.

Member Details

	
class Plane <specifiers>

	Bases: Object

Placeholder object for the plane.

scenic.syntax

The Scenic compiler and associated support code.

Submodules

	ast

	

	compiler

	

	parser

	

	pygment

	Pygments lexer and style for Scenic.

	relations

	Extracting relations (for later pruning) from the syntax of requirements.

	translator

	Translator turning Scenic programs into Scenario objects.

	veneer

	Python implementations of Scenic language constructs.

Summary of Module Members

Functions

	buildParser

	

Member Details

scenic.syntax.ast

Summary of Module Members

Classes

	AST

	Scenic AST base class

	Abort

	

	Above

	

	Additive

	

	AheadOf

	

	AltitudeFromOp

	

	Always

	

	AngleFromOp

	

	ApparentHeadingOp

	

	ApparentlyFacingSpecifier

	

	AtSpecifier

	

	Back

	Represents position of back of operator

	BackLeft

	Represents position of back left of operator

	BackRight

	Represents position of back right of operator

	BehaviorDef

	

	Behind

	

	Below

	

	BeyondSpecifier

	

	Bottom

	Represents position of bottom of operator

	BottomBackLeft

	Represents position of bottom back left of operator

	BottomBackRight

	Represents position of bottom back right of operator

	BottomFrontLeft

	Represents position of bottom front left of operator

	BottomFrontRight

	Represents position of bottom front right of operator

	CanSeeOp

	

	ContainedInSpecifier

	

	DegOp

	

	DirectionOfSpecifier

	

	DistanceFromOp

	

	DistancePastOp

	

	Do

	

	DoChoose

	

	DoFor

	

	DoShuffle

	

	DoUntil

	

	Dynamic

	

	Ego

	ego tracked assign target

	Eventually

	

	FacingAwayFromSpecifier

	

	FacingDirectlyAwayFromSpecifier

	

	FacingDirectlyTowardSpecifier

	

	FacingSpecifier

	

	FacingTowardSpecifier

	

	FieldAtOp

	

	Final

	

	FollowOp

	

	FollowingSpecifier

	

	Front

	Represents position of front of operator

	FrontLeft

	Represents position of front left of operator

	FrontRight

	Represents position of front right of operator

	ImpliesOp

	

	InSpecifier

	

	InitialScenario

	

	InterruptWhenHandler

	

	IntersectsOp

	

	Invariant

	

	Left

	Represents position of left of operator

	LeftOf

	

	Model

	

	MonitorDef

	

	Mutate

	

	New

	

	Next

	

	NotVisibleFromOp

	

	NotVisibleOp

	

	NotVisibleSpecifier

	

	OffsetAlongOp

	

	OffsetAlongSpecifier

	

	OffsetBySpecifier

	

	OnSpecifier

	

	Override

	

	Param

	param statements

	PositionOfOp

	

	Precondition

	

	PropertyDef

	

	Record

	

	RecordFinal

	

	RecordInitial

	

	RelativeHeadingOp

	

	RelativePositionOp

	

	RelativeToOp

	

	Require

	

	RequireMonitor

	

	Right

	Represents position of right of operator

	RightOf

	

	ScenarioDef

	

	Seconds

	

	Simulator

	

	Steps

	

	Take

	

	Terminate

	

	TerminateAfter

	

	TerminateSimulation

	

	TerminateSimulationWhen

	

	TerminateWhen

	

	Top

	Represents position of top of operator

	TopBackLeft

	Represents position of top back left of operator

	TopBackRight

	Represents position of top back right of operator

	TopFrontLeft

	Represents position of top front left of operator

	TopFrontRight

	Represents position of top front right of operator

	TrackedAssign

	

	TryInterrupt

	Scenic AST node that represents try-interrupt statements

	UntilOp

	

	VectorOp

	

	VisibleFromOp

	

	VisibleOp

	

	VisibleSpecifier

	

	Wait

	

	WithSpecifier

	

	Workspace

	workspace tracked assign target

	parameter

	represents a parameter that is defined with param statements

Member Details

	
class AST(*args, **kwargs)

	Bases: AST [https://docs.python.org/3/library/ast.html#ast.AST]

Scenic AST base class

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class TryInterrupt(body, interrupt_when_handlers, except_handlers, orelse, finalbody, *args, **kwargs)

	Bases: AST

Scenic AST node that represents try-interrupt statements

	Parameters:

	
	body (List [https://docs.python.org/3/library/typing.html#typing.List][stmt]) –

	interrupt_when_handlers (List [https://docs.python.org/3/library/typing.html#typing.List][InterruptWhenHandler]) –

	except_handlers (List [https://docs.python.org/3/library/typing.html#typing.List][ExceptHandler [https://docs.python.org/3/library/ast.html#ast.ExceptHandler]]) –

	orelse (List [https://docs.python.org/3/library/typing.html#typing.List][stmt]) –

	finalbody (List [https://docs.python.org/3/library/typing.html#typing.List][AST]) –

	args (any) –

	kwargs (any) –

	
class Ego(*args, **kwargs)

	Bases: AST

ego tracked assign target

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class Workspace(*args, **kwargs)

	Bases: AST

workspace tracked assign target

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class Param(elts, *args, **kwargs)

	Bases: AST

param statements

	Parameters:

	
	elts (List [https://docs.python.org/3/library/typing.html#typing.List][parameter]) –

	args (any) –

	kwargs (any) –

	
class parameter(identifier, value, *args, **kwargs)

	Bases: AST

represents a parameter that is defined with param statements

	Parameters:

	
	identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (AST) –

	args (any) –

	kwargs (any) –

	
class Front(*args, **kwargs)

	Bases: AST

Represents position of front of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class Back(*args, **kwargs)

	Bases: AST

Represents position of back of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class Left(*args, **kwargs)

	Bases: AST

Represents position of left of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class Right(*args, **kwargs)

	Bases: AST

Represents position of right of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class Top(*args, **kwargs)

	Bases: AST

Represents position of top of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class Bottom(*args, **kwargs)

	Bases: AST

Represents position of bottom of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class FrontLeft(*args, **kwargs)

	Bases: AST

Represents position of front left of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class FrontRight(*args, **kwargs)

	Bases: AST

Represents position of front right of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class BackLeft(*args, **kwargs)

	Bases: AST

Represents position of back left of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class BackRight(*args, **kwargs)

	Bases: AST

Represents position of back right of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class TopFrontLeft(*args, **kwargs)

	Bases: AST

Represents position of top front left of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class TopFrontRight(*args, **kwargs)

	Bases: AST

Represents position of top front right of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class TopBackLeft(*args, **kwargs)

	Bases: AST

Represents position of top back left of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class TopBackRight(*args, **kwargs)

	Bases: AST

Represents position of top back right of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class BottomFrontLeft(*args, **kwargs)

	Bases: AST

Represents position of bottom front left of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class BottomFrontRight(*args, **kwargs)

	Bases: AST

Represents position of bottom front right of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class BottomBackLeft(*args, **kwargs)

	Bases: AST

Represents position of bottom back left of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

	
class BottomBackRight(*args, **kwargs)

	Bases: AST

Represents position of bottom back right of operator

	Parameters:

	
	args (any) –

	kwargs (any) –

scenic.syntax.compiler

Summary of Module Members

Functions

	compileScenicAST

	Compiles Scenic AST to Python AST

	unquote

	

Classes

	AttributeFinder

	Utility class for finding all referenced attributes of a given name.

	Context

	An enumeration.

	LocalFinder

	Utility class for finding all local variables of a code block.

	PropositionTransformer

	

	ScenicToPythonTransformer

	

	Transformer

	Subclass of ast.NodeTransformer [https://docs.python.org/3/library/ast.html#ast.NodeTransformer] with a method for raising syntax errors.

Member Details

	
compileScenicAST(scenicAST, *, filename='<unknown>', inBehavior=False, inMonitor=False, inCompose=False, inSetup=False, inInterruptBlock=False)

	Compiles Scenic AST to Python AST

	Parameters:

	
	scenicAST (AST) –

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	inBehavior (bool [https://docs.python.org/3/library/functions.html#bool]) –

	inMonitor (bool [https://docs.python.org/3/library/functions.html#bool]) –

	inCompose (bool [https://docs.python.org/3/library/functions.html#bool]) –

	inSetup (bool [https://docs.python.org/3/library/functions.html#bool]) –

	inInterruptBlock (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][AST, List [https://docs.python.org/3/library/typing.html#typing.List][AST]], List [https://docs.python.org/3/library/typing.html#typing.List][AST]]

	
class AttributeFinder(target)

	Bases: NodeVisitor [https://docs.python.org/3/library/ast.html#ast.NodeVisitor]

Utility class for finding all referenced attributes of a given name.

	
class LocalFinder

	Bases: NodeVisitor [https://docs.python.org/3/library/ast.html#ast.NodeVisitor]

Utility class for finding all local variables of a code block.

	
class Transformer(filename)

	Bases: NodeTransformer [https://docs.python.org/3/library/ast.html#ast.NodeTransformer]

Subclass of ast.NodeTransformer [https://docs.python.org/3/library/ast.html#ast.NodeTransformer] with a method for raising syntax errors.

	
class Context(value)

	Bases: IntFlag [https://docs.python.org/3/library/enum.html#enum.IntFlag]

An enumeration.

scenic.syntax.parser

Summary of Module Members

Functions

	parse_file

	Parse a file.

	parse_string

	Parse a string.

Classes

	Parser

	

	ScenicParser

	

	Target

	An enumeration.

Member Details

	
parse_file(path, py_version=None, token_stream_factory=None, verbose=False)

	Parse a file.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	py_version (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]) –

	token_stream_factory (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], str [https://docs.python.org/3/library/stdtypes.html#str]]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][TokenInfo]]]) –

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type:

	Module [https://docs.python.org/3/library/ast.html#ast.Module]

	
parse_string(source, mode, py_version=None, token_stream_factory=None, verbose=False, filename='<unknown>')

	Parse a string.

	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	mode (Union [https://docs.python.org/3/library/typing.html#typing.Union][Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['eval'], ~typing.Literal['exec']]) –

	py_version (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]) –

	token_stream_factory (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], str [https://docs.python.org/3/library/stdtypes.html#str]]], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][TokenInfo]]]) –

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) –

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
class Target(value)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

scenic.syntax.pygment

Pygments lexer and style for Scenic.

These work with the Pygments syntax highlighter [https://pygments.org/].
The module actually defines several lexers used for the Scenic documentation;
the main ScenicLexer and its associated style ScenicStyle are exported by
pyproject.toml as plugins to Pygments. This means that if you have the
scenic package installed, the Pygments command-line tool and Python API
will automatically recognize Scenic files. For example, to highlight a Scenic
program as a self-contained HTML or LaTeX file:

$ pygmentize -f html -Ofull,style=scenic prog.scenic > out.html
$ pygmentize -f latex -Ofull,style=scenic prog.scenic > out.tex

If highlighting multiple pieces of code, remove the full option to avoid
having the requisite CSS/preamble material duplicated in all your outputs; you
can run pygmentize -S scenic -f html (or latex) to
generate that material separately.

Summary of Module Members

Classes

	BetterPythonLexer

	Python lexer with better highlighting of function calls, parameters, etc.

	PegenLexer

	Lexer for Pegen grammars.

	PythonSnippetLexer

	Variant PythonLexer for code snippets rather than complete programs.

	ScenicGrammarLexer

	Lexer for the grammar notation used in the Scenic docs.

	ScenicLexer

	Lexer for Scenic code.

	ScenicPropertyLexer

	Silly lexer to color property names consistently with the real lexer.

	ScenicRequirementLexer

	Further variant lexer for requirements at the top level.

	ScenicSnippetLexer

	Variant ScenicLexer for code snippets rather than complete programs.

	ScenicSpecifierLexer

	Further variant lexer for specifiers at the top level.

	ScenicStyle

	A style providing specialized highlighting for the Scenic language.

Member Details

	
class BetterPythonLexer(*args, **kwds)

	Bases: PythonLexer

Python lexer with better highlighting of function calls, parameters, etc.

OK, ‘better’ is a matter of opinion; but it provides more informative tokens.
These tokens will not cause errors under any Pygments style, but require the
style to be aware of them in order to actually get better highlighting: use
the ScenicStyle below for best results.

Adapted from the PythonLexer and the MagicPython grammar by MagicStack Inc.,
available at https://github.com/MagicStack/MagicPython.

	
class ScenicLexer(*args, **kwds)

	Bases: BetterPythonLexer

Lexer for Scenic code.

	
class ScenicSnippetLexer(*args, **kwds)

	Bases: ScenicLexer

Variant ScenicLexer for code snippets rather than complete programs.

Specifically, this lexer formats syntactic variables of the form “{name}”
as “name” italicized.

	
class PythonSnippetLexer(*args, **kwds)

	Bases: BetterPythonLexer

Variant PythonLexer for code snippets rather than complete programs.

Specifically, this lexer formats syntactic variables of the form “{name}”
as “name” italicized.

	
class ScenicSpecifierLexer(*args, **kwds)

	Bases: ScenicSnippetLexer

Further variant lexer for specifiers at the top level.

	
class ScenicRequirementLexer(*args, **kwds)

	Bases: ScenicSnippetLexer

Further variant lexer for requirements at the top level.

	
class ScenicPropertyLexer(*args, **kwds)

	Bases: RegexLexer

Silly lexer to color property names consistently with the real lexer.

	
class ScenicGrammarLexer(*args, **kwds)

	Bases: RegexLexer

Lexer for the grammar notation used in the Scenic docs.

	
class ScenicStyle

	Bases: Style

A style providing specialized highlighting for the Scenic language.

The color scheme is a loose hybrid of that used in the Scenic papers and
the ‘Mariana’ color scheme from Sublime Text. The chosen colors all have a
contrast ratio of at least 4.5:1 against the background color, per the
W3C’s Web Content Accessibility Guidelines.

	
class PegenLexer(*args, **kwds)

	Bases: BetterPythonLexer

Lexer for Pegen grammars.

scenic.syntax.relations

Extracting relations (for later pruning) from the syntax of requirements.

Summary of Module Members

Functions

	inferDistanceRelations

	Infer bounds on distances from a requirement.

	inferRelationsFrom

	Infer relations between objects implied by a requirement.

	inferRelativeHeadingRelations

	Infer bounds on relative headings from a requirement.

Classes

	BoundRelation

	Abstract relation bounding something about another object.

	DistanceRelation

	Relation bounding another object's distance from this one.

	RelativeHeadingRelation

	Relation bounding another object's relative heading with respect to this one.

	RequirementMatcher

	

Member Details

	
inferRelationsFrom(reqNode, namespace, ego, line)

	Infer relations between objects implied by a requirement.

	
inferRelativeHeadingRelations(matcher, reqNode, ego, line)

	Infer bounds on relative headings from a requirement.

	
inferDistanceRelations(matcher, reqNode, ego, line)

	Infer bounds on distances from a requirement.

	
class BoundRelation(target, lower, upper)

	Abstract relation bounding something about another object.

	
class RelativeHeadingRelation(target, lower, upper)

	Bases: BoundRelation

Relation bounding another object’s relative heading with respect to this one.

	
class DistanceRelation(target, lower, upper)

	Bases: BoundRelation

Relation bounding another object’s distance from this one.

scenic.syntax.translator

Translator turning Scenic programs into Scenario objects.

The top-level interface to Scenic is provided by two functions:

	scenarioFromString – compile a string of Scenic code;

	scenarioFromFile – compile a Scenic file.

These output a Scenario object, from which scenes can be generated.
See the documentation for Scenario for details.

When imported, this module hooks the Python import system in order to implement
the import statement. This is only for the compiler’s own use: it is
not allowed to import a Scenic module from Python, and attempting to do so will
fail with a ModuleNotFoundError [https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError].

Scenic is compiled in two main steps: translating the code into Python, and
executing the resulting Python module to generate a Scenario object encoding
the objects, distributions, etc. in the scenario. For details, see the function
compileStream below.

Summary of Module Members

Functions

	astToSource

	

	compileStream

	Compile a stream of Scenic code and execute it in a namespace.

	compileTranslatedTree

	

	constructScenarioFrom

	Build a Scenario object from an executed Scenic module.

	dump

	

	executeCodeIn

	Execute the final translated Python code in the given namespace.

	gatherBehaviorNamespacesFrom

	Gather any global namespaces which could be referred to by behaviors.

	purgeModulesUnsafeToCache

	Uncache loaded modules which should not be kept after compilation.

	scenarioFromFile

	Compile a Scenic file into a Scenario.

	scenarioFromString

	Compile a string of Scenic code into a Scenario.

	scenic_path_hook

	

	storeScenarioStateIn

	Post-process an executed Scenic module, extracting state from the veneer.

	topLevelNamespace

	Creates an environment like that of a Python script being run directly.

Classes

	CompileOptions

	Internal class for capturing options used when compiling a scenario.

	ScenicFileFinder

	

	ScenicLoader

	

Member Details

	
class CompileOptions(mode2D=False, modelOverride=None, paramOverrides=<factory>, scenario=None)

	Internal class for capturing options used when compiling a scenario.

	Parameters:

	
	mode2D (bool [https://docs.python.org/3/library/functions.html#bool]) –

	modelOverride (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	paramOverrides (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	scenario (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
mode2D: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether or not the scenario uses 2D Compatibility Mode.

	
modelOverride: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	Overridden world model, if any.

	
paramOverrides: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Overridden global parameters.

	
scenario: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	Selected modular scenario, if any.

	
property hash

	Deterministic hash saved in serialized scenes to catch option mismatches.

	
scenarioFromString(string, params={}, model=None, scenario=None, *, filename='<string>', mode2D=False, **kwargs)

	Compile a string of Scenic code into a Scenario.

The optional filename is used for error messages.
Other arguments are as in scenarioFromFile.

	
scenarioFromFile(path, params={}, model=None, scenario=None, *, mode2D=False, **kwargs)

	Compile a Scenic file into a Scenario.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a Scenic file.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Global parameters to override, as a dictionary mapping
parameter names to their desired values.

	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – Scenic module to use as world model.

	scenario (str [https://docs.python.org/3/library/stdtypes.html#str]) – If there are multiple modular scenarios in the
file, which one to compile; if not specified, a scenario called ‘Main’
is used if it exists.

	mode2D (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to compile this scenario in 2D Compatibility Mode.

	Returns:

	A Scenario object representing the Scenic scenario.

Note for Scenic developers: this function accepts additional keyword
arguments which are intended for internal use and debugging only.
See _scenarioFromStream for details.

	
topLevelNamespace(path=None)

	Creates an environment like that of a Python script being run directly.

Specifically, __name__ is ‘__main__’, __file__ is the path used to invoke
the script (not necessarily its absolute path), and the parent directory is
added to the path so that ‘import blobbo’ will import blobbo from that
directory if it exists there.

	
purgeModulesUnsafeToCache(oldModules)

	Uncache loaded modules which should not be kept after compilation.

Keeping Scenic modules in sys.modules [https://docs.python.org/3/library/sys.html#sys.modules] after compilation will cause
subsequent attempts at compiling the same module to reuse the compiled
scenario: this is usually not what is desired, since compilation can depend
on external state (in particular overridden global parameters, used e.g. to
specify the map for driving domain scenarios).

	Parameters:

	oldModules – List of names of modules loaded before compilation. These
will be skipped.

	
compileStream(stream, namespace, compileOptions, filename)

	Compile a stream of Scenic code and execute it in a namespace.

The compilation procedure consists of the following main steps:

	Parse the Scenic code into a Scenic AST using the parser generated
by pegen from scenic.gram.

	Compile the Scenic AST into a Python AST with the desired semantics.
This is done by the compiler, scenic.syntax.compiler.

	Compile and execute the Python AST.

	Extract the global state (e.g. objects).
This is done by the storeScenarioStateIn function.

	
executeCodeIn(code, namespace)

	Execute the final translated Python code in the given namespace.

	
storeScenarioStateIn(namespace, requirementSyntax, astHash, options)

	Post-process an executed Scenic module, extracting state from the veneer.

	
gatherBehaviorNamespacesFrom(behaviors)

	Gather any global namespaces which could be referred to by behaviors.

We’ll need to rebind any sampled values in them at runtime.

	
constructScenarioFrom(namespace, scenarioName=None)

	Build a Scenario object from an executed Scenic module.

	
_scenarioFromStream(stream, compileOptions, filename, *, scenario=None, path=None, _cacheImports=False)

	Compile a stream of Scenic code into a Scenario.

This method is not meant to be called directly by users of Scenic. Use the
top-level functions scenarioFromFile and scenarioFromString instead.

These functions also accept the following keyword arguments, which are
intended for internal use and debugging only. They should be considered
unstable and are subject to modification or removal at any time.

	Parameters:

	_cacheImports (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to cache any imported Scenic modules.
The default behavior is to not do this, so that subsequent attempts
to import such modules will cause them to be recompiled. If it is
safe to cache Scenic modules across multiple compilations, set this
argument to True. Then importing a Scenic module will have the same
behavior as importing a Python module. See purgeModulesUnsafeToCache
for a more detailed discussion of the internals behind this.

scenic.syntax.veneer

Python implementations of Scenic language constructs.

This module is automatically imported by all Scenic programs. In addition to
defining the built-in functions, operators, specifiers, etc., it also stores
global state such as the list of all created Scenic objects.

Summary of Module Members

Functions

	Above

	The above X by Y polymorphic specifier.

	Ahead

	The ahead of X by Y polymorphic specifier.

	AltitudeFrom

	The altitude from <vector> to <vector> operator.

	AltitudeTo

	The angle to <vector> operator (using the position of ego as the reference).

	Always

	

	AngleFrom

	The angle from <vector> to <vector> operator.

	AngleTo

	The angle to <vector> operator (using the position of ego as the reference).

	ApparentHeading

	The apparent heading of <oriented point> [from <vector>] operator.

	ApparentlyFacing

	The apparently facing <heading> [from <vector>] specifier.

	At

	The at <vector> specifier.

	AtomicProposition

	

	Back

	The back of <object> operator.

	BackLeft

	The back left of <object> operator.

	BackRight

	The back right of <object> operator.

	Behind

	The behind X by Y polymorphic specifier.

	Below

	The below X by Y polymorphic specifier.

	Beyond

	The beyond X by Y from Z polymorphic specifier.

	Bottom

	The bottom of <object> operator.

	BottomBackLeft

	The bottom back left of <object> operator.

	BottomBackRight

	The bottom back right of <object> operator.

	BottomFrontLeft

	The bottom front left of <object> operator.

	BottomFrontRight

	The bottom front right of <object> operator.

	CanSee

	The X can see Y polymorphic operator.

	ContainedIn

	The contained in <region> specifier.

	DistanceFrom

	The distance from X to Y polymorphic operator.

	DistancePast

	The distance past <vector> of <oriented point> operator.

	Eventually

	

	Facing

	The facing X polymorphic specifier.

	FacingAwayFrom

	The facing away from <vector> specifier.

	FacingDirectlyAwayFrom

	The facing directly away from <vector> specifier.

	FacingDirectlyToward

	The facing directly toward <vector> specifier.

	FacingToward

	The facing toward <vector> specifier.

	FieldAt

	The <vector field> at <vector> operator.

	Follow

	The follow <field> from <vector> for <number> operator.

	Following

	The following F from X for D specifier.

	Front

	The front of <object> operator.

	FrontLeft

	The front left of <object> operator.

	FrontRight

	The front right of <object> operator.

	Implies

	

	In

	The in <region> specifier.

	Intersects

	The X intersects Y operator.

	Left

	The left of <object> operator.

	LeftSpec

	The left of X by Y polymorphic specifier.

	Next

	

	NotVisible

	The not visible <region> operator.

	NotVisibleFrom

	The not visible from <point> specifier.

	NotVisibleFromOp

	The <region> not visible from <point> operator.

	NotVisibleSpec

	The not visible specifier (equivalent to not visible from ego).

	OffsetAlong

	The X offset along H by Y polymorphic operator.

	OffsetAlongSpec

	The offset along X by Y polymorphic specifier.

	OffsetBy

	The offset by <vector> specifier.

	On

	The on X specifier.

	PropositionAnd

	

	PropositionNot

	

	PropositionOr

	

	RelativeHeading

	The relative heading of <heading> [from <heading>] operator.

	RelativePosition

	The relative position of <vector> [from <vector>] operator.

	RelativeTo

	The X relative to Y polymorphic operator.

	Right

	The right of <object> operator.

	RightSpec

	The right of X by Y polymorphic specifier.

	Top

	The top of <object> operator.

	TopBackLeft

	The top back left of <object> operator.

	TopBackRight

	The top back right of <object> operator.

	TopFrontLeft

	The top front left of <object> operator.

	TopFrontRight

	The top front right of <object> operator.

	Until

	

	Visible

	The visible <region> operator.

	VisibleFrom

	The visible from <point> specifier.

	VisibleFromOp

	The <region> visible from <point> operator.

	VisibleSpec

	The visible specifier (equivalent to visible from ego).

	With

	The with <property> <value> specifier.

	activate

	Activate the veneer when beginning to compile a Scenic module.

	alwaysProvidesOrientation

	Whether a Region or distribution over Regions always provides an orientation.

	beginSimulation

	

	callWithStarArgs

	

	deactivate

	Deactivate the veneer after compiling a Scenic module.

	directionalSpecHelper

	

	ego

	Function implementing loads and stores to the 'ego' pseudo-variable.

	endScenario

	

	endSimulation

	

	executeInBehavior

	

	executeInGuard

	

	executeInRequirement

	

	executeInScenario

	

	filter

	

	finishScenarioSetup

	

	float

	

	globalParameters

	

	in_initial_scenario

	

	instantiateSimulator

	

	int

	

	isActive

	Are we in the middle of compiling a Scenic module?

	len

	

	localPath

	Convert a path relative to the calling Scenic file into an absolute path.

	makeRequirement

	

	model

	

	mutate

	Function implementing the mutate statement.

	new

	

	override

	

	param

	Function implementing the param statement.

	prepareScenario

	

	projectVectorHelper

	

	range

	

	record

	

	record_final

	

	record_initial

	

	registerDynamicScenarioClass

	

	registerExternalParameter

	Register a parameter whose value is given by an external sampler.

	registerInstance

	Add a Scenic instance to the global list of created objects.

	registerObject

	Add a Scenic object to the global list of created objects.

	require

	Function implementing the require statement.

	require_always

	Function implementing the 'require always' statement.

	require_eventually

	Function implementing the 'require eventually' statement.

	require_monitor

	

	resample

	The built-in resample function.

	round

	

	simulation

	Get the currently-running Simulation.

	simulationInProgress

	

	simulator

	

	startScenario

	

	str

	

	terminate_after

	

	terminate_simulation_when

	Function implementing the 'terminate simulation when' statement.

	terminate_when

	Function implementing the 'terminate when' statement.

	verbosePrint

	Built-in function printing a message only in verbose mode.

	workspace

	Function implementing loads and stores to the 'workspace' pseudo-variable.

	wrapStarredValue

	

Classes

	Modifier

	

	ParameterTableProxy

	

Member Details

	
ego(obj=None)

	Function implementing loads and stores to the ‘ego’ pseudo-variable.

The translator calls this with no arguments for loads, and with the source
value for stores.

	
workspace(workspace=None)

	Function implementing loads and stores to the ‘workspace’ pseudo-variable.

See ego.

	
require(reqID, req, line, name, prob=1)

	Function implementing the require statement.

	
resample(dist)

	The built-in resample function.

	
param(params)

	Function implementing the param statement.

	
mutate(*objects, scale=1)

	Function implementing the mutate statement.

	
verbosePrint(*objects, level=1, indent=True, sep=' ', end='\n', file=sys.stdout, flush=False)

	Built-in function printing a message only in verbose mode.

Scenic’s verbosity may be set using the -v command-line option.
The simplest way to use this function is with code like
verbosePrint('hello world!') or verbosePrint('details here', level=3);
the other keyword arguments are probably only useful when replacing more complex uses
of the Python print [https://docs.python.org/3/library/functions.html#print] function.

	Parameters:

	
	objects – Object(s) to print (str [https://docs.python.org/3/library/stdtypes.html#str] will be called to make them strings).

	level (int [https://docs.python.org/3/library/functions.html#int]) – Minimum verbosity level at which to print. Default is 1.

	indent (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to indent the message to align with messages generated by
Scenic (default true).

	sep – As in print [https://docs.python.org/3/library/functions.html#print].

	end – As in print [https://docs.python.org/3/library/functions.html#print].

	file – As in print [https://docs.python.org/3/library/functions.html#print].

	flush – As in print [https://docs.python.org/3/library/functions.html#print].

	
localPath(relpath)

	Convert a path relative to the calling Scenic file into an absolute path.

For example, localPath('resource.dat') evaluates to the absolute path
of a file called resource.dat located in the same directory as the
Scenic file where this expression appears. Note that the path is returned as a
pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] object.

	
simulation()

	Get the currently-running Simulation.

May only be called from code that runs at simulation time, e.g. inside
dynamic behaviors and compose blocks of scenarios.

	
terminate_when(reqID, req, line, name)

	Function implementing the ‘terminate when’ statement.

	
terminate_simulation_when(reqID, req, line, name)

	Function implementing the ‘terminate simulation when’ statement.

	
Visible(region)

	The visible <region> operator.

	
NotVisible(region)

	The not visible <region> operator.

	
Front(X)

	The front of <object> operator.

	
Back(X)

	The back of <object> operator.

	
Left(X)

	The left of <object> operator.

	
Right(X)

	The right of <object> operator.

	
FrontLeft(X)

	The front left of <object> operator.

	
FrontRight(X)

	The front right of <object> operator.

	
BackLeft(X)

	The back left of <object> operator.

	
BackRight(X)

	The back right of <object> operator.

	
Top(X)

	The top of <object> operator.

	
Bottom(X)

	The bottom of <object> operator.

	
TopFrontLeft(X)

	The top front left of <object> operator.

	
TopFrontRight(X)

	The top front right of <object> operator.

	
TopBackLeft(X)

	The top back left of <object> operator.

	
TopBackRight(X)

	The top back right of <object> operator.

	
BottomFrontLeft(X)

	The bottom front left of <object> operator.

	
BottomFrontRight(X)

	The bottom front right of <object> operator.

	
BottomBackLeft(X)

	The bottom back left of <object> operator.

	
BottomBackRight(X)

	The bottom back right of <object> operator.

	
RelativeHeading(X, Y=None)

	The relative heading of <heading> [from <heading>] operator.

If the from <heading> is omitted, the heading of ego is used.

	
ApparentHeading(X, Y=None)

	The apparent heading of <oriented point> [from <vector>] operator.

If the from <vector> is omitted, the position of ego is used.

	
RelativePosition(X, Y=None)

	The relative position of <vector> [from <vector>] operator.

If the from <vector> is omitted, the position of ego is used.

	
DistanceFrom(X, Y=None)

	The distance from X to Y polymorphic operator.

Allowed forms:

distance from <vector> [to <vector>]
distance from <region> [to <vector>]
distance from <vector> to <region>

If the to <vector> is omitted, the position of ego is used.

	
DistancePast(X, Y=None)

	The distance past <vector> of <oriented point> operator.

If the of {oriented point} is omitted, the ego object is used.

	
Follow(F, X, D)

	The follow <field> from <vector> for <number> operator.

	
AngleTo(X)

	The angle to <vector> operator (using the position of ego as the reference).

	
AngleFrom(X=None, Y=None)

	The angle from <vector> to <vector> operator.

	
AltitudeTo(X)

	The angle to <vector> operator (using the position of ego as the reference).

	
AltitudeFrom(X=None, Y=None)

	The altitude from <vector> to <vector> operator.

	
FieldAt(X, Y)

	The <vector field> at <vector> operator.

	
RelativeTo(X, Y)

	The X relative to Y polymorphic operator.

Allowed forms:

<value> relative to <value> # with at least one a field, the other a field or heading
<vector> relative to <oriented point> # and vice versa
<vector> relative to <vector>
<heading> relative to <heading>
<orientation> relative to <orientation>

	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Vector, float [https://docs.python.org/3/library/functions.html#float], Orientation]

	
OffsetAlong(X, H, Y)

	The X offset along H by Y polymorphic operator.

Allowed forms:

<vector> offset along <heading> by <vector>
<vector> offset along <field> by <vector>

	
CanSee(X, Y)

	The X can see Y polymorphic operator.

Allowed forms:

<point> can see <vector>
<point> can see <point>

	
Intersects(X, Y)

	The X intersects Y operator.

	
VisibleFromOp(region, base)

	The <region> visible from <point> operator.

	
NotVisibleFromOp(region, base)

	The <region> not visible from <point> operator.

	
class Vector(x, y, z=0)

	Bases: Samplable, Sequence [https://trimesh.org/trimesh.typed.html#trimesh.typed.Sequence]

A 3D vector, whose coordinates can be distributions.

	
sphericalCoordinates()

	Returns this vector in spherical coordinates (rho, theta, phi)

	
rotatedBy(angleOrOrientation)

	Return a vector equal to this one rotated counterclockwise by angle/orientation.

	Return type:

	Vector

	
angleWith(other)

	Compute the signed angle between self and other.

The angle is positive if other is counterclockwise of self (considering
the smallest possible rotation to align them).

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class Orientation(rotation)

	An orientation in 3D space.

	
classmethod fromQuaternion(quaternion)

	Create an Orientation from a quaternion (of the form (x,y,z,w))

	Return type:

	Orientation

	
classmethod fromEuler(yaw, pitch, roll)

	Create an Orientation from yaw, pitch, and roll angles (in radians).

	Return type:

	Orientation

	
property yaw: float [https://docs.python.org/3/library/functions.html#float]

	Yaw in the global coordinate system.

	
property pitch: float [https://docs.python.org/3/library/functions.html#float]

	Pitch in the global coordinate system.

	
property roll: float [https://docs.python.org/3/library/functions.html#float]

	Roll in the global coordinate system.

	
property eulerAngles: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	Global intrinsic Euler angles yaw, pitch, roll.

	
localAnglesFor(orientation)

	Get local Euler angles for an orientation w.r.t. this orientation.

That is, considering self as the parent orientation, find the Euler angles
expressing the given orientation.

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
globalToLocalAngles(yaw, pitch, roll)

	Convert global Euler angles to local angles w.r.t. this orientation.

Equivalent to localAnglesFor but takes Euler angles as input.

	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
class VectorField(name, value, minSteps=4, defaultStepSize=5)

	A vector field, providing an orientation at every point.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging.

	value – function computing the heading at the given Vector.

	minSteps (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of steps for followFrom; default 4.

	defaultStepSize (float [https://docs.python.org/3/library/functions.html#float]) – Default step size for followFrom; default 5.
This is an upper bound: more steps will be taken as needed to ensure that no
single step is longer than this value, but if the distance to travel is small
then the steps may be smaller.

	
followFrom(pos, dist, steps=None, stepSize=None)

	Follow the field from a point for a given distance.

Uses the forward Euler approximation, covering the given distance with
equal-size steps. The number of steps can be given manually, or computed
automatically from a desired step size.

	Parameters:

	
	pos (Vector) – point to start from.

	dist (float [https://docs.python.org/3/library/functions.html#float]) – distance to travel.

	steps (int [https://docs.python.org/3/library/functions.html#int]) – number of steps to take, or None [https://docs.python.org/3/library/constants.html#None] to compute the number of
steps based on the distance (default None [https://docs.python.org/3/library/constants.html#None]).

	stepSize (float [https://docs.python.org/3/library/functions.html#float]) – length used to compute how many steps to take, or
None [https://docs.python.org/3/library/constants.html#None] to use the field’s default step size.

	
static forUnionOf(regions, tolerance=0)

	Creates a PiecewiseVectorField from the union of the given regions.

If none of the regions have an orientation, returns None [https://docs.python.org/3/library/constants.html#None] instead.

	
class PolygonalVectorField(name, cells, headingFunction=None, defaultHeading=None)

	Bases: VectorField

A piecewise-constant vector field defined over polygonal cells.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging.

	cells – a sequence of cells, with each cell being a pair consisting of a Shapely
geometry and a heading. If the heading is None [https://docs.python.org/3/library/constants.html#None], we call the given
headingFunction for points in the cell instead.

	headingFunction – function computing the heading for points in cells without
specified headings, if any (default None [https://docs.python.org/3/library/constants.html#None]).

	defaultHeading – heading for points not contained in any cell (default
None [https://docs.python.org/3/library/constants.html#None], meaning reject such points).

	
class Shape(dimensions, scale)

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

An abstract base class for Scenic shapes.

Represents a physical shape in Scenic. Does not encode position or orientation,
which are handled by the Region class. Does contain dimension information, which
is used as a default value by any Object with this shape and can be overwritten.

If dimensions and scale are both specified the dimensions are first set by dimensions,
and then scaled by scale.

	Parameters:

	
	dimensions – The raw (before scaling) dimensions of the shape.

	scale – Scales all the dimensions of the shape by a multiplicative factor.

	
property containsCenter

	Whether or not this object contains its central point

	
class MeshShape(mesh, dimensions=None, scale=1, initial_rotation=None)

	Bases: Shape

A Shape subclass defined by a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object.

The mesh passed must be a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object that represents a well defined
volume (i.e. the is_volume property must be true), meaning the mesh must be watertight,
have consistent winding and have outward facing normals.

	Parameters:

	
	mesh – A mesh object.

	dimensions – The raw (before scaling) dimensions of the shape. If dimensions
and scale are both specified the dimensions are first set by dimensions, and then
scaled by scale.

	scale – Scales all the dimensions of the shape by a multiplicative factor.
If dimensions and scale are both specified the dimensions are first set by dimensions,
and then scaled by scale.

	initial_rotation – A 3-tuple containing the yaw, pitch, and roll respectively to apply when loading
the mesh. Note the initial_rotation must be fixed.

	
classmethod fromFile(path, unify=True, **kwargs)

	Load a mesh shape from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file.
“foo.obj” is assumed to be an uncompressed .obj file. “foo” is an
unknown filetype, so unless a filetype is provided an exception will be raised.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file to import.

	filetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load [https://trimesh.org/trimesh.html#trimesh.load].

	compressed (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not this file is compressed (with bz2). This will be inferred
if not provided.

	binary (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to open the file as a binary file.

	unify (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to attempt to unify this mesh.

	kwargs – Additional arguments to the MeshShape initializer.

	
class BoxShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)

	Bases: MeshShape

A box shape with all dimensions 1 by default.

	
class CylinderShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None, sections=24)

	Bases: MeshShape

A cylinder shape with all dimensions 1 by default.

	
class ConeShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)

	Bases: MeshShape

A cone shape with all dimensions 1 by default.

	
class SpheroidShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)

	Bases: MeshShape

A spheroid shape with all dimensions 1 by default.

	
class MeshVolumeRegion(*args, **kwargs)

	Bases: MeshRegion

A region representing the volume of a mesh.

The mesh passed must be a trimesh.base.Trimesh [https://trimesh.org/trimesh.base.html#trimesh.base.Trimesh] object that represents a well defined
volume (i.e. the is_volume property must be true), meaning the mesh must be watertight,
have consistent winding and have outward facing normals.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False).
The mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon,
and then rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note
that scaling and rotation transformations may not behave as expected, since they are performed around the origin.

	Parameters:

	
	mesh – The base mesh for this region.

	name – An optional name to help with debugging.

	dimensions – An optional 3-tuple, with the values representing width, length, height
respectively. The mesh will be scaled such that the bounding box for the mesh has
these dimensions.

	position – An optional position, which determines where the center of the region will be.

	rotation – An optional Orientation object which determines the rotation of the object in space.

	orientation – An optional vector field describing the preferred orientation at every point in
the region.

	tolerance – Tolerance for internal computations.

	centerMesh – Whether or not to center the mesh after copying and before transformations.

	onDirection – The direction to use if an object being placed on this region doesn’t specify one.

	
intersects(other, triedReversed=False)

	Check if this region intersects another.

This function handles intersect calculations for MeshVolumeRegion with:
* MeshVolumeRegion
* MeshSurfaceRegion
* PolygonalFootprintRegion

	
containsPoint(point)

	Check if this region’s volume contains a point.

	
containsObject(obj)

	Check if this region’s volume contains an Object.

	
intersect(other, triedReversed=False)

	Get a Region representing the intersection of this region with another.

This function handles intersection computation for MeshVolumeRegion with:
* MeshVolumeRegion
* PolygonalFootprintRegion
* PolygonalRegion
* PathRegion
* PolylineRegion

	
union(other, triedReversed=False)

	Get a Region representing the union of this region with another.

	This function handles union computation for MeshVolumeRegion with:
	
	MeshVolumeRegion

	
difference(other, debug=False)

	Get a Region representing the difference of this region with another.

This function handles union computation for MeshVolumeRegion with:
* MeshVolumeRegion
* PolygonalFootprintRegion

	
distanceTo(point)

	Get the minimum distance from this region to the specified point.

	
voxelized(pitch, lazy=False)

	Returns a VoxelRegion representing a filled voxelization of this mesh

	
_erodeOverapproximate(maxErosion, pitch)

	Compute an overapproximation of this region eroded.

Erode as much as possible, but no more than maxErosion, outputting
a VoxelRegion. Note that this can sometimes return a larger region
than the original mesh

	
_bufferOverapproximate(minBuffer, pitch)

	Compute an overapproximation of this region buffered.

Buffer as little as possible, but at least minBuffer. If pitch is
less than 1, the output is a VoxelRegion. If pitch is 1, a fast
path is taken which returns a BoxRegion.

	
getSurfaceRegion()

	Return a region equivalent to this one, except as a MeshSurfaceRegion

	
getVolumeRegion()

	Returns this object, as it is already a MeshVolumeRegion

	
class MeshSurfaceRegion(*args, orientation=True, **kwargs)

	Bases: MeshRegion

A region representing the surface of a mesh.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False).
The mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon,
and then rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note
that scaling and rotation transformations may not behave as expected, since they are performed around the origin.

If an orientation is not passed to this mesh, a default orientation is provided which provides an orientation
that aligns an object’s z axis with the normal vector of the face containing that point, and has a yaw aligned
with a yaw of 0 in the global coordinate system.

	Parameters:

	
	mesh – The base mesh for this region.

	name – An optional name to help with debugging.

	dimensions – An optional 3-tuple, with the values representing width, length, height respectively.
The mesh will be scaled such that the bounding box for the mesh has these dimensions.

	position – An optional position, which determines where the center of the region will be.

	rotation – An optional Orientation object which determines the rotation of the object in space.

	orientation – An optional vector field describing the preferred orientation at every point in
the region.

	tolerance – Tolerance for internal computations.

	centerMesh – Whether or not to center the mesh after copying and before transformations.

	onDirection – The direction to use if an object being placed on this region doesn’t specify one.

	
intersects(other, triedReversed=False)

	Check if this region’s surface intersects another.

This function handles intersection computation for MeshSurfaceRegion with:
* MeshSurfaceRegion
* PolygonalFootprintRegion

	
containsPoint(point)

	Check if this region’s surface contains a point.

	
distanceTo(point)

	Get the minimum distance from this object to the specified point.

	
getFlatOrientation(pos)

	Get a flat orientation at a point in the region.

Given a point on the surface of the mesh, returns an orientation that aligns
an instance’s z axis with the normal vector of the face containing that point.
Since there are infinitely many such orientations, the orientation returned
has yaw aligned with a global yaw of 0.

If pos is not within self.tolerance of the surface of the mesh, a
RejectionException is raised.

	
getVolumeRegion()

	Return a region equivalent to this one, except as a MeshVolumeRegion

	
getSurfaceRegion()

	Returns this object, as it is already a MeshSurfaceRegion

	
class BoxRegion(*args, **kwargs)

	Bases: MeshVolumeRegion

Region in the shape of a rectangular cuboid, i.e. a box.

By default the unit box centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh
parameter which is excluded.

	
class SpheroidRegion(*args, **kwargs)

	Bases: MeshVolumeRegion

Region in the shape of a spheroid.

By default the unit sphere centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh
parameter which is excluded.

	
class PathRegion(points=None, polylines=None, tolerance=1e-08, orientation=True, name=None)

	Bases: Region

A region composed of multiple polylines in 3D space.

One of points or polylines should be provided.

	Parameters:

	
	points – A list of points defining a single polyline.

	polylines – A list of list of points, defining multiple polylines.

	orientation (optional) – preferred orientation to use, or True [https://docs.python.org/3/library/constants.html#True] to use an
orientation aligned with the direction of the path (the default).

	tolerance – Tolerance used internally.

	
_segmentDistanceHelper(point)

	Returns distance to point from each line segment

	
class Region(name, *dependencies, orientation=None)

	Bases: Samplable, ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

An abstract base class for Scenic Regions

	
abstract uniformPointInner()

	Do the actual random sampling. Implemented by subclasses.

	
abstract containsPoint(point)

	Check if the Region contains a point. Implemented by subclasses.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract containsObject(obj)

	Check if the Region contains an Object

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract containsRegionInner(reg, tolerance)

	Check if the Region contains a Region

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
abstract distanceTo(point)

	Distance to this region from a given point.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
abstract projectVector(point, onDirection)

	Returns point projected onto this region along onDirection.

	
abstract property AABB

	Axis-aligned bounding box for this Region.

	
intersects(other)

	Check if this Region intersects another.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
intersect(other, triedReversed=False)

	Get a Region representing the intersection of this one with another.

If both regions have a preferred orientation, the one of self
is inherited by the intersection.

	Return type:

	Region

	
union(other, triedReversed=False)

	Get a Region representing the union of this one with another.

Not supported by all region types.

	Return type:

	Region

	
difference(other)

	Get a Region representing the difference of this one and another.

Not supported by all region types.

	Return type:

	Region

	
_trueContainsPoint(point)

	Whether or not this region could produce point when sampled.

By default this method calls containsPoint, but should be overwritten if
containsPoint does not properly represent the points that can be sampled.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
static uniformPointIn(region, tag=None)

	Get a uniform Distribution over points in a Region.

	
orient(vec)

	Orient the given vector along the region’s orientation, if any.

	
class PointSetRegion(name, points, kdTree=None, orientation=None, tolerance=1e-06)

	Bases: Region

Region consisting of a set of discrete points.

No Object can be contained in a PointSetRegion, since the latter is discrete.
(This may not be true for subclasses, e.g. GridRegion.)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name for debugging

	points (arraylike) – set of points comprising the region

	kdTree (scipy.spatial.KDTree [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree], optional) – k-D tree for the points (one will
be computed if none is provided)

	orientation (VectorField; optional) – preferred orientation for the
region

	tolerance (float; optional) – distance tolerance for checking whether a point lies
in the region

	
class RectangularRegion(position, heading, width, length, name=None)

	Bases: PolygonalRegion

A rectangular region with a possibly-random position, heading, and size.

	Parameters:

	
	position (Vector) – center of the rectangle.

	heading (float [https://docs.python.org/3/library/functions.html#float]) – the heading of the length axis of the rectangle.

	width (float [https://docs.python.org/3/library/functions.html#float]) – width of the rectangle.

	length (float [https://docs.python.org/3/library/functions.html#float]) – length of the rectangle.

	name (str; optional) – name for debugging.

	
class CircularRegion(center, radius, resolution=32, name=None)

	Bases: PolygonalRegion

A circular region with a possibly-random center and radius.

	Parameters:

	
	center (Vector) – center of the disc.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – radius of the disc.

	resolution (int; optional) – number of vertices to use when approximating this region as a
polygon.

	name (str; optional) – name for debugging.

	
class SectorRegion(center, radius, heading, angle, resolution=32, name=None)

	Bases: PolygonalRegion

A sector of a CircularRegion.

This region consists of a sector of a disc, i.e. the part of a disc subtended by a
given arc.

	Parameters:

	
	center (Vector) – center of the corresponding disc.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – radius of the disc.

	heading (float [https://docs.python.org/3/library/functions.html#float]) – heading of the centerline of the sector.

	angle (float [https://docs.python.org/3/library/functions.html#float]) – angle subtended by the sector.

	resolution (int; optional) – number of vertices to use when approximating this region as a
polygon.

	name (str; optional) – name for debugging.

	
class PolygonalRegion(points=None, polygon=None, z=0, orientation=None, name=None, additionalDeps=[])

	Bases: Region

Region given by one or more polygons (possibly with holes) at a fixed z coordinate.

The region may be specified by giving either a sequence of points defining the
boundary of the polygon, or a collection of shapely polygons (a Polygon
or MultiPolygon).

	Parameters:

	
	points – sequence of points making up the boundary of the polygon (or None [https://docs.python.org/3/library/constants.html#None] if
using the polygon argument instead).

	polygon – shapely polygon or collection of polygons (or None [https://docs.python.org/3/library/constants.html#None] if using
the points argument instead).

	z – The z coordinate the polygon is located at.

	orientation (VectorField; optional) – preferred orientation to use.

	name (str; optional) – name for debugging.

	
property boundary: PolylineRegion

	Get the boundary of this region as a PolylineRegion.

	
class PolylineRegion(points=None, polyline=None, orientation=True, name=None)

	Bases: Region

Region given by one or more polylines (chain of line segments).

The region may be specified by giving either a sequence of points or shapely
polylines (a LineString or MultiLineString).

	Parameters:

	
	points – sequence of points making up the polyline (or None [https://docs.python.org/3/library/constants.html#None] if using the
polyline argument instead).

	polyline – shapely polyline or collection of polylines (or None [https://docs.python.org/3/library/constants.html#None] if using
the points argument instead).

	orientation (optional) – preferred orientation to use, or True [https://docs.python.org/3/library/constants.html#True] to use an
orientation aligned with the direction of the polyline (the default).

	name (str; optional) – name for debugging.

	
property start

	Get an OrientedPoint at the start of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if
there is one (the default orientation pointing along the polyline).

	
property end

	Get an OrientedPoint at the end of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if
there is one (the default orientation pointing along the polyline).

	
signedDistanceTo(point)

	Compute the signed distance of the PolylineRegion to a point.

The distance is positive if the point is left of the nearest segment,
and negative otherwise.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
pointAlongBy(distance, normalized=False)

	Find the point a given distance along the polyline from its start.

If normalized is true, then distance should be between 0 and 1, and
is interpreted as a fraction of the length of the polyline. So for example
pointAlongBy(0.5, normalized=True) returns the polyline’s midpoint.

	Return type:

	Vector

	
class Workspace(region=<AllRegion everywhere>)

	Bases: Region

A workspace describing the fixed world of a scenario.

	Parameters:

	region (Region) – The region defining the extent of the workspace
(default everywhere).

	
show3D(viewer)

	Render a schematic of the workspace (in 3D) for debugging

	
show2D(plt)

	Render a schematic of the workspace (in 2D) for debugging

	
zoomAround(plt, objects, expansion=1)

	Zoom the schematic around the specified objects

	
scenicToSchematicCoords(coords)

	Convert Scenic coordinates to those used for schematic rendering.

	
class Mutator

	An object controlling how the mutate statement affects an Object.

A Mutator can be assigned to the mutator property of an Object to
control the effect of the mutate statement. When mutation is enabled
for such an object using that statement, the mutator’s appliedTo method
is called to compute a mutated version. The appliedTo method can also decide
whether to apply mutators inherited from superclasses.

	
appliedTo(obj)

	Return a mutated copy of the given object. Implemented by subclasses.

The mutator may inspect the mutationScale attribute of the given object
to scale its effect according to the scale given in mutate O by S.

	Returns:

	A pair consisting of the mutated copy of the object (which is most easily
created using _copyWith) together with a Boolean indicating whether the
mutator inherited from the superclass (if any) should also be applied.

	
class Range(low, high)

	Bases: Distribution

Uniform distribution over a range

	
class DiscreteRange(low, high, weights=None, emptyMessage='empty DiscreteRange')

	Bases: Distribution

Distribution over a range of integers.

	
class Options(opts)

	Bases: MultiplexerDistribution

Distribution over a finite list of options.

Specified by a dict giving probabilities; otherwise uniform over a given iterable.

	
Uniform(*opts)

	Uniform distribution over a finite list of options.

Implemented as an instance of Options when the set of options is known
statically, and an instance of UniformDistribution otherwise.

	
Discrete

	alias of Options

	
class Normal(mean, stddev)

	Bases: Distribution

Normal distribution

	
class TruncatedNormal(mean, stddev, low, high)

	Bases: Normal

Truncated normal distribution.

	
class VerifaiParameter(domain)

	Bases: ExternalParameter

An external parameter sampled using one of VerifAI’s samplers.

	
static withPrior(dist, buckets=None)

	Creates a VerifaiParameter using the given distribution as a prior.

Since the VerifAI cross-entropy sampler currently only supports piecewise-constant
distributions, if the prior is not of that form it may be approximated. For most
built-in distributions, the approximation is exact: for a particular distribution,
check its bucket method.

	
class VerifaiRange(low, high, buckets=None, weights=None)

	Bases: VerifaiParameter

A Range (real interval) sampled by VerifAI.

	
_defaultValueType

	alias of float [https://docs.python.org/3/library/functions.html#float]

	
class VerifaiDiscreteRange(low, high, weights=None)

	Bases: VerifaiParameter

A DiscreteRange (integer interval) sampled by VerifAI.

	
_defaultValueType

	alias of float [https://docs.python.org/3/library/functions.html#float]

	
class VerifaiOptions(opts)

	Bases: Options

An Options (discrete set) sampled by VerifAI.

	
class Point <specifiers>

	Bases: Constructible

The Scenic base class Point.

The default mutator for Point adds Gaussian noise to position with
a standard deviation given by the positionStdDev property.

	Properties:

	
	position (Vector; dynamic) – Position of the point. Default value is the origin (0,0,0).

	width (float) – Default value 0 (only provided for compatibility with
operators that expect an Object).

	length (float) – Default value 0.

	height (float) – Default value 0.

	baseOffset (Vector) – Only provided for compatibility with the on (region | Object | vector) specifier.
Default value is (0,0,0).

	contactTolerance (float) – Only provided for compatibility with the specifiers
that expect an Object. Default value 0.

	onDirection (Vector) – The direction used to determine where to place
this Point on a region, when using the modifying on specifier.
See the on region page for more details. Default value is None,
indicating the direction will be inferred from the region this object is being placed on.

	visibleDistance (float) – Distance used to determine the visible range of this object.
Default value 50.

	viewRayDensity (float) – By default determines the number of rays used during visibility checks.
This value is the density of rays per degree of visible range in one dimension. The total
number of rays sent will be this value squared per square degree of this object’s view angles.
This value determines the default value for viewRayCount, so if viewRayCount is overwritten
this value is ignored. Default value 5.

	viewRayCount (None | tuple[float, float]) – The total number of horizontal and vertical view angles
to be sent, or None if this value should be computed automatically. Default value None.

	viewRayDistanceScaling (bool) – Whether or not the number of rays should scale with the distance to the
object. Ignored if viewRayCount is passed. Default value False.

	mutationScale (float) – Overall scale of mutations, as set by the
mutate statement. Default value 0 (mutations disabled).

	positionStdDev (tuple[float, float, float]) – Standard deviation of Gaussian noise
for each dimension (x,y,z) to be added to this object’s position
when mutation is enabled with scale 1. Default value (1,1,0), mutating only the x,y values
of the point.

	
property visibleRegion

	The visible region of this object.

The visible region of a Point is a sphere centered at its position with
radius visibleDistance.

	
canSee(other, occludingObjects=(), debug=False)

	Whether or not this Point can see other.

	Parameters:

	
	other – A Point, OrientedPoint, or Object to check
for visibility.

	occludingObjects – A list of objects that can occlude visibility.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class OrientedPoint <specifiers>

	Bases: Point

The Scenic class OrientedPoint.

The default mutator for OrientedPoint adds Gaussian noise to yaw, pitch
and roll, using the three standard deviations (for yaw/pitch/roll respectively)
given by the orientationStdDev property. It then also applies the mutator for Point.
By default the standard deviations for pitch and roll are zero so that, by
default, only yaw is mutated.

	Properties:

	
	yaw (float; dynamic) – Yaw of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

	pitch (float; dynamic) – Pitch of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

	roll (float; dynamic) – Roll of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

	parentOrientation (Orientation) – The local coordinate system that the OrientedPoint’s
yaw, pitch, and roll are interpreted in. Default
value is the global coordinate system, where an object is flat in the XY plane,
facing North.

	orientation (Orientation; dynamic; final) – The orientation of the OrientedPoint relative
to the global coordinate system. Derived from the yaw, pitch,
roll, and parentOrientation of this OrientedPoint and non-overridable.

	heading (float; dynamic; final) – Yaw value of this OrientedPoint in the global coordinate
system. Derived from orientation and non-overridable.

	viewAngles (tuple[float,float]) – Horizontal and vertical view angles of this OrientedPoint
in radians. Horizontal view angle can be up to 2π and vertical view angle can be
up to π. Values greater than these will be truncated. Default value is (2π, π)

	orientationStdDev (tuple[float,float,float]) – Standard deviation of Gaussian noise to add to this
object’s Euler angles (yaw, pitch, roll) when mutation is enabled with scale 1.
Default value (5°, 0, 0), mutating only the yaw of this OrientedPoint.

	
property visibleRegion

	The visible region of this object.

The visible region of an OrientedPoint restricts that of Point (a sphere with
radius visibleDistance) based on the value of viewAngles. In
general, it is a capped rectangular pyramid subtending an angle of
viewAngles[0] horizontally and viewAngles[1] vertically, as
long as those angles are less than π/2; larger angles yield various kinds of
wrap-around regions. See ViewRegion for details.

	
canSee(other, occludingObjects=(), debug=False)

	Whether or not this OrientedPoint can see other.

	Parameters:

	
	other – A Point, OrientedPoint, or Object to check
for visibility.

	occludingObjects – A list of objects that can occlude visibility.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
distancePast(vec)

	Distance past a given point, assuming we’ve been moving in a straight line.

	
class Object <specifiers>

	Bases: OrientedPoint

The Scenic class Object.

This is the default base class for Scenic classes.

	Properties:

	
	width (float) – Width of the object, i.e. extent along its X axis.
Default value of 1 inherited from the object’s shape.

	length (float) – Length of the object, i.e. extent along its Y axis.
Default value of 1 inherited from the object’s shape.

	height (float) – Height of the object, i.e. extent along its Z axis.
Default value of 1 inherited from the object’s shape.

	shape (Shape) – The shape of the object, which must be an instance of Shape.
The default shape is a box, with default unit dimensions.

	allowCollisions (bool) – Whether the object is allowed to intersect
other objects. Default value False.

	regionContainedIn (Region or None) – A Region the object is
required to be contained in. If None, the object need only be
contained in the scenario’s workspace.

	baseOffset (Vector) – An offset from the position of the Object
to the base of the object, used by the on (region | Object | vector) specifier. Default value
is (0, 0, -self.height/2), placing the base of the Object at the bottom
center of the Object’s bounding box.

	contactTolerance (float) – The maximum distance this object can be away from a
surface to be considered on the surface. Objects are placed at half this
distance away from a point when the on (region | Object | vector) specifier or a directional specifier
like (left | right) of Object [by scalar] is used. Default value 1e-4.

	sideComponentThresholds (DimensionLimits) – Used to determine the
various sides of an object (when using the default implementation).
The three interior 2-tuples represent the maximum and minimum bounds
for each dimension’s (x,y,z) surface. See defaultSideSurface for details.
Default value ((-0.5, 0.5), (-0.5, 0.5), (-0.5, 0.5)).

	cameraOffset (Vector) – Position of the camera for the can see
operator, relative to the object’s position. Default (0, 0, 0).

	requireVisible (bool) – Whether the object is required to be visible
from the ego object. Default value False.

	occluding (bool) – Whether or not this object can occlude other objects. Default
value True.

	showVisibleRegion (bool) – Whether or not to display the visible region in the
Scenic internal visualizer.

	color (tuple[float, float, float, float] or tuple[float, float, float] or None [https://docs.python.org/3/library/constants.html#None]) – An optional color (with optional alpha) property that is used by the internal
visualizer, or possibly simulators. All values should be between 0 and 1.
Default value None

	velocity (Vector; dynamic) – Velocity in dynamic simulations. Default value is
the velocity determined by speed and orientation.

	speed (float; dynamic) – Speed in dynamic simulations. Default value 0.

	angularVelocity (Vector; dynamic)

	angularSpeed (float; dynamic) – Angular speed in dynamic simulations. Default
value 0.

	behavior – Behavior for dynamic agents, if any (see Dynamic Scenarios). Default
value None.

	lastActions – Tuple of actions taken by this agent in the last time step
(or None [https://docs.python.org/3/library/constants.html#None] if the object is not an agent or this is the first time step).

	
startDynamicSimulation()

	Hook called when the object is created in a dynamic simulation.

Does nothing by default; provided for objects to do simulator-specific
initialization as needed.

Changed in version 3.0: This method is called on objects created in the middle of dynamic
simulations, not only objects present in the initial scene.

	
containsPoint(point)

	Whether or not the space this object occupies contains a point

	
distanceTo(point)

	The minimal distance from the space this object occupies to a given point

	
intersects(other)

	Whether or not this object intersects another object or region

	
property visibleRegion

	The visible region of this object.

The visible region of an Object is the same as that of an OrientedPoint (see
OrientedPoint.visibleRegion) except that it is offset by the value of
cameraOffset (which is the zero vector by default).

	
canSee(other, occludingObjects=(), debug=False)

	Whether or not this Object can see other.

	Parameters:

	
	other – A Point, OrientedPoint, or Object to check
for visibility.

	occludingObjects – A list of objects that can occlude visibility.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property corners

	A tuple containing the corners of this object’s bounding box

	
property occupiedSpace

	A region representing the space this object occupies

	
property _isConvex

	Whether this object’s shape is convex

	
property boundingBox

	A region representing this object’s bounding box

	
property inradius

	A lower bound on the inradius of this object

	
property planarInradius

	A lower bound on the planar inradius of this object.

This is defined as the inradius of the polygon of the occupiedSpace
of this object projected into the XY plane, assuming that pitch and
roll are both 0.

	
property surface

	A region containing the entire surface of this object

	
property onSurface

	The surface used by the on specifier.

This region is used to sample position when
another object is placed on this object. By default
the top surface of this object (topSurface), but can
be overwritten by subclasses.

	
property topSurface

	A region containing the top surface of this object

For how this surface is computed, see defaultSideSurface.

	
property rightSurface

	A region containing the right surface of this object

For how this surface is computed, see defaultSideSurface.

	
property leftSurface

	A region containing the left surface of this object

For how this surface is computed, see defaultSideSurface.

	
property frontSurface

	A region containing the front surface of this object

For how this surface is computed, see defaultSideSurface.

	
property backSurface

	A region containing the back surface of this object

For how this surface is computed, see defaultSideSurface.

	
property bottomSurface

	A region containing the bottom surface of this object

For how this surface is computed, see defaultSideSurface.

	
property _isPlanarBox

	Whether this object is a box aligned with the XY plane.

	
With(prop, val)

	The with <property> <value> specifier.

Specifies the given property, with no dependencies.

	
At(pos)

	The at <vector> specifier.

Specifies position, with no dependencies.

	
In(region)

	The in <region> specifier.

Specifies position, and optionally, parentOrientation if the given region
has a preferred orientation, with no dependencies.

	
ContainedIn(region)

	The contained in <region> specifier.

Specifies position, regionContainedIn, and optionally, parentOrientation
if the given region has a preferred orientation, with no dependencies.

	
On(thing)

	The on X specifier.

Specifies position, and optionally, parentOrientation if the given region
has a preferred orientation. Depends on onDirection, baseOffset,
and contactTolerance.

Note that while on can be used with Region, Object and Vector,
it cannot be used with a distribution containing anything other than Region.

May be used to modify an already-specified position property.

	Allowed forms:
	on <region>
on <object>
on <vector>

	
Beyond(pos, offset, fromPt=None)

	The beyond X by Y from Z polymorphic specifier.

Specifies position, and optionally parentOrientation, with no dependencies.

Allowed forms:

beyond <vector> by <number> [from <vector>]
beyond <vector> by <vector> [from <vector>]

If the from <vector> is omitted, the position of ego is used.

	
VisibleFrom(base)

	The visible from <point> specifier.

Specifies _observingEntity and position, with no dependencies.

	
NotVisibleFrom(base)

	The not visible from <point> specifier.

Specifies _nonObservingEntity and position, depending on regionContainedIn.

See VisibleFrom.

	
VisibleSpec()

	The visible specifier (equivalent to visible from ego).

Specifies _observingEntity and position, with no dependencies.

	
NotVisibleSpec()

	The not visible specifier (equivalent to not visible from ego).

Specifies _nonObservingEntity and position, depending on regionContainedIn.

	
OffsetBy(offset)

	The offset by <vector> specifier.

Specifies position, and optionally parentOrientation, with no dependencies.

	
OffsetAlongSpec(direction, offset)

	The offset along X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, with no dependencies.

Allowed forms:

offset along <heading> by <vector>
offset along <field> by <vector>

	
Facing(heading)

	The facing X polymorphic specifier.

Specifies yaw, pitch, and roll, depending on parentOrientation,
and depending on the form:

facing <number> # no further dependencies;
facing <field> # depends on 'position'

	
ApparentlyFacing(heading, fromPt=None)

	The apparently facing <heading> [from <vector>] specifier.

Specifies yaw, depending on position and parentOrientation.

If the from <vector> is omitted, the position of ego is used.

	
FacingToward(pos)

	The facing toward <vector> specifier.

Specifies yaw, depending on position and parentOrientation.

	
FacingDirectlyToward(pos)

	The facing directly toward <vector> specifier.

Specifies yaw and pitch, depends on position and parentOrientation.

	
FacingAwayFrom(pos)

	The facing away from <vector> specifier.

Specifies yaw, depending on position and parentOrientation.

	
FacingDirectlyAwayFrom(pos)

	The facing directly away from <vector> specifier.

Specifies yaw and pitch, depending on position and parentOrientation.

	
LeftSpec(pos, dist=None)

	The left of X by Y polymorphic specifier.

Specifies position, and optionally, parentOrientation, depending on width.

Allowed forms:

left of <oriented point> [by <scalar/vector>]
left of <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

	
RightSpec(pos, dist=None)

	The right of X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, depending on width.

Allowed forms:

right of <oriented point> [by <scalar/vector>]
right of <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, zero is used.

	
Ahead(pos, dist=None)

	The ahead of X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, depending on length.

Allowed forms:

ahead of <oriented point> [by <scalar/vector>]
ahead of <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

	
Behind(pos, dist=None)

	The behind X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, depending on length.

Allowed forms:

behind <oriented point> [by <scalar/vector>]
behind <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

	
Above(pos, dist=None)

	The above X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, depending on height.

Allowed forms:

above <oriented point> [by <scalar/vector>]
above <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

	
Below(pos, dist=None)

	The below X by Y polymorphic specifier.

Specifies :prop`position`, and optionally parentOrientation, depending on height.

Allowed forms:

below <oriented point> [by <scalar/vector>]
below <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

	
Following(field, dist, fromPt=None)

	The following F from X for D specifier.

Specifies position, and optionally parentOrientation, with no dependencies.

Allowed forms:

following <field> [from <vector>] for <number>

If the from <vector> is omitted, the position of ego is used.

	
exception GuardViolation(behavior, lineno)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Abstract exception raised when a guard of a behavior is violated.

This will never be raised directly; either of the subclasses PreconditionViolation
or InvariantViolation will be used, as appropriate.

	
exception PreconditionViolation(behavior, lineno)

	Bases: GuardViolation

Exception raised when a precondition is violated.

Raised when a precondition is violated when invoking a behavior
or when a precondition encounters a RejectionException, so that
rejections count as precondition violations.

	
exception InvariantViolation(behavior, lineno)

	Bases: GuardViolation

Exception raised when an invariant is violated.

Raised when an invariant is violated when invoking/resuming a behavior
or when an invariant encounters a RejectionException, so that
rejections count as invariant violations.

	
exception RejectionException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception used to signal that the sample currently being generated must be rejected.

	
_scenic_default

	alias of PropertyDefault

	
class Behavior(*args, **kwargs)

	Bases: Invocable, Samplable

Dynamic behaviors of agents.

Behavior statements are translated into definitions of subclasses of this class.

	
class Monitor(*args, **kwargs)

	Bases: Behavior

Monitors for dynamic simulations.

Monitor statements are translated into definitions of subclasses of this class.

	
class BlockConclusion(value)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
class Modifier(name, value, terminator)

	Bases: NamedTuple [https://docs.python.org/3/library/typing.html#typing.NamedTuple]

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	terminator (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Alias for field number 0

	
value: Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Alias for field number 1

	
terminator: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Alias for field number 2

	
_asdict()

	Return a new dict which maps field names to their values.

	
classmethod _make(iterable)

	Make a new Modifier object from a sequence or iterable

	
_replace(**kwds)

	Return a new Modifier object replacing specified fields with new values

	
class DynamicScenario(*args, **kwargs)

	Bases: Invocable

Internal class for scenarios which can execute during dynamic simulations.

Provides additional information complementing Scenario, which originally only
supported static scenarios. The two classes should probably eventually be merged.

	
classmethod _requiresArguments()

	Whether this scenario cannot be instantiated without arguments.

	
_bindTo(scene)

	Bind this scenario to a sampled scene when starting a new simulation.

	
_prepare(delayPreconditionCheck=False)

	Prepare the scenario for execution, executing its setup block.

	
_start()

	Start the scenario, starting its compose block, behaviors, and monitors.

	
_step()

	Execute the (already-started) scenario for one time step.

	Returns:

	None [https://docs.python.org/3/library/constants.html#None] if the scenario will continue executing; otherwise a string describing
why it has terminated.

	
_stop(reason, quiet=False)

	Stop the scenario’s execution, for the given reason.

	
_addRequirement(ty, reqID, req, line, name, prob)

	Save a requirement defined at compile-time for later processing.

	
_addDynamicRequirement(ty, req, line, name)

	Add a requirement defined during a dynamic simulation.

	
_addMonitor(monitor)

	Add a monitor during a dynamic simulation.

Scenic Libraries

One of the strengths of Scenic is its ability to reuse functions, classes, and behaviors
across many scenarios, simplifying the process of writing complex scenarios. This page
describes the libraries built into Scenic to facilitate scenario writing by end users.

Simulator Interfaces

Many of the simulator interfaces provide utility functions which are useful when writing
scenarios for particular simulators. See the documentation for each simulator on the
Supported Simulators page, as well as the corresponding module under scenic.simulators.

Abstract Domains

To enable cross-platform scenarios which are not specific to one simulator, Scenic
defines abstract domains which provide APIs for particular application domains like
driving scenarios. An abstract domain defines a protocol which can be implemented by
various simulator interfaces so that scenarios written for that domain can be executed in
those simulators. For example, a scenario written for our
driving domain can be run in both LGSVL and CARLA.

A domain provides a Scenic world model which defines Scenic classes for the various types
of objects that occur in its scenarios. The model also provides a simulator-agnostic way
to access the geometry of the simulated world, by defining regions, vector fields, and
other objects as appropriate (for example, the driving domain provides a Network class
abstracting a road network). For domains which support dynamic scenarios, the model will
also define a set of simulator-agnostic actions for dynamic agents to use.

Driving Domain

The driving domain, scenic.domains.driving, is designed to support scenarios taking
place on or near roads. It defines generic classes for cars and pedestrians, and provides
a representation of a road network that can be loaded from standard map formats (e.g.
OpenDRIVE [https://www.asam.net/standards/detail/opendrive/]). The domain supports
dynamic scenarios, providing actions for agents which can drive and walk as well as
implementations of common behaviors like lane following and collision avoidance. See the
documentation of the scenic.domains.driving module for further details.

Supported Simulators

Scenic is designed to be easily interfaced to any simulator (see Interfacing to New Simulators).
On this page we list interfaces that we and others have developed; if you have a new interface, let us know and we’ll list it here!

Note that not every interface supports all Scenic features: in particular, some interfaces do not support dynamic scenarios.
See the individual entries for details on each interface’s capabilities and how to set it up.

List of Simulators

	Currently Supported

	Built-in Newtonian Simulator

	CARLA

	Grand Theft Auto V

	Webots

	X-Plane

	Deprecated

	LGSVL

Currently Supported

Built-in Newtonian Simulator

To enable debugging of dynamic scenarios without having to install an external simulator, Scenic includes a simple 2D Newtonian physics simulator.
The simulator supports scenarios written using the cross-platform Driving Domain, and can render top-down views showing the positions of objects relative to the road network.
See the documentation of the scenic.simulators.newtonian module for details.

CARLA

Our interface to the CARLA [https://carla.org/] simulator enables using Scenic to describe autonomous driving scenarios.
The interface supports dynamic scenarios written using the CARLA world model (scenic.simulators.carla.model) as well as scenarios using the cross-platform Driving Domain.
To use the interface, please follow these instructions:

	Install the latest version of CARLA (we’ve tested versions 0.9.9 through 0.9.14) from the CARLA Release Page [https://github.com/carla-simulator/carla/releases].
Note that CARLA currently only supports Linux and Windows.

	Install Scenic in your Python virtual environment as instructed in Getting Started with Scenic.

	Within the same virtual environment, install CARLA’s Python API.
How to do this depends on the CARLA version and whether you built it from source:

0.9.12+Older VersionsBuilt from Source
Run the following command, replacing X.Y.Z with the version of CARLA you installed:

python -m pip install carla==X.Y.Z

For older versions of CARLA, you’ll need to install its Python API from the provided .egg file.
If your system has the easy_install command, you can run:

easy_install /PATH_TO_CARLA_FOLDER/PythonAPI/carla/dist/carla-0.9.9-py3.7-linux-x86_64.egg

The exact name of the .egg file may vary depending on the version of CARLA you installed; make sure to use the file for Python 3, not 2.
You may get an error message saying Could not find suitable distribution, which you can ignore.

The easy_install command is deprecated and may not exist if you have a newer version of Python.
In that case, you can try setting your PYTHONPATH environment variable to include the egg with a command like:

export PYTHONPATH=/PATH_TO_CARLA_FOLDER/PythonAPI/carla/dist/carla-0.9.9-py3.7-linux-x86_64.egg

If you built CARLA from source, the process is more involved: see the detailed instructions here [https://carla.readthedocs.io/en/latest/start_quickstart/#install-client-library].

You can check that the carla package was correctly installed by running python -c 'import carla': if it prints No module named 'carla', the installation didn’t work.
We suggest upgrading to a newer version of CARLA so that you can use pip to install the Python API.

To start CARLA, run the command ./CarlaUE4.sh in your CARLA folder.
Once CARLA is running, you can run dynamic Scenic scenarios following the instructions in the dynamics tutorial.

Grand Theft Auto V

The interface to Grand Theft Auto V [https://www.rockstargames.com/V/], used in our PLDI paper [https://arxiv.org/abs/1809.09310], allows Scenic to position cars within the game as well as to control the time of day and weather conditions.
Many examples using the interface (including all scenarios from the paper) can be found in examples/gta.
See the paper and scenic.simulators.gta for documentation.

Importing scenes into GTA V and capturing rendered images requires a GTA V plugin, which you can find here [https://github.com/xyyue/scenic2gta].

Webots

We have several interfaces to the Webots robotics simulator [https://cyberbotics.com/], for different use cases.
Our main interface provides a generic world model that can be used with any Webots world and supports dynamic scenarios.
See the examples/webots folder for example Scenic scenarios and Webots worlds using this interface, and scenic.simulators.webots for documentation.

Scenic also includes more specialized world models for use with Webots:

	A general model for traffic scenarios, used in our VerifAI paper [https://doi.org/10.1007/978-3-030-25540-4_25].
Examples using this model can be found in the VerifAI repository [https://github.com/BerkeleyLearnVerify/VerifAI]; see also the documentation of scenic.simulators.webots.road.

Note

The last model above, and the example .wbt files for it, was written for the R2018 version of Webots.
Relatively minor changes would be required to make it work with the newer open source versions of Webots [https://github.com/cyberbotics/webots].
We may get around to porting them eventually; we’d also gladly accept a pull request!

X-Plane

Our interface to the X-Plane flight simulator [https://www.x-plane.com] enables using Scenic to describe aircraft taxiing scenarios.
This interface is part of the VerifAI toolkit; documentation and examples can be found in the VerifAI repository [https://github.com/BerkeleyLearnVerify/VerifAI].

Deprecated

Scenic previously provided interfaces to these simulators, but no longer does.
See individual entries for the last version of Scenic providing the interface and the reason it is no longer supported.

LGSVL

The LGSVL simulator (a.k.a. SVL Simulator) was deprecated in Scenic 3.0, with the last version of Scenic supporting this simulator being 2.1. The original simulator is no longer usable due to LG shutting down its cloud service, but we are open to a PR targeting one of its forks.

Interfacing to New Simulators

To interface Scenic to a new simulator, there are two steps: using the Scenic API to compile scenarios, generate scenes, and orchestrate dynamic simulations, and writing a Scenic library defining the virtual world provided by the simulator.

Using the Scenic API

Scenic’s Python API is covered in more detail in our Using Scenic Programmatically page; we summarize the main steps here.

Compiling a Scenic scenario is easy: just call the scenic.scenarioFromFile function with the path to a Scenic file (there’s also a variant scenic.scenarioFromString which works on strings).
This returns a Scenario object representing the scenario; to sample a scene from it, call its generate method.
Scenes are represented by Scene objects, from which you can extract the objects and their properties as well as the values of the global parameters (see the Scene documentation for details).

Supporting dynamic scenarios requires additionally implementing a subclass of Simulator which communicates periodically with your simulator to implement the actions taken by dynamic agents and read back the state of the simulation.
See the documentation of Simulator and Simulation for details on the methods which need to be implemented, and the scenic.simulators.carla.simulator and scenic.simulators.webots.simulator modules for examples.

Defining a World Model

To make writing scenarios for your simulator easier, you should write a Scenic library specifying all the relevant information about the simulated world.
This world model could include:

	Scenic classes (subclasses of Object) corresponding to types of objects in the simulator;

	instances of Region corresponding to locations of interest (e.g. one for each road);

	a workspace specifying legal locations for objects (and optionally providing methods for schematically rendering scenes);

	a set of actions which can be taken by dynamic agents during simulations;

	any other information or utility functions that might be useful in scenarios.

Then any Scenic programs for your simulator can import this world model and make use of the information within.

Each of the simulators natively supported by Scenic has a corresponding model.scenic file containing its world model.
See the Supported Simulators page for links to the module under scenic.simulators for each simulator, where the world model can be found.
For an example, see the scenic.simulators.lgsvl model, which specializes the simulator-agnostic model provided by the Driving Domain (in scenic.domains.driving.model).

Publications Using Scenic

Main Papers

The main paper on Scenic, describing the language (as of version 2) and its applications is:

Scenic: A Language for Scenario Specification and Data Generation.

Fremont, Kim, Dreossi, Ghosh, Yue, Sangiovanni-Vincentelli, and Seshia.

Machine Learning, 2022. [available here [https://doi.org/10.1007/s10994-021-06120-5]]

(see also the full version with appendices [https://arxiv.org/abs/2010.06580])

For the new features in Scenic 3, see the paper:

3D Environment Modeling for Falsification and Beyond with Scenic 3.0.

Vin, Kashiwa, Rhea, Fremont, Kim, Dreossi, Ghosh, Yue, Sangiovanni-Vincentelli, and Seshia.

CAV 2023. [arXiv version [https://arxiv.org/abs/2307.03325]]

Our main 2022 journal paper extends the earlier conference paper on Scenic 1.0:

Scenic: A Language for Scenario Specification and Scene Generation.

Fremont, Dreossi, Ghosh, Yue, Sangiovanni-Vincentelli, and Seshia.

PLDI 2019. [full version [https://arxiv.org/abs/1809.09310]]

An expanded version of that paper appeared as Chapters 5 and 8 of this thesis:

Algorithmic Improvisation. [thesis [https://people.ucsc.edu/~dfremont/papers/thesis.pdf]]

Daniel J. Fremont.

Ph.D. dissertation, 2019 (University of California, Berkeley; Group in Logic and the Methodology of Science).

Scenic is also integrated into the VerifAI toolkit [https://github.com/BerkeleyLearnVerify/VerifAI], which is described in another paper:

VerifAI: A Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Systems.

Dreossi*, Fremont*, Ghosh*, Kim, Ravanbakhsh, Vazquez-Chanlatte, and Seshia.

CAV 2019 [https://doi.org/10.1007/978-3-030-25540-4_25].

* Equal contribution.

Case Studies

We have also used Scenic in several industrial case studies:

Addressing the IEEE AV Test Challenge with Scenic and VerifAI.

Viswanadha, Indaheng, Wong, Kim, Kalvan, Pant, Fremont, and Seshia.

AITest 2021 [https://doi.org/10.1109/AITEST52744.2021.00034].

Formal Analysis and Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI.

Fremont, Chiu, Margineantu, Osipychev, and Seshia.

CAV 2020 [https://people.eecs.berkeley.edu/~sseshia/pubs/b2hd-fremont-cav20.html].

Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World.

Fremont, Kim, Pant, Seshia, Acharya, Bruso, Wells, Lemke, Lu, and Mehta.

ITSC 2020 [https://people.eecs.berkeley.edu/~sseshia/pubs/b2hd-fremont-itsc20.html].

[See also this white paper [https://gomentumstation.net/wp-content/uploads/2020/03/AAA-UCB-LG-AV-Testing-Project-Whitepaper-Final-2020-7-15.pdf] and associated blog post [https://gomentumstation.net/blog-2020-03-26/]]

Other Papers Building on Scenic

Querying Labelled Data with Scenario Programs for Sim-to-Real Validation.

Kim, Shenoy, Junges, Fremont, Sangiovanni-Vincentelli, and Seshia.

ICCPS 2022 [https://doi.org/10.1109/ICCPS54341.2022.00010].

Parallel and Multi-objective Falsification with Scenic and VerifAI.

Viswanadha, Kim, Indaheng, Fremont, and Seshia.

RV 2021 [https://doi.org/10.1007/978-3-030-88494-9_15].

A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object Detectors.

Kim, Gopinath, Pasareanu, and Seshia.

CVPR 2020 [https://people.eecs.berkeley.edu/~sseshia/pubs/b2hd-kim-cvpr20.html].

Credits

If you use Scenic, we request that you cite our CAV 2023 paper [https://arxiv.org/abs/2307.03325], our 2022 journal paper [https://doi.org/10.1007/s10994-021-06120-5], and/or our original PLDI 2019 paper [https://people.eecs.berkeley.edu/~sseshia/pubs/b2hd-fremont-pldi19.html].

Scenic is primarily maintained by Daniel J. Fremont.

The Scenic project was started at UC Berkeley in Sanjit Seshia’s research group.

The language was initially developed by Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia.

Edward Kim assisted in developing the library for dynamic driving scenarios and putting together this documentation.

Eric Vin, Matthew Rhea, and Ellen Kalvan developed Scenic’s support for 3D geometry.
Shun Kashiwa developed the auto-generated parser for Scenic 3.0 and its support for temporal requirements.

The Scenic tool and example scenarios have benefitted from additional code contributions from:

	Johnathan Chiu

	Greg Crow

	Francis Indaheng

	Martin Jansa (LG Electronics, Inc.)

	Abolfazl Karimi

	Kevin Li

	Guillermo López

	Shalin Mehta

	Joel Moriana

	Gaurav Rao

	Ameesh Shah

	Jay Shenoy

	Mirco Theile

	Kesav Viswanadha

	Qiancheng Wu

	Wilson Wu

Finally, many other people provided helpful advice and discussions, including:

	Ankush Desai

	Alastair Donaldson

	Andrew Gordon

	Steve Lemke

	Dejan Nickovic

	Jonathan Ragan-Kelley

	Sriram Rajamani

	German Ros

	Marcell Vazquez-Chanlatte

	everyone who has reported bugs at our GitHub repository [https://github.com/BerkeleyLearnVerify/Scenic/issues].

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 scenic	

 	
 	
 scenic.core	

 	
 	
 scenic.core.distributions	

 	
 	
 scenic.core.dynamics	

 	
 	
 scenic.core.dynamics.actions	

 	
 	
 scenic.core.dynamics.behaviors	

 	
 	
 scenic.core.dynamics.guards	

 	
 	
 scenic.core.dynamics.invocables	

 	
 	
 scenic.core.dynamics.scenarios	

 	
 	
 scenic.core.dynamics.utils	

 	
 	
 scenic.core.errors	

 	
 	
 scenic.core.external_params	

 	
 	
 scenic.core.geometry	

 	
 	
 scenic.core.lazy_eval	

 	
 	
 scenic.core.object_types	

 	
 	
 scenic.core.propositions	

 	
 	
 scenic.core.pruning	

 	
 	
 scenic.core.regions	

 	
 	
 scenic.core.requirements	

 	
 	
 scenic.core.sample_checking	

 	
 	
 scenic.core.scenarios	

 	
 	
 scenic.core.serialization	

 	
 	
 scenic.core.shapes	

 	
 	
 scenic.core.simulators	

 	
 	
 scenic.core.specifiers	

 	
 	
 scenic.core.type_support	

 	
 	
 scenic.core.utils	

 	
 	
 scenic.core.vectors	

 	
 	
 scenic.core.visibility	

 	
 	
 scenic.core.workspaces	

 	
 	
 scenic.domains	

 	
 	
 scenic.domains.driving	

 	
 	
 scenic.domains.driving.actions	

 	
 	
 scenic.domains.driving.behaviors	

 	
 	
 scenic.domains.driving.controllers	

 	
 	
 scenic.domains.driving.model	

 	
 	
 scenic.domains.driving.roads	

 	
 	
 scenic.domains.driving.simulators	

 	
 	
 scenic.domains.driving.workspace	

 	
 	
 scenic.formats	

 	
 	
 scenic.formats.opendrive	

 	
 	
 scenic.formats.opendrive.workspace	

 	
 	
 scenic.formats.opendrive.xodr_parser	

 	
 	
 scenic.simulators	

 	
 	
 scenic.simulators.carla	

 	
 	
 scenic.simulators.carla.actions	

 	
 	
 scenic.simulators.carla.behaviors	

 	
 	
 scenic.simulators.carla.blueprints	

 	
 	
 scenic.simulators.carla.misc	

 	
 	
 scenic.simulators.carla.model	

 	
 	
 scenic.simulators.carla.simulator	

 	
 	
 scenic.simulators.gta	

 	
 	
 scenic.simulators.gta.center_detection	

 	
 	
 scenic.simulators.gta.img_modf	

 	
 	
 scenic.simulators.gta.interface	

 	
 	
 scenic.simulators.gta.map	

 	
 	
 scenic.simulators.gta.messages	

 	
 	
 scenic.simulators.gta.model	

 	
 	
 scenic.simulators.lgsvl	

 	
 	
 scenic.simulators.lgsvl.actions	

 	
 	
 scenic.simulators.lgsvl.behaviors	

 	
 	
 scenic.simulators.lgsvl.model	

 	
 	
 scenic.simulators.lgsvl.simulator	

 	
 	
 scenic.simulators.lgsvl.utils	

 	
 	
 scenic.simulators.newtonian	

 	
 	
 scenic.simulators.newtonian.driving_model	

 	
 	
 scenic.simulators.newtonian.model	

 	
 	
 scenic.simulators.newtonian.simulator	

 	
 	
 scenic.simulators.utils	

 	
 	
 scenic.simulators.utils.colors	

 	
 	
 scenic.simulators.webots	

 	
 	
 scenic.simulators.webots.actions	

 	
 	
 scenic.simulators.webots.guideways	

 	
 	
 scenic.simulators.webots.guideways.interface	

 	
 	
 scenic.simulators.webots.guideways.intersection	

 	
 	
 scenic.simulators.webots.guideways.model	

 	
 	
 scenic.simulators.webots.model	

 	
 	
 scenic.simulators.webots.road	

 	
 	
 scenic.simulators.webots.road.car_models	

 	
 	
 scenic.simulators.webots.road.interface	

 	
 	
 scenic.simulators.webots.road.model	

 	
 	
 scenic.simulators.webots.road.world	

 	
 	
 scenic.simulators.webots.simulator	

 	
 	
 scenic.simulators.webots.utils	

 	
 	
 scenic.simulators.webots.WBTLexer	

 	
 	
 scenic.simulators.webots.WBTParser	

 	
 	
 scenic.simulators.webots.WBTVisitor	

 	
 	
 scenic.simulators.webots.world_parser	

 	
 	
 scenic.simulators.xplane	

 	
 	
 scenic.simulators.xplane.model	

 	
 	
 scenic.syntax	

 	
 	
 scenic.syntax.ast	

 	
 	
 scenic.syntax.compiler	

 	
 	
 scenic.syntax.parser	

 	
 	
 scenic.syntax.pygment	

 	
 	
 scenic.syntax.relations	

 	
 	
 scenic.syntax.translator	

 	
 	
 scenic.syntax.veneer	

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

Symbols

 	
 	
 --2d

 	command line option

 	
 --count

 	command line option

 	
 --full-backtrace

 	command line option

 	
 --model

 	command line option

 	
 --param

 	command line option

 	
 --pdb

 	command line option

 	
 --pdb-on-reject

 	command line option

 	
 --scenario

 	command line option

 	
 --seed

 	command line option

 	
 --show-params

 	command line option

 	
 --show-records

 	command line option

 	
 	
 --simulate

 	command line option

 	
 --time

 	command line option

 	
 --verbosity

 	command line option

 	
 --version

 	command line option

 	
 -b

 	command line option

 	
 -m

 	command line option

 	
 -p

 	command line option

 	
 -S

 	command line option

 	
 -s

 	command line option

 	
 -v

 	command line option

_

 	
 	_3DClass (Object2D attribute)

 	(OrientedPoint2D attribute)

 	(Point2D attribute)

 	_addDynamicRequirement() (DynamicScenario method), [1]

 	_addMonitor() (DynamicScenario method), [1]

 	_addRequirement() (DynamicScenario method), [1]

 	_asdict() (EdgeData method)

 	(Modifier method)

 	_bindTo() (DynamicScenario method), [1]

 	_bufferOverapproximate() (MeshVolumeRegion method), [1]

 	_copyWith() (Constructible method)

 	_crossing (DrivingObject property)

 	_defaultValueType (Distribution attribute)

 	(VectorDistribution attribute)

 	(VerifaiDiscreteRange attribute), [1]

 	(VerifaiRange attribute), [1]

 	_deterministic (Distribution attribute)

 	_element (DrivingObject property)

 	_EndScenarioAction (class in scenic.core.dynamics.actions)

 	_EndSimulationAction (class in scenic.core.dynamics.actions)

 	_erodeOverapproximate() (MeshVolumeRegion method), [1]

 	_fasterLane (LaneSection attribute)

 	_getClosestTrafficLight() (in module scenic.simulators.carla.model)

 	_intersection (DrivingObject property)

 	_invokeInner() (Invocable method)

 	_isConvex (Object property), [1]

 	
 	_isPlanarBox (Object property), [1]

 	_lane (DrivingObject property)

 	_laneGroup (DrivingObject property)

 	_laneSection (DrivingObject property)

 	_laneToLeft (LaneSection attribute)

 	_laneToRight (LaneSection attribute)

 	_make() (EdgeData class method)

 	(Modifier class method)

 	_opposite (LaneGroup attribute)

 	_prepare() (DynamicScenario method), [1]

 	_replace() (EdgeData method)

 	(Modifier method)

 	_requiresArguments() (DynamicScenario class method), [1]

 	_road (DrivingObject property)

 	_scenarioFromStream() (in module scenic.syntax.translator)

 	_scenic_default (in module scenic.syntax.veneer)

 	_segmentDistanceHelper() (PathRegion method), [1]

 	_shoulder (LaneGroup attribute)

 	_sidewalk (LaneGroup attribute)

 	_slowerLane (LaneSection attribute)

 	_start() (DynamicScenario method), [1]

 	_step() (DynamicScenario method), [1]

 	_stop() (DynamicScenario method), [1]

 	_trueContainsPoint() (Region method), [1]

 	_withProperties() (Constructible class method)

 	_withSpecifiers() (Constructible class method)

A

 	
 	AABB (Region property), [1]

 	Above() (in module scenic.syntax.veneer)

 	action

 	Action (class in scenic.core.dynamics.actions)

 	actionsAreCompatible() (Simulation method)

 	addCodec() (Serializer class method)

 	adjacentLanes (LaneSection attribute)

 	advertisementModels (in module scenic.simulators.carla.blueprints)

 	agent

 	Ahead() (in module scenic.syntax.veneer)

 	AllRegion (class in scenic.core.regions)

 	allRoads (Network attribute)

 	AltitudeFrom() (in module scenic.syntax.veneer)

 	AltitudeTo() (in module scenic.syntax.veneer)

 	alwaysGlobalOrientation() (in module scenic.core.vectors)

 	
 	AngleFrom() (in module scenic.syntax.veneer)

 	AngleTo() (in module scenic.syntax.veneer)

 	angleWith() (Vector method), [1]

 	ApparentHeading() (in module scenic.syntax.veneer)

 	ApparentlyFacing() (in module scenic.syntax.veneer)

 	appliedTo() (Mutator method), [1]

 	ApplyForceAction (class in scenic.simulators.webots.actions)

 	applyTo() (Action method)

 	approxBoundFootprint() (PolygonalFootprintRegion method)

 	AST (class in scenic.syntax.ast)

 	ASTParseError

 	At() (in module scenic.syntax.veneer)

 	atmModels (in module scenic.simulators.carla.blueprints)

 	AttributeDistribution (class in scenic.core.distributions)

 	AttributeFinder (class in scenic.syntax.compiler)

 	AutopilotBehavior() (in module scenic.simulators.carla.behaviors)

B

 	
 	Back (class in scenic.syntax.ast)

 	Back() (in module scenic.syntax.veneer)

 	BackLeft (class in scenic.syntax.ast)

 	BackLeft() (in module scenic.syntax.veneer)

 	BackRight (class in scenic.syntax.ast)

 	BackRight() (in module scenic.syntax.veneer)

 	backSurface (Object property), [1]

 	backwardLanes (Road attribute)

 	barrelModels (in module scenic.simulators.carla.blueprints)

 	barrierModels (in module scenic.simulators.carla.blueprints)

 	BasicChecker (class in scenic.core.sample_checking)

 	behavior

 	Behavior (class in scenic.core.dynamics.behaviors)

 	(class in scenic.syntax.veneer)

 	Behind() (in module scenic.syntax.veneer)

 	Below() (in module scenic.syntax.veneer)

 	benchModels (in module scenic.simulators.carla.blueprints)

 	BetterPythonLexer (class in scenic.syntax.pygment)

 	Beyond() (in module scenic.syntax.veneer)

 	bicycleModels (in module scenic.simulators.carla.blueprints)

 	BlockConclusion (class in scenic.core.dynamics.invocables)

 	(class in scenic.syntax.veneer)

 	Bottom (class in scenic.syntax.ast)

 	
 	Bottom() (in module scenic.syntax.veneer)

 	BottomBackLeft (class in scenic.syntax.ast)

 	BottomBackLeft() (in module scenic.syntax.veneer)

 	BottomBackRight (class in scenic.syntax.ast)

 	BottomBackRight() (in module scenic.syntax.veneer)

 	BottomFrontLeft (class in scenic.syntax.ast)

 	BottomFrontLeft() (in module scenic.syntax.veneer)

 	BottomFrontRight (class in scenic.syntax.ast)

 	BottomFrontRight() (in module scenic.syntax.veneer)

 	bottomSurface (Object property), [1]

 	boundary (PolygonalRegion property), [1]

 	boundFootprint() (PolygonalFootprintRegion method)

 	boundingBox (Object property), [1]

 	boundingPolygon (MeshRegion property)

 	BoundRelation (class in scenic.syntax.relations)

 	boxModels (in module scenic.simulators.carla.blueprints)

 	BoxRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	BoxShape (class in scenic.core.shapes)

 	(class in scenic.syntax.veneer)

 	bucket() (Distribution method)

 	Bus (class in scenic.simulators.gta.model)

 	busStopModels (in module scenic.simulators.carla.blueprints)

C

 	
 	cached() (in module scenic.core.utils)

 	cached_method() (in module scenic.core.utils)

 	callBeginningScenicTrace() (in module scenic.core.errors)

 	canBeTakenBy() (Action method)

 	canCoerce() (in module scenic.core.type_support)

 	canCoerceType() (in module scenic.core.type_support)

 	canSee() (in module scenic.core.visibility)

 	CanSee() (in module scenic.syntax.veneer)

 	canSee() (Object method), [1]

 	(OrientedPoint method), [1]

 	(Point method), [1]

 	canUnpackDistributions() (in module scenic.core.distributions)

 	Car (class in scenic.domains.driving.model)

 	(class in scenic.simulators.carla.model)

 	(class in scenic.simulators.gta.model)

 	CarlaActor (class in scenic.simulators.carla.model)

 	CarlaSimulator (class in scenic.simulators.carla.simulator)

 	CarModel (class in scenic.simulators.gta.interface)

 	(class in scenic.simulators.webots.road.car_models)

 	carModels (in module scenic.simulators.carla.blueprints)

 	caseModels (in module scenic.simulators.carla.blueprints)

 	chairModels (in module scenic.simulators.carla.blueprints)

 	check_constrains_sampling() (PropositionNode method)

 	checkConditionedCycle() (in module scenic.core.pruning)

 	children (PropositionNode property)

 	CircularRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	circumcircle (MeshRegion property)

 	clone() (Distribution method)

 	Clothoid (class in scenic.formats.opendrive.xodr_parser)

 	coerce() (in module scenic.core.type_support)

 	coerceToAny() (in module scenic.core.type_support)

 	CoercionFailure

 	Color (class in scenic.simulators.utils.colors)

 	ColorMutator (class in scenic.simulators.utils.colors)

 	
 command line option

 	--2d

 	--count

 	--full-backtrace

 	--model

 	--param

 	--pdb

 	--pdb-on-reject

 	--scenario

 	--seed

 	--show-params

 	--show-records

 	--simulate

 	--time

 	--verbosity

 	--version

 	-b

 	-m

 	-p

 	-s

 	-S

 	-v

 	
 	Compact (class in scenic.simulators.gta.model)

 	CompileOptions (class in scenic.syntax.translator)

 	compileScenicAST() (in module scenic.syntax.compiler)

 	compileStream() (in module scenic.syntax.translator)

 	compute_distance() (in module scenic.simulators.carla.misc)

 	compute_magnitude_angle() (in module scenic.simulators.carla.misc)

 	conditionOn() (Scenario method)

 	conditionTo() (Samplable method)

 	coneModels (in module scenic.simulators.carla.blueprints)

 	ConeShape (class in scenic.core.shapes)

 	(class in scenic.syntax.veneer)

 	conflictingManeuvers (Maneuver property)

 	connectingLane (Maneuver attribute)

 	connectingRoads (Network attribute)

 	ConstantSamplable (class in scenic.core.distributions)

 	Constructible (class in scenic.core.object_types)

 	constructScenarioFrom() (in module scenic.syntax.translator)

 	ContainedIn() (in module scenic.syntax.veneer)

 	container

 	containerModels (in module scenic.simulators.carla.blueprints)

 	containsCenter (Shape property), [1]

 	containsObject() (MeshVolumeRegion method), [1]

 	(PolygonalFootprintRegion method)

 	(Region method), [1]

 	containsPoint() (MeshSurfaceRegion method), [1]

 	(MeshVolumeRegion method), [1]

 	(Object method), [1]

 	(PolygonalFootprintRegion method)

 	(Region method), [1]

 	containsRegionInner() (Region method), [1]

 	Context (class in scenic.syntax.compiler)

 	convertToFootprint() (in module scenic.core.regions)

 	corners (Object property), [1]

 	country (Signal attribute)

 	creasedboxModels (in module scenic.simulators.carla.blueprints)

 	createObjectInSimulator() (Simulation method)

 	createPlatoonAt() (in module scenic.simulators.gta.model)

 	createSimulation() (Simulator method)

 	crossing (DrivingObject property)

 	crossingAt() (Network method)

 	(Road method)

 	CrossingBehavior() (in module scenic.simulators.carla.behaviors)

 	crossings (Network attribute)

 	(Road attribute)

 	Crossroad (class in scenic.simulators.webots.road.interface)

 	Cubic (class in scenic.formats.opendrive.xodr_parser)

 	curb (in module scenic.domains.driving.model)

 	(in module scenic.simulators.gta.model)

 	(LaneGroup attribute)

 	currentPropValue() (in module scenic.core.pruning)

 	currentRealTime (Simulation property)

 	currentState() (Simulation method)

 	Curve (class in scenic.formats.opendrive.xodr_parser)

 	CylinderShape (class in scenic.core.shapes)

 	(class in scenic.syntax.veneer)

D

 	
 	Debris (class in scenic.simulators.newtonian.driving_model)

 	debrisModels (in module scenic.simulators.carla.blueprints)

 	defaultCarColor() (Color static method)

 	DefaultIdentityDict (class in scenic.core.utils)

 	defaultSideSurface() (in module scenic.core.object_types)

 	DelayedArgument (class in scenic.core.lazy_eval)

 	dependencies() (in module scenic.core.lazy_eval)

 	destroy() (Simulation method)

 	(Simulator method)

 	difference() (MeshVolumeRegion method), [1]

 	(PolygonalFootprintRegion method)

 	(Region method), [1]

 	dilation() (VoxelRegion method)

 	DimensionLimits (in module scenic.core.object_types)

 	Discrete (in module scenic.syntax.veneer)

 	DiscreteRange (class in scenic.core.distributions)

 	(class in scenic.syntax.veneer)

 	displayScenicException() (in module scenic.core.errors)

 	distance_vehicle() (in module scenic.simulators.carla.misc)

 	DistanceFrom() (in module scenic.syntax.veneer)

 	DistancePast() (in module scenic.syntax.veneer)

 	distancePast() (OrientedPoint method), [1]

 	DistanceRelation (class in scenic.syntax.relations)

 	
 	distanceTo() (MeshSurfaceRegion method), [1]

 	(MeshVolumeRegion method), [1]

 	(Object method), [1]

 	(PolygonalFootprintRegion method)

 	(Region method), [1]

 	distanceToClosest() (DrivingObject method)

 	Distribution (class in scenic.core.distributions)

 	distributionFunction() (in module scenic.core.distributions)

 	distributionMethod() (in module scenic.core.distributions)

 	DivergenceError

 	draw_waypoints() (in module scenic.simulators.carla.misc)

 	driveOnLeft (Network attribute)

 	DrivingObject (class in scenic.domains.driving.model)

 	DrivingSimulation (class in scenic.domains.driving.simulators)

 	DrivingSimulator (class in scenic.domains.driving.simulators)

 	DrivingWorkspace (class in scenic.domains.driving.workspace)

 	DummySimulation (class in scenic.core.simulators)

 	DummySimulator (class in scenic.core.simulators)

 	dumpAsScenicCode() (in module scenic.core.serialization)

 	(Scene method)

 	dynamic behavior

 	dynamic properties

 	DynamicScenario (class in scenic.core.dynamics.scenarios)

 	(class in scenic.syntax.veneer)

E

 	
 	EdgeData (class in scenic.simulators.gta.center_detection)

 	Ego (class in scenic.syntax.ast)

 	ego() (in module scenic.syntax.veneer)

 	EgoCar (class in scenic.simulators.gta.model)

 	element (DrivingObject property)

 	elementAt() (Network method)

 	elements (Network attribute)

 	EmptyRegion (class in scenic.core.regions)

 	end (PolylineRegion property), [1]

 	endLane (Maneuver attribute)

 	ENU (in module scenic.simulators.webots.utils)

 	
 environment variable

 	PYTHONPATH

 	PYTHONWARNINGS

 	
 	ErrorReporter (class in scenic.simulators.webots.world_parser)

 	eulerAngles (Orientation property), [1]

 	EUN (in module scenic.simulators.webots.utils)

 	evaluateIn() (LazilyEvaluable method)

 	(Samplable method)

 	evaluateInner() (LazilyEvaluable method)

 	evaluateRequiringEqualTypes() (in module scenic.core.type_support)

 	Evaluator (class in scenic.simulators.webots.world_parser)

 	everywhere (in module scenic.core.regions)

 	executeActions() (Simulation method)

 	executeCodeIn() (in module scenic.syntax.translator)

 	external parameters

 	ExternalParameter (class in scenic.core.external_params)

 	ExternalSampler (class in scenic.core.external_params)

F

 	
 	Facing() (in module scenic.syntax.veneer)

 	FacingAwayFrom() (in module scenic.syntax.veneer)

 	FacingDirectlyAwayFrom() (in module scenic.syntax.veneer)

 	FacingDirectlyToward() (in module scenic.syntax.veneer)

 	FacingToward() (in module scenic.syntax.veneer)

 	falsifiedByInner() (SamplingRequirement method)

 	fasterLane (LaneSection property)

 	feasibleRHPolygon() (in module scenic.core.pruning)

 	FieldAt() (in module scenic.syntax.veneer)

 	find_center() (in module scenic.simulators.gta.center_detection)

 	findNodeTypesIn() (in module scenic.simulators.webots.world_parser)

 	findPointIn() (Network method)

 	flatten() (PropositionNode method)

 	flowFrom() (LinearElement method)

 	Follow() (in module scenic.syntax.veneer)

 	followFrom() (VectorField method), [1]

 	Following() (in module scenic.syntax.veneer)

 	FollowLaneBehavior() (in module scenic.domains.driving.behaviors)

 	FollowTrajectoryBehavior() (in module scenic.domains.driving.behaviors)

 	
 	footprint

 	forParameters() (ExternalSampler static method)

 	forUnionOf() (VectorField static method), [1]

 	forwardLanes (Road attribute)

 	freezeTrafficLights() (in module scenic.simulators.carla.model)

 	fromEuler() (Orientation class method), [1]

 	fromFile() (MeshRegion class method)

 	(MeshShape class method), [1]

 	(Network class method)

 	fromOpenDrive() (Network class method)

 	fromQuaternion() (Orientation class method), [1]

 	Front (class in scenic.syntax.ast)

 	Front() (in module scenic.syntax.veneer)

 	FrontLeft (class in scenic.syntax.ast)

 	FrontLeft() (in module scenic.syntax.veneer)

 	FrontRight (class in scenic.syntax.ast)

 	FrontRight() (in module scenic.syntax.veneer)

 	frontSurface (Object property), [1]

 	FunctionDistribution (class in scenic.core.distributions)

G

 	
 	garbageModels (in module scenic.simulators.carla.blueprints)

 	gatherBehaviorNamespacesFrom() (in module scenic.syntax.translator)

 	generate() (Scenario method)

 	generateBatch() (Scenario method)

 	get_speed() (in module scenic.simulators.carla.misc)

 	getAllGlobals() (in module scenic.core.requirements)

 	getFieldSafe() (in module scenic.simulators.webots.simulator)

 	getFlatOrientation() (MeshSurfaceRegion method), [1]

 	getLaneChangingControllers() (DrivingSimulation method)

 	getLaneFollowingControllers() (DrivingSimulation method)

 	getProperties() (Simulation method)

 	getReplay() (Simulation method)

 	getSurfaceRegion() (MeshSurfaceRegion method), [1]

 	(MeshVolumeRegion method), [1]

 	
 	getText() (in module scenic.core.errors)

 	getTurningControllers() (DrivingSimulation method)

 	getValuesFor() (Specifier method)

 	getVolumeRegion() (MeshSurfaceRegion method), [1]

 	(MeshVolumeRegion method), [1]

 	global parameters

 	globalToLocalAngles() (Orientation method), [1]

 	gnomeModels (in module scenic.simulators.carla.blueprints)

 	gpsToScenicPosition() (in module scenic.simulators.lgsvl.utils)

 	GridRegion (class in scenic.core.regions)

 	Ground (class in scenic.simulators.webots.model)

 	group (LaneSection attribute)

 	GuardViolation, [1]

 	guessTypeFromLanes() (ManeuverType static method)

H

 	
 	hash (CompileOptions property)

 	Heading (class in scenic.core.type_support)

 	
 	hiddenFolders (in module scenic.core.errors)

 	Hill (class in scenic.simulators.webots.model)

I

 	
 	id (NetworkElement attribute)

 	In() (in module scenic.syntax.veneer)

 	InconsistentScenarioError

 	inferDistanceRelations() (in module scenic.syntax.relations)

 	inferRelationsFrom() (in module scenic.syntax.relations)

 	inferRelativeHeadingRelations() (in module scenic.syntax.relations)

 	inferType() (AttributeDistribution static method)

 	(OperatorDistribution static method)

 	init_theta (EdgeData attribute)

 	initApolloFor() (LGSVLSimulation method)

 	inradius (Object property), [1]

 	intersect() (MeshVolumeRegion method), [1]

 	(PolygonalFootprintRegion method)

 	(Region method), [1]

 	Intersection (class in scenic.domains.driving.roads)

 	intersection (DrivingObject property)

 	(in module scenic.domains.driving.model)

 	(Maneuver attribute)

 	intersectionAt() (Network method)

 	intersections (Network attribute)

 	Intersects() (in module scenic.syntax.veneer)

 	intersects() (MeshSurfaceRegion method), [1]

 	(MeshVolumeRegion method), [1]

 	(Object method), [1]

 	(Region method), [1]

 	
 	Interval (in module scenic.core.object_types)

 	InvalidScenarioError

 	InvariantViolation, [1]

 	Invocable (class in scenic.core.dynamics.invocables)

 	ironplateModels (in module scenic.simulators.carla.blueprints)

 	is3Way (Intersection property)

 	is4Way (Intersection property)

 	is_temporal (PropositionNode attribute)

 	is_typing_generic() (in module scenic.core.type_support)

 	is_within_distance() (in module scenic.simulators.carla.misc)

 	is_within_distance_ahead() (in module scenic.simulators.carla.misc)

 	isA() (in module scenic.core.type_support)

 	isForward (LaneSection attribute)

 	isFunctionCall() (in module scenic.core.pruning)

 	isLazy() (in module scenic.core.lazy_eval)

 	isMethodCall() (in module scenic.core.pruning)

 	isPhysicsEnabled() (in module scenic.simulators.webots.simulator)

 	isPrimitive (Distribution property)

 	isSignalized (Intersection property)

 	isTrafficLight (Signal property)

K

 	
 	kioskModels (in module scenic.simulators.carla.blueprints)

L

 	
 	Lane (class in scenic.domains.driving.roads)

 	lane (DrivingObject property)

 	(LaneSection attribute)

 	laneAt() (LaneGroup method)

 	(Network method)

 	(Road method)

 	(RoadSection method)

 	LaneChangeBehavior() (in module scenic.domains.driving.behaviors)

 	LaneGroup (class in scenic.domains.driving.roads)

 	laneGroup (DrivingObject property)

 	laneGroupAt() (Network method)

 	(Road method)

 	laneGroups (Network attribute)

 	(Road attribute)

 	lanes (LaneGroup attribute)

 	(Network attribute)

 	(Road attribute)

 	LaneSection (class in scenic.domains.driving.roads)

 	laneSection (DrivingObject property)

 	laneSectionAt() (Network method)

 	(Road method)

 	
 	laneSections (Network attribute)

 	laneToLeft (LaneSection property)

 	laneToRight (LaneSection property)

 	LazilyEvaluable (class in scenic.core.lazy_eval)

 	Left (class in scenic.syntax.ast)

 	Left() (in module scenic.syntax.veneer)

 	LEFT_TURN (ManeuverType attribute)

 	LeftSpec() (in module scenic.syntax.veneer)

 	leftSurface (Object property), [1]

 	LGSVLSimulation (class in scenic.simulators.lgsvl.simulator)

 	LGSVLSimulator (class in scenic.simulators.lgsvl.simulator)

 	lgsvlToScenicElevation() (in module scenic.simulators.lgsvl.utils)

 	lgsvlToScenicPosition() (in module scenic.simulators.lgsvl.utils)

 	lgsvlToScenicRotation() (in module scenic.simulators.lgsvl.utils)

 	Line (class in scenic.formats.opendrive.xodr_parser)

 	LinearElement (class in scenic.domains.driving.roads)

 	localAnglesFor() (Orientation method), [1]

 	LocalFinder (class in scenic.syntax.compiler)

 	localPath() (in module scenic.syntax.veneer)

M

 	
 	mailboxModels (in module scenic.simulators.carla.blueprints)

 	makeContext() (LazilyEvaluable static method)

 	makeDelayedFunctionCall() (in module scenic.core.lazy_eval)

 	Maneuver (class in scenic.domains.driving.roads)

 	maneuversAt() (Intersection method)

 	ManeuverType (class in scenic.domains.driving.roads)

 	Map (class in scenic.simulators.gta.interface)

 	MapWorkspace (class in scenic.simulators.gta.interface)

 	matchInRegion() (in module scenic.core.pruning)

 	matchPolygonalField() (in module scenic.core.pruning)

 	maxDistanceBetween() (in module scenic.core.pruning)

 	mesh (VoxelRegion property)

 	MeshRegion (class in scenic.core.regions)

 	MeshShape (class in scenic.core.shapes)

 	(class in scenic.syntax.veneer)

 	MeshSurfaceRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	MeshVolumeRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	MethodDistribution (class in scenic.core.distributions)

 	mid_loc (EdgeData attribute)

 	mode2D (CompileOptions attribute)

 	modelOverride (CompileOptions attribute)

 	Modifier (class in scenic.syntax.veneer)

 	ModifyingSpecifier (class in scenic.core.specifiers)

 	modular scenario

 	
 module

 	scenic.core

 	scenic.core.distributions

 	scenic.core.dynamics

 	scenic.core.dynamics.actions

 	scenic.core.dynamics.behaviors

 	scenic.core.dynamics.guards

 	scenic.core.dynamics.invocables

 	scenic.core.dynamics.scenarios

 	scenic.core.dynamics.utils

 	scenic.core.errors

 	scenic.core.external_params

 	scenic.core.geometry

 	scenic.core.lazy_eval

 	scenic.core.object_types

 	scenic.core.propositions

 	scenic.core.pruning

 	scenic.core.regions

 	scenic.core.requirements

 	scenic.core.sample_checking

 	scenic.core.scenarios

 	scenic.core.serialization

 	scenic.core.shapes

 	scenic.core.simulators

 	scenic.core.specifiers

 	scenic.core.type_support

 	scenic.core.utils

 	scenic.core.vectors

 	scenic.core.visibility

 	scenic.core.workspaces

 	scenic.domains

 	scenic.domains.driving

 	scenic.domains.driving.actions

 	scenic.domains.driving.behaviors

 	scenic.domains.driving.controllers

 	scenic.domains.driving.model

 	scenic.domains.driving.roads

 	scenic.domains.driving.simulators

 	scenic.domains.driving.workspace

 	scenic.formats

 	scenic.formats.opendrive

 	scenic.formats.opendrive.workspace

 	scenic.formats.opendrive.xodr_parser

 	scenic.simulators

 	scenic.simulators.carla

 	scenic.simulators.carla.actions

 	scenic.simulators.carla.behaviors

 	scenic.simulators.carla.blueprints

 	scenic.simulators.carla.misc

 	scenic.simulators.carla.model

 	scenic.simulators.carla.simulator

 	scenic.simulators.gta

 	scenic.simulators.gta.center_detection

 	scenic.simulators.gta.img_modf

 	scenic.simulators.gta.interface

 	scenic.simulators.gta.map

 	scenic.simulators.gta.messages

 	scenic.simulators.gta.model

 	scenic.simulators.lgsvl

 	scenic.simulators.lgsvl.actions

 	scenic.simulators.lgsvl.behaviors

 	scenic.simulators.lgsvl.model

 	scenic.simulators.lgsvl.simulator

 	scenic.simulators.lgsvl.utils

 	scenic.simulators.newtonian

 	scenic.simulators.newtonian.driving_model

 	scenic.simulators.newtonian.model

 	scenic.simulators.newtonian.simulator

 	scenic.simulators.utils

 	scenic.simulators.utils.colors

 	scenic.simulators.webots

 	scenic.simulators.webots.actions

 	scenic.simulators.webots.guideways

 	scenic.simulators.webots.guideways.interface

 	scenic.simulators.webots.guideways.intersection

 	scenic.simulators.webots.guideways.model

 	scenic.simulators.webots.model

 	scenic.simulators.webots.road

 	scenic.simulators.webots.road.car_models

 	scenic.simulators.webots.road.interface

 	scenic.simulators.webots.road.model

 	scenic.simulators.webots.road.world

 	scenic.simulators.webots.simulator

 	scenic.simulators.webots.utils

 	scenic.simulators.webots.WBTLexer

 	scenic.simulators.webots.WBTParser

 	scenic.simulators.webots.WBTVisitor

 	scenic.simulators.webots.world_parser

 	scenic.simulators.xplane

 	scenic.simulators.xplane.model

 	scenic.syntax

 	scenic.syntax.ast

 	scenic.syntax.compiler

 	scenic.syntax.parser

 	scenic.syntax.pygment

 	scenic.syntax.relations

 	scenic.syntax.translator

 	scenic.syntax.veneer

 	
 	monitor

 	Monitor (class in scenic.core.dynamics.behaviors)

 	(class in scenic.syntax.veneer)

 	MonitorRequirement (class in scenic.core.requirements)

 	monotonicDistributionFunction() (in module scenic.core.distributions)

 	motorcycleModels (in module scenic.simulators.carla.blueprints)

 	MultiplexerDistribution (class in scenic.core.distributions)

 	mutate() (in module scenic.syntax.veneer)

 	Mutator (class in scenic.core.object_types)

 	(class in scenic.syntax.veneer)

N

 	
 	name (Modifier attribute)

 	(NetworkElement attribute)

 	needsLazyEvaluation() (in module scenic.core.lazy_eval)

 	needsSampling() (in module scenic.core.lazy_eval)

 	Network (class in scenic.domains.driving.roads)

 	network (in module scenic.domains.driving.model)

 	(NetworkElement attribute)

 	Network.DigestMismatchError

 	NetworkElement (class in scenic.domains.driving.roads)

 	NewtonianSimulation (class in scenic.simulators.newtonian.simulator)

 	NewtonianSimulator (class in scenic.simulators.newtonian.simulator)

 	nextSample() (ExternalSampler method)

 	
 	Node (class in scenic.simulators.webots.world_parser)

 	NoisyColorDistribution (class in scenic.simulators.utils.colors)

 	nominalDirectionsAt() (Network method)

 	(NetworkElement method)

 	Normal (class in scenic.core.distributions)

 	(class in scenic.syntax.veneer)

 	NotVisible() (in module scenic.syntax.veneer)

 	NotVisibleFrom() (in module scenic.syntax.veneer)

 	NotVisibleFromOp() (in module scenic.syntax.veneer)

 	NotVisibleSpec() (in module scenic.syntax.veneer)

 	nowhere (in module scenic.core.regions)

 	NPCCar (class in scenic.domains.driving.model)

 	NUE (in module scenic.simulators.webots.utils)

O

 	
 	Object (class in scenic.core.object_types)

 	(class in scenic.syntax.veneer)

 	Object2D (class in scenic.core.object_types)

 	occupiedSpace (Object property), [1]

 	OffsetAction (class in scenic.domains.driving.actions)

 	(class in scenic.simulators.webots.actions)

 	OffsetAlong() (in module scenic.syntax.veneer)

 	OffsetAlongSpec() (in module scenic.syntax.veneer)

 	OffsetBy() (in module scenic.syntax.veneer)

 	oldBlueprintNames (in module scenic.simulators.carla.blueprints)

 	On() (in module scenic.syntax.veneer)

 	onSurface (Object property), [1]

 	openDriveID (Signal attribute)

 	
 	OperatorDistribution (class in scenic.core.distributions)

 	opp_loc (EdgeData attribute)

 	opposite (LaneGroup property)

 	oppositeLaneGroup (DrivingObject property)

 	Options (class in scenic.core.distributions)

 	(class in scenic.syntax.veneer)

 	orient() (Region method), [1]

 	Orientation (class in scenic.core.vectors)

 	(class in scenic.syntax.veneer)

 	OrientationMutator (class in scenic.core.object_types)

 	OrientedPoint (class in scenic.core.object_types)

 	(class in scenic.syntax.veneer)

 	OrientedPoint2D (class in scenic.core.object_types)

 	OSMObject (class in scenic.simulators.webots.road.interface)

P

 	
 	Param (class in scenic.syntax.ast)

 	param() (in module scenic.syntax.veneer)

 	ParamCubic (class in scenic.formats.opendrive.xodr_parser)

 	parameter (class in scenic.syntax.ast)

 	paramOverrides (CompileOptions attribute)

 	parse() (in module scenic.simulators.webots.world_parser)

 	parse_file() (in module scenic.syntax.parser)

 	parse_string() (in module scenic.syntax.parser)

 	ParseCompileError

 	PathRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	Pedestrian (class in scenic.domains.driving.model)

 	(class in scenic.simulators.carla.model)

 	PedestrianCrossing (class in scenic.domains.driving.roads)

 	(class in scenic.simulators.webots.road.interface)

 	PegenLexer (class in scenic.syntax.pygment)

 	pickledExt (Network attribute)

 	PIDLateralController (class in scenic.domains.driving.controllers)

 	PIDLongitudinalController (class in scenic.domains.driving.controllers)

 	PiecewiseVectorField (class in scenic.core.vectors)

 	pitch (Orientation property), [1]

 	planarInradius (Object property), [1]

 	Plane (class in scenic.simulators.xplane.model)

 	plantpotModels (in module scenic.simulators.carla.blueprints)

 	Point (class in scenic.core.object_types)

 	(class in scenic.syntax.veneer)

 	Point2D (class in scenic.core.object_types)

 	point_at() (Curve method)

 	pointAlongBy() (PolylineRegion method), [1]

 	PointInRegionDistribution (class in scenic.core.regions)

 	
 	PointSetRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	Poly3 (class in scenic.formats.opendrive.xodr_parser)

 	PolygonalFootprintRegion (class in scenic.core.regions)

 	PolygonalRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	PolygonalVectorField (class in scenic.core.vectors)

 	(class in scenic.syntax.veneer)

 	PolylineRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	positionFromScenic() (WebotsCoordinateSystem method)

 	PositionMutator (class in scenic.core.object_types)

 	positionToScenic() (WebotsCoordinateSystem method)

 	positive() (in module scenic.simulators.carla.misc)

 	postMortemDebugging (in module scenic.core.errors)

 	postMortemRejections (in module scenic.core.errors)

 	PreconditionViolation, [1]

 	preferred orientation

 	projectVector() (MeshRegion method)

 	(Region method), [1]

 	Prop (class in scenic.simulators.carla.model)

 	PropertyDefault (class in scenic.core.specifiers)

 	PropositionNode (class in scenic.core.propositions)

 	prune() (in module scenic.core.pruning)

 	pruneContainment() (in module scenic.core.pruning)

 	pruneRelativeHeading() (in module scenic.core.pruning)

 	purgeModulesUnsafeToCache() (in module scenic.syntax.translator)

 	PythonCompileError

 	PYTHONPATH

 	PythonSnippetLexer (class in scenic.syntax.pygment)

 	PYTHONWARNINGS

R

 	
 	RandomControlFlowError

 	Range (class in scenic.core.distributions)

 	(class in scenic.syntax.veneer)

 	RectangularRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	Region (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	regionFromShapelyObject() (in module scenic.core.regions)

 	RegulatedControlAction (class in scenic.domains.driving.actions)

 	RejectionException, [1]

 	RejectSimulationException

 	rel_to_abs() (Curve method)

 	RelativeHeading() (in module scenic.syntax.veneer)

 	relativeHeadingRange() (in module scenic.core.pruning)

 	RelativeHeadingRelation (class in scenic.syntax.relations)

 	RelativePosition() (in module scenic.syntax.veneer)

 	RelativeTo() (in module scenic.syntax.veneer)

 	repairMesh() (in module scenic.core.utils)

 	replay() (Simulator method)

 	replayFormatVersion() (Serializer class method)

 	ReplayMode (class in scenic.core.simulators)

 	require() (in module scenic.syntax.veneer)

 	requiredProperties() (in module scenic.core.lazy_eval)

 	RequirementType (class in scenic.core.requirements)

 	resample() (in module scenic.syntax.veneer)

 	resetExternalSampler() (Scenario method)

 	
 	resolveFor() (PropertyDefault method)

 	reverseManeuvers (Maneuver property)

 	Right (class in scenic.syntax.ast)

 	Right() (in module scenic.syntax.veneer)

 	RIGHT_TURN (ManeuverType attribute)

 	RightSpec() (in module scenic.syntax.veneer)

 	rightSurface (Object property), [1]

 	Road (class in scenic.domains.driving.roads)

 	(class in scenic.simulators.webots.road.interface)

 	road (DrivingObject property)

 	(in module scenic.domains.driving.model)

 	(in module scenic.simulators.gta.model)

 	(LaneGroup attribute)

 	(LaneSection attribute)

 	roadAt() (Network method)

 	roadDirection (in module scenic.domains.driving.model)

 	(in module scenic.simulators.gta.model)

 	(Network attribute)

 	RoadLink (class in scenic.formats.opendrive.xodr_parser)

 	roadOrShoulder (in module scenic.domains.driving.model)

 	roads (Network attribute)

 	RoadSection (class in scenic.domains.driving.roads)

 	roadSections (Network attribute)

 	roll (Orientation property), [1]

 	rotatedBy() (Vector method), [1]

 	run_step() (PIDLateralController method)

 	(PIDLongitudinalController method)

S

 	
 	Samplable (class in scenic.core.distributions)

 	sample() (ExternalSampler method)

 	(Samplable method)

 	sampleAll() (Samplable static method)

 	sampleGiven() (ExternalParameter method)

 	(Samplable method)

 	SamplingRequirement (class in scenic.core.requirements)

 	scalarOperator() (in module scenic.core.vectors)

 	Scenario (class in scenic.core.scenarios)

 	scenario (CompileOptions attribute)

 	scenarioComplete (TerminationType attribute)

 	scenarioFromFile() (in module scenic)

 	(in module scenic.syntax.translator)

 	scenarioFromString() (in module scenic)

 	(in module scenic.syntax.translator)

 	Scene (class in scenic.core.scenarios)

 	sceneFormatVersion() (Serializer class method)

 	sceneFromBytes() (Scenario method)

 	sceneToBytes() (Scenario method)

 	
 scenic.core

 	module

 	
 scenic.core.distributions

 	module

 	
 scenic.core.dynamics

 	module

 	
 scenic.core.dynamics.actions

 	module

 	
 scenic.core.dynamics.behaviors

 	module

 	
 scenic.core.dynamics.guards

 	module

 	
 scenic.core.dynamics.invocables

 	module

 	
 scenic.core.dynamics.scenarios

 	module

 	
 scenic.core.dynamics.utils

 	module

 	
 scenic.core.errors

 	module

 	
 scenic.core.external_params

 	module

 	
 scenic.core.geometry

 	module

 	
 scenic.core.lazy_eval

 	module

 	
 scenic.core.object_types

 	module

 	
 scenic.core.propositions

 	module

 	
 scenic.core.pruning

 	module

 	
 scenic.core.regions

 	module

 	
 scenic.core.requirements

 	module

 	
 scenic.core.sample_checking

 	module

 	
 scenic.core.scenarios

 	module

 	
 scenic.core.serialization

 	module

 	
 scenic.core.shapes

 	module

 	
 scenic.core.simulators

 	module

 	
 scenic.core.specifiers

 	module

 	
 scenic.core.type_support

 	module

 	
 scenic.core.utils

 	module

 	
 scenic.core.vectors

 	module

 	
 scenic.core.visibility

 	module

 	
 scenic.core.workspaces

 	module

 	
 scenic.domains

 	module

 	
 scenic.domains.driving

 	module

 	
 scenic.domains.driving.actions

 	module

 	
 scenic.domains.driving.behaviors

 	module

 	
 scenic.domains.driving.controllers

 	module

 	
 scenic.domains.driving.model

 	module

 	
 scenic.domains.driving.roads

 	module

 	
 scenic.domains.driving.simulators

 	module

 	
 scenic.domains.driving.workspace

 	module

 	
 scenic.formats

 	module

 	
 scenic.formats.opendrive

 	module

 	
 scenic.formats.opendrive.workspace

 	module

 	
 scenic.formats.opendrive.xodr_parser

 	module

 	
 scenic.simulators

 	module

 	
 scenic.simulators.carla

 	module

 	
 scenic.simulators.carla.actions

 	module

 	
 scenic.simulators.carla.behaviors

 	module

 	
 scenic.simulators.carla.blueprints

 	module

 	
 scenic.simulators.carla.misc

 	module

 	
 scenic.simulators.carla.model

 	module

 	
 scenic.simulators.carla.simulator

 	module

 	
 scenic.simulators.gta

 	module

 	
 scenic.simulators.gta.center_detection

 	module

 	
 scenic.simulators.gta.img_modf

 	module

 	
 scenic.simulators.gta.interface

 	module

 	
 scenic.simulators.gta.map

 	module

 	
 scenic.simulators.gta.messages

 	module

 	
 scenic.simulators.gta.model

 	module

 	
 scenic.simulators.lgsvl

 	module

 	
 scenic.simulators.lgsvl.actions

 	module

 	
 scenic.simulators.lgsvl.behaviors

 	module

 	
 scenic.simulators.lgsvl.model

 	module

 	
 scenic.simulators.lgsvl.simulator

 	module

 	
 scenic.simulators.lgsvl.utils

 	module

 	
 scenic.simulators.newtonian

 	module

 	
 scenic.simulators.newtonian.driving_model

 	module

 	
 scenic.simulators.newtonian.model

 	module

 	
 scenic.simulators.newtonian.simulator

 	module

 	
 scenic.simulators.utils

 	module

 	
 	
 scenic.simulators.utils.colors

 	module

 	
 scenic.simulators.webots

 	module

 	
 scenic.simulators.webots.actions

 	module

 	
 scenic.simulators.webots.guideways

 	module

 	
 scenic.simulators.webots.guideways.interface

 	module

 	
 scenic.simulators.webots.guideways.intersection

 	module

 	
 scenic.simulators.webots.guideways.model

 	module

 	
 scenic.simulators.webots.model

 	module

 	
 scenic.simulators.webots.road

 	module

 	
 scenic.simulators.webots.road.car_models

 	module

 	
 scenic.simulators.webots.road.interface

 	module

 	
 scenic.simulators.webots.road.model

 	module

 	
 scenic.simulators.webots.road.world

 	module

 	
 scenic.simulators.webots.simulator

 	module

 	
 scenic.simulators.webots.utils

 	module

 	
 scenic.simulators.webots.WBTLexer

 	module

 	
 scenic.simulators.webots.WBTParser

 	module

 	
 scenic.simulators.webots.WBTVisitor

 	module

 	
 scenic.simulators.webots.world_parser

 	module

 	
 scenic.simulators.xplane

 	module

 	
 scenic.simulators.xplane.model

 	module

 	
 scenic.syntax

 	module

 	
 scenic.syntax.ast

 	module

 	
 scenic.syntax.compiler

 	module

 	
 scenic.syntax.parser

 	module

 	
 scenic.syntax.pygment

 	module

 	
 scenic.syntax.relations

 	module

 	
 scenic.syntax.translator

 	module

 	
 scenic.syntax.veneer

 	module

 	ScenicError

 	ScenicGrammarLexer (class in scenic.syntax.pygment)

 	ScenicLexer (class in scenic.syntax.pygment)

 	ScenicParseError

 	ScenicPropertyLexer (class in scenic.syntax.pygment)

 	ScenicRequirementLexer (class in scenic.syntax.pygment)

 	ScenicSnippetLexer (class in scenic.syntax.pygment)

 	ScenicSpecifierLexer (class in scenic.syntax.pygment)

 	ScenicStyle (class in scenic.syntax.pygment)

 	ScenicSyntaxError

 	scenicToJSON() (in module scenic.core.serialization)

 	scenicToSchematicCoords() (Workspace method), [1]

 	scenicToWebotsPosition() (in module scenic.simulators.webots.road.interface)

 	scenicToWebotsRotation() (in module scenic.simulators.webots.road.interface)

 	scheduleForAgents() (Simulation method)

 	sectionAt() (Lane method)

 	(Road method)

 	sections (Road attribute)

 	SectorRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	SerializationError

 	Serializer (class in scenic.core.serialization)

 	serializeValue() (Distribution method)

 	SetBrakeAction (class in scenic.domains.driving.actions)

 	setDebuggingOptions() (in module scenic)

 	(in module scenic.core.errors)

 	SetHandBrakeAction (class in scenic.domains.driving.actions)

 	setLocalWorld() (in module scenic.simulators.webots.road.world)

 	SetPositionAction (class in scenic.domains.driving.actions)

 	SetReverseAction (class in scenic.domains.driving.actions)

 	SetSpeedAction (class in scenic.domains.driving.actions)

 	SetSteerAction (class in scenic.domains.driving.actions)

 	SetThrottleAction (class in scenic.domains.driving.actions)

 	SetTrafficLightAction (class in scenic.simulators.carla.actions)

 	setup() (Simulation method)

 	SetVehicleLightStateAction (class in scenic.simulators.carla.actions)

 	SetVelocityAction (class in scenic.domains.driving.actions)

 	SetWalkingDirectionAction (class in scenic.domains.driving.actions)

 	SetWalkingSpeedAction (class in scenic.domains.driving.actions)

 	Shape (class in scenic.core.shapes)

 	(class in scenic.syntax.veneer)

 	shiftedBy() (LaneSection method)

 	shiftLanes() (Road method)

 	Shoulder (class in scenic.domains.driving.roads)

 	shoulder (in module scenic.domains.driving.model)

 	(LaneGroup property)

 	shoulders (Network attribute)

 	show() (Network method)

 	show2D() (Scene method)

 	(Workspace method), [1]

 	show3D() (Scene method)

 	(Workspace method), [1]

 	showInternalBacktrace (in module scenic.core.errors)

 	Sidewalk (class in scenic.domains.driving.roads)

 	sidewalk (in module scenic.domains.driving.model)

 	(LaneGroup property)

 	sidewalkRegion (Road attribute)

 	sidewalks (Network attribute)

 	(Road attribute)

 	Signal (class in scenic.domains.driving.roads)

 	(class in scenic.formats.opendrive.xodr_parser)

 	signedDistanceTo() (PolylineRegion method), [1]

 	simulate() (Simulator method)

 	Simulation (class in scenic.core.simulators)

 	simulation() (in module scenic.syntax.veneer)

 	SimulationCreationError

 	simulationFromBytes() (Scenario method)

 	SimulationResult (class in scenic.core.simulators)

 	simulationTerminationCondition (TerminationType attribute)

 	simulationToBytes() (Scenario method)

 	Simulator (class in scenic.core.simulators)

 	SimulatorInterfaceWarning

 	SliceDistribution (class in scenic.core.distributions)

 	slowerLane (LaneSection property)

 	sortedRequirements() (WeightedAcceptanceChecker method)

 	Specifier (class in scenic.core.specifiers)

 	SpecifierError

 	speedLimit (NetworkElement attribute)

 	sphericalCoordinates() (Vector method), [1]

 	SpheroidRegion (class in scenic.core.regions)

 	(class in scenic.syntax.veneer)

 	SpheroidShape (class in scenic.core.shapes)

 	(class in scenic.syntax.veneer)

 	StarredDistribution (class in scenic.core.distributions)

 	start (PolylineRegion property), [1]

 	startDynamicSimulation() (Object method), [1]

 	startLane (Maneuver attribute)

 	SteeringAction (class in scenic.domains.driving.actions)

 	Steers (class in scenic.domains.driving.actions)

 	step() (Simulation method)

 	storeScenarioStateIn() (in module scenic.syntax.translator)

 	STRAIGHT (ManeuverType attribute)

 	StuckBehaviorWarning

 	stuckBehaviorWarningTimeout (in module scenic.core.dynamics)

 	supportInterval() (Distribution method)

 	(in module scenic.core.distributions)

 	surface (Object property), [1]

 	SurfaceCollisionTrimesh (class in scenic.core.regions)

T

 	
 	tableModels (in module scenic.simulators.carla.blueprints)

 	tags (NetworkElement attribute)

 	tangent (EdgeData attribute)

 	Target (class in scenic.syntax.parser)

 	temporal requirement

 	terminate_simulation_when() (in module scenic.syntax.veneer)

 	terminate_when() (in module scenic.syntax.veneer)

 	terminatedByBehavior (TerminationType attribute)

 	terminatedByMonitor (TerminationType attribute)

 	TerminationType (class in scenic.core.simulators)

 	terminator (Modifier attribute)

 	Terrain (class in scenic.simulators.webots.model)

 	timeLimit (TerminationType attribute)

 	to_points() (Curve method)

 	toDistribution() (in module scenic.core.distributions)

 	toHeading() (in module scenic.core.type_support)

 	toLazyValue() (in module scenic.core.lazy_eval)

 	tolerance (Network attribute)

 	toOrientation() (in module scenic.core.type_support)

 	Top (class in scenic.syntax.ast)

 	Top() (in module scenic.syntax.veneer)

 	TopBackLeft (class in scenic.syntax.ast)

 	TopBackLeft() (in module scenic.syntax.veneer)

 	TopBackRight (class in scenic.syntax.ast)

 	TopBackRight() (in module scenic.syntax.veneer)

 	
 	TopFrontLeft (class in scenic.syntax.ast)

 	TopFrontLeft() (in module scenic.syntax.veneer)

 	TopFrontRight (class in scenic.syntax.ast)

 	TopFrontRight() (in module scenic.syntax.veneer)

 	topLevelNamespace() (in module scenic.syntax.translator)

 	topSurface (Object property), [1]

 	toScalar() (in module scenic.core.type_support)

 	toType() (in module scenic.core.type_support)

 	toTypes() (in module scenic.core.type_support)

 	toVector() (in module scenic.core.type_support)

 	trafficwarningModels (in module scenic.simulators.carla.blueprints)

 	Transformer (class in scenic.syntax.compiler)

 	trashModels (in module scenic.simulators.carla.blueprints)

 	triangulatePolygon() (in module scenic.core.geometry)

 	TriangulationError

 	truckModels (in module scenic.simulators.carla.blueprints)

 	TruncatedNormal (class in scenic.core.distributions)

 	(class in scenic.syntax.veneer)

 	TryInterrupt (class in scenic.syntax.ast)

 	TupleDistribution (class in scenic.core.distributions)

 	TurnBehavior() (in module scenic.domains.driving.behaviors)

 	type (Maneuver attribute)

 	(Signal attribute)

 	TypecheckedDistribution (class in scenic.core.type_support)

 	TypeChecker (class in scenic.core.type_support)

 	TypeEqualityChecker (class in scenic.core.type_support)

U

 	
 	U_TURN (ManeuverType attribute)

 	uid (NetworkElement attribute)

 	UnaryProposition (class in scenic.core.propositions)

 	underlyingFunction() (in module scenic.core.distributions)

 	underlyingType() (in module scenic.core.type_support)

 	unfreezeTrafficLights() (in module scenic.simulators.carla.model)

 	unifierOfTypes() (in module scenic.core.type_support)

 	Uniform() (in module scenic.core.distributions)

 	(in module scenic.syntax.veneer)

 	uniformColor() (Color static method)

 	
 	UniformDistribution (class in scenic.core.distributions)

 	uniformPointIn() (Region static method), [1]

 	uniformPointInner() (Region method), [1]

 	unifyingType() (in module scenic.core.type_support)

 	unifyMesh() (in module scenic.core.utils)

 	union() (MeshVolumeRegion method), [1]

 	(PolygonalFootprintRegion method)

 	(Region method), [1]

 	unpacksDistributions() (in module scenic.core.distributions)

 	updateMetrics() (WeightedAcceptanceChecker method)

 	updateObjects() (Simulation method)

V

 	
 	value (Modifier attribute)

 	valueFor() (ExternalSampler method)

 	valueInContext() (in module scenic.core.lazy_eval)

 	valuesHaveDiverged() (Simulation method)

 	Vector (class in scenic.core.vectors)

 	(class in scenic.syntax.veneer)

 	vector() (in module scenic.simulators.carla.misc)

 	VectorDistribution (class in scenic.core.vectors)

 	vectorDistributionMethod() (in module scenic.core.vectors)

 	VectorField (class in scenic.core.vectors)

 	(class in scenic.syntax.veneer)

 	Vectorlike (in module scenic.domains.driving.roads)

 	VectorMethodDistribution (class in scenic.core.vectors)

 	vectorOperator() (in module scenic.core.vectors)

 	VectorOperatorDistribution (class in scenic.core.vectors)

 	Vehicle (class in scenic.domains.driving.model)

 	(class in scenic.simulators.carla.model)

 	VehicleType (class in scenic.domains.driving.roads)

 	vehicleTypes (NetworkElement attribute)

 	vendingMachineModels (in module scenic.simulators.carla.blueprints)

 	verbosePrint() (in module scenic.syntax.veneer)

 	verbosityLevel (in module scenic.core.errors)

 	VerifaiDiscreteRange (class in scenic.core.external_params)

 	(class in scenic.syntax.veneer)

 	
 	VerifaiOptions (class in scenic.core.external_params)

 	(class in scenic.syntax.veneer)

 	VerifaiParameter (class in scenic.core.external_params)

 	(class in scenic.syntax.veneer)

 	VerifaiRange (class in scenic.core.external_params)

 	(class in scenic.syntax.veneer)

 	VerifaiSampler (class in scenic.core.external_params)

 	ViewRegion (class in scenic.core.regions)

 	violationMsg (SamplingRequirement property)

 	visibilityBound() (in module scenic.core.pruning)

 	visible region

 	Visible() (in module scenic.syntax.veneer)

 	VisibleFrom() (in module scenic.syntax.veneer)

 	VisibleFromOp() (in module scenic.syntax.veneer)

 	visibleRegion (Object property), [1]

 	(Object2D property)

 	(OrientedPoint property), [1]

 	(OrientedPoint2D property)

 	(Point property), [1]

 	(Point2D property)

 	VisibleSpec() (in module scenic.syntax.veneer)

 	voxelized() (MeshVolumeRegion method), [1]

 	VoxelRegion (class in scenic.core.regions)

W

 	
 	walkerModels (in module scenic.simulators.carla.blueprints)

 	WalkForwardBehavior() (in module scenic.domains.driving.behaviors)

 	WalkingAction (class in scenic.domains.driving.actions)

 	Walks (class in scenic.domains.driving.actions)

 	WebotsCoordinateSystem (class in scenic.simulators.webots.utils)

 	WebotsObject (class in scenic.simulators.webots.model)

 	WebotsSimulation (class in scenic.simulators.webots.simulator)

 	WebotsSimulator (class in scenic.simulators.webots.simulator)

 	webotsToScenicPosition() (in module scenic.simulators.webots.road.interface)

 	webotsToScenicRotation() (in module scenic.simulators.webots.road.interface)

 	WeightedAcceptanceChecker (class in scenic.core.sample_checking)

 	With() (in module scenic.syntax.veneer)

 	withinDistanceToAnyCars() (in module scenic.domains.driving.model)

 	
 	withinDistanceToAnyObjs() (in module scenic.domains.driving.model)

 	withinDistanceToObjsInLane() (in module scenic.domains.driving.model)

 	withPrior() (VerifaiParameter static method), [1]

 	workspace

 	Workspace (class in scenic.core.workspaces)

 	(class in scenic.syntax.ast)

 	(class in scenic.syntax.veneer)

 	workspace() (in module scenic.syntax.veneer)

 	world model

 	worldPath (in module scenic.simulators.webots.road.world)

 	WriteFileAction (class in scenic.simulators.webots.actions)

 	writeReplayHeader() (Serializer method)

 	writeScene() (Serializer method)

 	writeValue() (Serializer method)

Y

 	
 	yaw (Orientation property), [1]

Z

 	
 	zoomAround() (Workspace method), [1]

Glossary

	action
	A primitive operation executed by an agent during a single step of a dynamic
simulation. For example, a car might take an action which sets its throttle, or
turns on its headlights. Actions are defined by the simulator interfaces (or
abstract domains like scenic.domains.driving) as subclasses of
Action.

	agent
	A Scenic Object which has a dynamic behavior (set as its behavior property).

	behavior
	dynamic behavior
	A function defining the behavior of an agent during a simulation.
The function runs in parallel with the simulation, taking actions at each time step.
See our tutorial on Dynamic Scenarios for examples.

	container
	The region specified as the regionContainedIn property of an Object, or the
entire workspace if it is None [https://docs.python.org/3/library/constants.html#None] (the default). A built-in requirement
enforces that objects are completely contained in their containers: so by default
all objects fit into the workspace, and particular kinds of objects can define
more stringent requirements by overriding regionContainedIn (e.g. making cars
be on roads by default).

	dynamic properties
	Properties of Scenic objects which are updated at each time step of a dynamic
simulation. The built-in properties representing positions, orientations,
velocities, etc. are all dynamic (see Object). See the source code of
scenic.domains.driving.model.DrivingObject for an example of defining a
dynamic property.

	external parameters
	Values which are determined by an external tool instead of Scenic’s own sampler.
These allow using optimization or other techniques to explore parameters of
Scenic scenarios beyond simple random sampling. For how to define external
parameters or interface to new external samplers, see
scenic.core.external_params.

	footprint
	The infinite extrusion of a 2D Region in the positive and negative Z directions.
Testing containment of an Object in a 2D region automatically uses its footprint, so that the object is considered contained if and only if its projection into the plane of the region is contained in the region.
Footprints are represented internally by instances of the PolygonalFootprintRegion class, and can be accessed using the footprint attribute.

	global parameters
	Parameters of a scene like weather or time of day which are not associated with any object.
These are defined using the param statement, and can be overridden from the command line with the --param option.

	modular scenario
	A scenario defined using the scenario statement (rather than simply being the content of a Scenic file).
Such scenarios can take arguments, be instantiated multiple times, and be composed with other scenarios: see Composing Scenarios.

	monitor
	A function which runs in parallel with a simulation, rejecting or terminating the simulation if conditions of interest are met (using the require and terminate statements).
Monitors use similar syntax to dynamic behaviors, except that they are not associated with a specific Object and do not take actions (only using wait to advance time).

	preferred orientation
	A Vector Field set as the orientation attribute of a Region, indicating that objects placed within that region should be oriented to align along that vector field unless otherwise specified.
For example, the road region provided by the Driving Domain has as its preferred orientation the roadDirection vector field, so that vehicles positioned using the specifier on road will be facing the nominal traffic direction at their position by default (but an explicit facing H specifier will override it).

	temporal requirement
	A require statement using one or more temporal operators (always, until, etc.) to impose a requirement over an entire simulation rather than just the generated scene.
For example, require always X requires not only that the condition X be true in any scenes sampled from the scenario, but that it remain true at every time step of simulations run from those scenes.

	visible region
	The Region which is “visible” from a given Object. See the Visibility System reference for more details.

	workspace
	The region of space in which a scenario takes place.
Workspaces are represented as instances of the Workspace class, which extends Region with additional methods for rendering schematics of scenes for debugging.
The default workspace contains all space, so it puts no restrictions on the locations of objects.
A world model can define a more specific workspace to exclude space occupied by fixed objects in the simulated world which aren’t otherwise known to Scenic (e.g. buildings in GTA V or CARLA).

	world model
	A Scenic library defining classes, regions, actions, helper functions, etc. for use by scenarios targeting a particular simulator or application domain.
For example, the world model for the Driving Domain, scenic.domains.driving.model, defines classes for vehicles, actions for steering, and regions for different parts of the road network.
In the line new Car in intersection, only the new keyword and in specifier are built into Scenic: the class Car and the region intersection are defined by the world model.
A world model can be used through the model statement, or simply by importing it like any other Scenic module.

See also

Defining a World Model gives further examples and details on how to write a world model.

Porting to Scenic 3

As described in What’s New in Scenic, Scenic 2 programs are not compatible with Scenic 3 due to a few changes in syntax and semantics.
See that page for a complete list of backwards-incompatibilities and explanations of how you can change your code.
This page describes two tools that assist in the migration process: the Scenic 2-to-3 converter and 2D compatibility mode.
The former converts a Scenic 2 program into a syntactically-valid Scenic 3 program; the latter is a compiler option that changes the semantics of several Scenic constructs so that they behave as in Scenic 2.
The goal of these tools is that applying them together to a Scenic 2 program makes it possible to run the program under Scenic 3 and get largely the same behavior.

Note

2D compatibility mode does not exactly emulate the behavior of Scenic 2: for example, it does not disable fixes for bugs.
It is intended as a temporary measure to help easily run old Scenic programs without fully porting them to 3D geometry.
If it is essential for your application that you can reproduce the exact behavior of your Scenic 2 scenarios, you should not upgrade to Scenic 3: old releases of Scenic are always available on PyPI and in our GitHub repository.
For most use cases, however, upgrading to Scenic 3 and using 2D mode until you can digest our documentation and port your scenarios will work just fine.

Scenic 2-to-3 Converter

This tool reads a Scenic 2 program and adjusts its syntax so that it parses under Scenic 3.
It requires the Scenic 2 parser in order to work, so it is not included in Scenic 3: you must either use the tool before upgrading, or temporarily check out the 2.x branch of our repository to get the latest Scenic 2 release (you can switch back to the main branch afterward).

To run the tool and see the list of options it supports, run this command in the environment where you have Scenic installed:

$ python -m scenic.syntax.scenic2to3 --help

Note that due to the nature of Scenic 2 parsing, the tool must actually execute your Scenic 2 program, so you will have to ensure your program runs before you can convert it.

2D Compatibility Mode

Running the scenic command with the --2d option enables 2D compatibility mode.
This mode changes several aspects of Scenic’s semantics in order to more closely match the historical behavior of Scenic 2.
Specifically:

	The baseOffset and contactTolerance properties of Object are zeroed, so that the specifier on region places the position of the object within the region, as it did in Scenic 2 (vs. the Scenic 3 behavior of placing the object above that position so that the base of the object lies on the region).

	The requireVisible property of Object is true by default, as it was in Scenic 2.

	The occluding property of Object is false by default, so that objects do not occlude each other for the purpose of visibility checks (as Scenic 2 did not account for occlusion).

	The visible regions of Point, OrientedPoint, and Object are 2D regions as in Scenic 2 (either a CircularRegion or a SectorRegion).

	Default values for heading in class definitions are replaced with default values for parentOrientation.

	The specifier with heading X is replaced with facing X.

	The visible and not visible will behave as they did in Scenic 2, requiring the center of the object to be visible rather than any part of the object. More precisely, visible will specify position to be uniformly random in the observing object’s visible region and not visible will specify position to be uniformly random in the difference of the workspace and the observing object’s visible region.

Note that despite these changes, Scenic will still use 3D geometry internally.
For example, if you write ego = new Object at (1, 2) the value of ego.position will be the 3D vector (1, 2, 0).

 _images/Operator_Figure.png
1 @ 2 relative to ego

_images/Specifier_Figure.png
Point beyond P by -2 @ 1

| |

Object behind P by 2

Point offset by 1 @ 2

nav.xhtml

 Table of Contents

 		
 Welcome to Scenic’s documentation!

 		
 Getting Started with Scenic

 		
 Installation

 		
 Trying Some Examples

 		
 Learning More

 		
 Notes on Installing Scenic

 		
 All Platforms

 		
 Missing Python Version

 		
 “setup.py” not found

 		
 Dependency Conflicts

 		
 Cannot Find Scenic

 		
 Scene Schematics Don’t Appear (2D)

 		
 Missing SDL

 		
 Using a Local Scenic Version with VerifAI

 		
 MacOS

 		
 Installing python-fcl on Apple silicon

 		
 Windows

 		
 Using WSL

 		
 Problems building Shapely

 		
 What’s New in Scenic

 		
 Scenic 3.x

 		
 Scenic 3.0.0

 		
 Scenic 2.x

 		
 Scenic 2.1.0

 		
 Scenic 2.0.0

 		
 Scenic Fundamentals

 		
 Objects, Geometry, and Specifiers

 		
 Randomness and Regions

 		
 Orientations in Depth

 		
 Points, Oriented Points, and Classes

 		
 Models and Simulators

 		
 Specifiers in Depth

 		
 Why Specifiers?

 		
 Dependencies and Modifying Specifiers

 		
 Specifier Priorities

 		
 Declarative Hard and Soft Constraints

 		
 Mutations

 		
 A Worked Example

 		
 Further Reading

 		
 Dynamic Scenarios

 		
 Agents, Actions, and Behaviors

 		
 Interrupts

 		
 Stateful Behaviors

 		
 Requirements and Monitors

 		
 Preconditions and Invariants

 		
 Terminating the Scenario

 		
 Trying Some Examples

 		
 Further Reading

 		
 Composing Scenarios

 		
 Modular Scenarios

 		
 Parallel and Sequential Composition

 		
 Interrupts, Overriding, and Initial Scenarios

 		
 Random Selection of Scenarios

 		
 Syntax Guide

 		
 Primitive Data Types

 		
 Distributions

 		
 Statements

 		
 Compound Statements

 		
 Simple Statements

 		
 Dynamic Statements

 		
 Objects

 		
 Specifiers

 		
 Operators

 		
 Built-in Functions

 		
 Language Reference

 		
 General Notes on Syntax

 		
 Keywords

 		
 Data Types Reference

 		
 Boolean

 		
 Scalar

 		
 Vector

 		
 Heading

 		
 Orientation

 		
 Vector Field

 		
 Region

 		
 Shape

 		
 Region Types Reference

 		
 Abstract Regions

 		
 Point Sets and Lines

 		
 2D Regions

 		
 3D Regions

 		
 Niche Regions

 		
 Distributions Reference

 		
 Built-in Distributions

 		
 Defining Custom Distributions

 		
 Statements Reference

 		
 Compound Statements

 		
 Simple Statements

 		
 Dynamic Statements

 		
 Objects and Classes Reference

 		
 Instance Creation

 		
 Built-in Classes

 		
 Specifiers Reference

 		
 General Specifiers

 		
 Position Specifiers

 		
 Orientation Specifiers

 		
 Specifier Resolution

 		
 Operators Reference

 		
 Scalar Operators

 		
 Boolean Operators

 		
 Orientation Operators

 		
 Vector Operators

 		
 Region Operators

 		
 OrientedPoint Operators

 		
 Temporal Operators

 		
 Built-in Functions Reference

 		
 Miscellaneous Python Functions

 		
 filter

 		
 resample

 		
 localPath

 		
 verbosePrint

 		
 simulation

 		
 Visibility System

 		
 Visible Regions

 		
 Visibility Checks

 		
 Scene Generation

 		
 Execution of Dynamic Scenarios

 		
 Command-Line Options

 		
 General Scenario Control

 		
 Dynamic Simulations

 		
 Debugging

 		
 Using Scenic Programmatically

 		
 Compiling Scenarios and Generating Scenes

 		
 scenarioFromFile()

 		
 scenarioFromString()

 		
 Running Dynamic Simulations

 		
 Storing Scenes/Simulations for Later Use

 		
 Developing Scenic

 		
 Getting Started

 		
 Running the Test Suite

 		
 Debugging

 		
 setDebuggingOptions()

 		
 Building the Documentation

 		
 Scenic Internals

 		
 How Scenic is Compiled

 		
 Phase 1: Scenic Parser

 		
 Phase 2: Scenic Compiler

 		
 Phase 3: AST Compilation

 		
 Phase 4: Python Execution

 		
 Phase 5: Scenario Construction

 		
 Sampling and Executing Scenarios

 		
 Guide to the Scenic Parser & Compiler

 		
 Architecture & Terminology

 		
 Tutorial: Adding New Syntax

 		
 Scenic Grammar

 		
 Scenic Modules

 		
 scenic.core

 		
 scenic.domains

 		
 scenic.formats

 		
 scenic.simulators

 		
 scenic.syntax

 		
 Scenic Libraries

 		
 Simulator Interfaces

 		
 Abstract Domains

 		
 Driving Domain

 		
 Supported Simulators

 		
 Currently Supported

 		
 Built-in Newtonian Simulator

 		
 CARLA

 		
 Grand Theft Auto V

 		
 Webots

 		
 X-Plane

 		
 Deprecated

 		
 LGSVL

 		
 Interfacing to New Simulators

 		
 Using the Scenic API

 		
 Defining a World Model

 		
 Publications Using Scenic

 		
 Main Papers

 		
 Case Studies

 		
 Other Papers Building on Scenic

 		
 Credits

_images/btb3.jpg

_images/btb4.jpg

_images/badlyParkedCar2.png

_images/btb1.jpg

_images/ego_box.jpg

_images/narrowGoal.jpg

_images/cone_plane_chair.jpg

_images/crossing.png

_images/narrowGoalWebots.jpg

_images/on_chair.jpg

_images/parser_architecture.png
Scenic Scenic AST
Grammar Nodes
(scenic.gram) (ast.py)

Parser Generator
(pegen)

Scenic Source Scenic Parser Scenic AST Scenic Qompiler Python AST
(parser.py) (compiler.py)

_images/platoon3.jpg

_images/platoon4.jpg

_images/pedestrian.png

_images/platoon2.jpg

_images/simple_random_2.jpg

_images/simple_random_3.jpg

_images/scenic-sim.png
state
h
—
—

actions

_images/simple_random_1.jpg

_images/spheres_in_region.jpg

_images/vacuumSimple.jpg

_images/simplest2.jpg

_static/file.png

_static/minus.png

_static/plus.png

