
Scenic

Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia

May 20, 2020

CONTENTS

1 Table of Contents 3

2 Indices and Tables 83

3 License 85

Bibliography 87

Python Module Index 89

Index 91

i

ii

Scenic

Scenic is a domain-specific probabilistic programming language for modeling the environments of cyber-physical
systems like robots and autonomous cars. A Scenic program defines a distribution over scenes, configurations of
physical objects and agents; sampling from this distribution yields concrete scenes which can be simulated to produce
training or testing data.

Scenic was designed and implemented by Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Al-
berto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. For a description of the language and some of its applications,
see our PLDI 2019 paper; a more in-depth discussion is in Chapters 5 and 8 of this thesis.

If you have any problems using Scenic, please submit an issue to our GitHub repository or contact Daniel at dfre-
mont@ucsc.edu.

CONTENTS 1

https://arxiv.org/abs/1809.09310
https://people.ucsc.edu/~dfremont/papers/thesis.pdf
https://github.com/BerkeleyLearnVerify/Scenic
mailto:dfremont@ucsc.edu
mailto:dfremont@ucsc.edu

Scenic

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Getting Started with Scenic

1.1.1 Installation

Scenic requires Python 3.6 or newer. You can install Scenic from PyPI by simply running:

pip install scenic

Alternatively, you can download or clone the Scenic repository, which contains examples we’ll use below. Install
Poetry and then run:

poetry install

This will install Scenic into your current virtual environment (or create a new one if needed). If you will be developing
Scenic, add the -E dev option when invoking Poetry.

Either of the options above should install all of the dependencies which are required to run Scenic. Scenarios using
the scenic.simulators.webots.guideways model also require the pyproj package, and will prompt you
if you don’t have it.

Note: For Windows, we recommend using bashonwindows (the Windows subsystem for Linux) on Windows 10.
Instructions for installing poetry on bashonwindows can be found here.

If you do not use bashonwindows, note that in the past, the shapely package did not install properly on Windows.
If you encounter this issue, try installing it manually following the instructions here.

Note: You may also want to install the Polygon3 package to get faster and more robust polygon triangulation.
However, this package is based on the GPC library, which is only free for non-commercial use.

3

https://github.com/BerkeleyLearnVerify/Scenic
https://python-poetry.org/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://python-poetry.org/docs/#osx-linux-bashonwindows-install-instructions
https://github.com/Toblerity/Shapely#built-distributions
http://www.cs.man.ac.uk/~toby/gpc/

Scenic

1.1.2 Trying Some Examples

The Scenic repository contains many example scenarios, found in the examples directory. They are organized by
the simulator they are written for, e.g. GTA (Grand Theft Auto V) or Webots. Each simulator has a specialized Scenic
interface which requires additional setup (see Supported Simulators); however, for convenience Scenic provides an
easy way to visualize scenarios without running a simulator. Simply run the scenic module as a script, giving a path
to a Scenic file:

python -m scenic examples/gta/badlyParkedCar2.scenic

This will compile the Scenic program and sample from it, displaying a schematic of the resulting scene. Since this is
the badly-parked car example from our GTA case study, you should get something like this:

Here the circled rectangle is the ego car; its view cone extends to the right, where we see another car parked rather
poorly at the side of the road (the white lines are curbs). If you close the window, Scenic will sample another scene
from the same scenario and display it. This will repeat until you kill the generator (Control-c in Linux; right-
clicking on the Dock icon and selecting Quit on OS X).

Scenarios for the other simulators can be viewed in the same way. Here are a few for Webots:

python -m scenic examples/webots/mars/narrowGoal.scenic
python -m scenic examples/webots/road/crossing.scenic
python -m scenic examples/webots/guideways/uberCrash.scenic

4 Chapter 1. Table of Contents

Scenic

1.1.3 Learning More

Depending on what you’d like to do with Scenic, different parts of the documentation may be helpful:

• If you want to learn how to write Scenic programs, see the tutorial.

• If you want to use Scenic with a simulator, see the Supported Simulators page (which also describes how to
interface Scenic to a new simulator, if the one you want isn’t listed).

• If you want to add a feature to the language or otherwise need to understand Scenic’s inner workings, see our
page on Scenic Internals.

1.2 Scenic Tutorial

This tutorial motivates and illustrates the main features of Scenic, focusing on aspects of the language that make it
particularly well-suited for describing geometric scenarios. Throughout, we use examples from our case study using
Scenic to generate traffic scenes in GTA V to test and train autonomous cars [F19].

1.2. Scenic Tutorial 5

Scenic

1.2.1 Classes, Objects, and Geometry

To start, suppose we want scenes of one car viewed from another on the road. We can write this very concisely in
Scenic:

1 from scenic.simulators.gta.model import Car
2 ego = Car
3 Car

Line 1 imports the GTA world model, a Scenic library defining everything specific to our GTA interface. This includes
the definition of the class Car, as well as information about the road geometry that we’ll see later. We’ll suppress this
import statement in subsequent examples.

Line 2 then creates a Car and assigns it to the special variable ego specifying the ego object. This is the reference
point for the scenario: our simulator interfaces typically use it as the viewpoint for rendering images, and many of
Scenic’s geometric operators use ego by default when a position is left implicit (we’ll see an example momentarily).

Finally, line 3 creates a second Car. Compiling this scenario with Scenic, sampling a scene from it, and importing the
scene into GTA V yields an image like this:

Fig. 1: A scene sampled from the simple car scenario, rendered in GTA V.

Note that both the ego car (where the camera is located) and the second car are both located on the road and facing
along it, despite the fact that the code above does not specify the position or any other properties of the two cars. This
is because in Scenic, any unspecified properties take on the default values inherited from the object’s class. Slightly
simplified, the definition of the class Car begins:

1 class Car:
2 position: Point on road
3 heading: roadDirection at self.position
4 width: self.model.width
5 height: self.model.height
6 model: CarModel.defaultModel() # a distribution over several car models

Here road is a region, one of Scenic’s primitive types, defined in the gta model to specify which points in the
workspace are on a road. Similarly, roadDirection is a vector field specifying the nominal traffic direction at

6 Chapter 1. Table of Contents

Scenic

such points. The operator F at X simply gets the direction of the field F at point X, so line 3 sets a Car’s default
heading to be the road direction at its position. The default position, in turn, is a Point on road (we will
explain this syntax shortly), which means a uniformly random point on the road. Thus, in our simple scenario above
both cars will be placed on the road facing a reasonable direction, without our having to specify this explicitly.

We can of course override the class-provided defaults and define the position of an object more specifically. For
example,

1 Car offset by (-10, 10) @ (20, 40)

creates a car that is 20–40 meters ahead of the camera (the ego), and up to 10 meters to the left or right, while still
using the default heading (namely, being aligned with the road). Here the interval notation (X, Y) creates a uniform
distribution on the interval, and X @ Y creates a vector from xy coordinates (as in Smalltalk [GR83]).

1.2.2 Local Coordinate Systems

Scenic provides a number of constructs for working with local coordinate systems, which are often helpful when
building a scene incrementally out of component parts. Above, we saw how offset by could be used to position
an object in the coordinate system of the ego, for instance placing a car a certain distance away from the camera1.

It is equally easy in Scenic to use local coordinate systems around other objects or even arbitrary points. For example,
suppose we want to make the scenario above more realistic by not requiring the car to be exactly aligned with the road,
but to be within say 5°. We could write

1 Car offset by (-10, 10) @ (20, 40),
2 facing (-5, 5) deg

but this is not quite what we want, since this sets the orientation of the car in global coordinates. Thus the car will end
up facing within 5° of North, rather than within 5° of the road direction. Instead, we can use Scenic’s general operator
X relative to Y , which can interpret vectors and headings as being in a variety of local coordinate systems:

If instead we want the heading to be relative to that of the ego car, so that the two cars are (roughly) aligned, we can
simply write (-5, 5) deg relative to ego.

Notice that since roadDirection is a vector field, it defines a different local coordinate system at each point in
space: at different points on the map, roads point different directions! Thus an expression like 15 deg relative
to field does not define a unique heading. The example above works because Scenic knows that the expression
(-5, 5) deg relative to roadDirection depends on a reference position, and automatically uses the
position of the Car being defined. This is a feature of Scenic’s system of specifiers, which we explain next.

1.2.3 Readable, Flexible Specifiers

The syntax offset by X and facing Y for specifying positions and orientations may seem unusual compared
to typical constructors in object-oriented languages. There are two reasons why Scenic uses this kind of syntax: first,
readability. The second is more subtle and based on the fact that in natural language there are many ways to specify
positions and other properties, some of which interact with each other. Consider the following ways one might describe
the location of an object:

1. “is at position X” (an absolute position)

2. “is just left of position X” (a position based on orientation)

3. “is 3 m West of the taxi” (a relative position)

4. “is 3 m left of the taxi” (a local coordinate system)
1 In fact, ego is a variable and can be reassigned, so we can set ego to one object, build a part of the scene around it, then reassign ego and

build another part of the scene.

1.2. Scenic Tutorial 7

Scenic

5. “is one lane left of the taxi” (another local coordinate system)

6. “appears to be 10 m behind the taxi” (relative to the line of sight)

7. “is 10 m along the road from the taxi” (following a potentially-curving vector field)

These are all fundamentally different from each other: for example, (4) and (5) differ if the taxi is not parallel to the
lane.

Furthermore, these specifications combine other properties of the object in different ways: to place the object “just left
of” a position, we must first know the object’s heading; whereas if we wanted to face the object “towards” a location,
we must instead know its position. There can be chains of such dependencies: for example, the description “the
car is 0.5 m left of the curb” means that the right edge of the car is 0.5 m away from the curb, not its center, which is
what the car’s position property stores. So the car’s position depends on its width, which in turn depends on
its model. In a typical object-oriented language, these dependencies might be handled by first computing values for
position and all other properties, then passing them to a constructor. For “a car is 0.5 m left of the curb” we might
write something like:

hypothetical Python-like language
model = Car.defaultModelDistribution.sample()
pos = curb.offsetLeft(0.5 + model.width / 2)
car = Car(pos, model=model)

Notice how model must be used twice, because model determines both the model of the car and (indirectly) its
position. This is inelegant, and breaks encapsulation because the default model distribution is used outside of the Car
constructor. The latter problem could be fixed by having a specialized constructor or factory function:

hypothetical Python-like language
car = CarLeftOfBy(curb, 0.5)

However, such functions would proliferate since we would need to handle all possible combinations of ways to specify
different properties (e.g. do we want to require a specific model? Are we overriding the width provided by the model
for this specific car?). Instead of having a multitude of such monolithic constructors, Scenic factors the definition of
objects into potentially-interacting but syntactically-indepdendent parts:

1 Car left of spot by 0.5,
2 with model CarModel.models['BUS']

Here left of X by D and with model M are specifiers which do not have an order, but which together specify
the properties of the car. Scenic works out the dependencies between properties (here, position is provided by
left of, which depends on width, whose default value depends on model) and evaluates them in the correct
order. To use the default model distribution we would simply omit line 2; keeping it affects the position of the car
appropriately without having to specify BUS more than once.

1.2.4 Specifying Multiple Properties Together

Recall that we defined the default position for a Car to be a Point on road: this is an example of another
specifier, on region, which specifies position to be a uniformly random point in the given region. This specifier
illustrates another feature of Scenic, namely that specifiers can specify multiple properties simultaneously. Consider
the following scenario, which creates a parked car given a region curb (also defined in the scenic.simulators.
gta.model library):

1 spot = OrientedPoint on visible curb
2 Car left of spot by 0.25

The function visible region returns the part of the region that is visible from the ego object. The specifier on
visible curb with then set position to be a uniformly random visible point on the curb. We create spot as an

8 Chapter 1. Table of Contents

Scenic

OrientedPoint, which is a built-in class that defines a local coordinate system by having both a position and
a heading. The on region specifier can also specify heading if the region has a preferred orientation (a vector
field) associated with it: in our example, curb is oriented by roadDirection. So spot is, in fact, a uniformly
random visible point on the curb, oriented along the road. That orientation then causes the Car to be placed 0.25 m
left of spot in spot’s local coordinate system, i.e. 0.25 m away from the curb, as desired.

In fact, Scenic makes it easy to elaborate this scenario without needing to alter the code above. Most simply, we could
specify a particular model or non-default distribution over models by just adding with model M to the definition
of the Car. More interestingly, we could produce a scenario for badly-parked cars by adding two lines:

1 spot = OrientedPoint on visible curb
2 badAngle = Uniform(1, -1) * (10, 20) deg
3 Car left of spot by 0.25,
4 facing badAngle relative to roadDirection

This will yield cars parked 10-20° off from the direction of the curb, as seen in the image below. This example
illustrates how specifiers greatly enhance Scenic’s flexibility and modularity.

Fig. 2: A scene sampled from the badly-parked car scenario, rendered in GTA V.

1.2.5 Declarative Hard and Soft Constraints

Notice that in the scenarios above we never explicitly ensured that two cars will not intersect each other. Despite this,
Scenic will never generate such scenes. This is because Scenic enforces several default requirements:

• All objects must be contained in the workspace, or a particular specified region. For example, we can define the
Car class so that all of its instances must be contained in the region road by default.

• Objects must not intersect each other (unless explicitly allowed).

• Objects must be visible from the ego object (so that they affect the rendered image; this requirement can also be
disabled, for example for dynamic scenarios).

Scenic also allows the user to define custom requirements checking arbitrary conditions built from various geometric
predicates. For example, the following scenario produces a car headed roughly towards the camera, while still facing

1.2. Scenic Tutorial 9

Scenic

the nominal road direction:

1 ego = Car on road
2 car2 = Car offset by (-10, 10) @ (20, 40), with viewAngle 30 deg
3 require car2 can see ego

Here we have used the X can see Y predicate, which in this case is checking that the ego car is inside the 30° view
cone of the second car.

Requirements, called observations in other probabilistic programming languages, are very convenient for defining
scenarios because they make it easy to restrict attention to particular cases of interest. Note how difficult it would be
to write the scenario above without the require statement: when defining the ego car, we would have to somehow
specify those positions where it is possible to put a roughly-oncoming car 20–40 meters ahead (for example, this is
not possible on a one-way road). Instead, we can simply place ego uniformly over all roads and let Scenic work
out how to condition the distribution so that the requirement is satisfied2. As this example illustrates, the ability to
declaratively impose constraints gives Scenic greater versatility than purely-generative formalisms. Requirements also
improve encapsulation by allowing us to restrict an existing scenario without altering it. For example:

1 import genericTaxiScenario # import another Scenic scenario
2 fifthAvenue = ... # extract a Region from a map here
3 require genericTaxiScenario.taxi on fifthAvenue

The constraints in our examples above are hard requirements which must always be satisfied. Scenic also allows
imposing soft requirements that need only be true with some minimum probability:

1 require[0.5] car2 can see ego # condition only needs to hold with prob. >= 0.5

Such requirements can be useful, for example, in ensuring adequate representation of a particular condition when
generating a training set: for instance, we could require that at least 90% of generated images have a car driving on
the right side of the road.

1.2.6 Mutations

A common testing paradigm is to randomly generate variations of existing tests. Scenic supports this paradigm by
providing syntax for performing mutations in a compositional manner, adding variety to a scenario without changing
its code. For example, given a complex scenario involving a taxi, we can add one additional line:

1 from bigScenario import taxi
2 mutate taxi

The mutate statement will add Gaussian noise to the position and heading properties of taxi, while still
enforcing all built-in and custom requirements. The standard deviation of the noise can be scaled by writing, for
example, mutate taxi by 2 (which adds twice as much noise), and in fact can be controlled separately for
position and heading (see scenic.core.object_types.Mutator).

2 On the other hand, Scenic may have to work hard to satisfy difficult constraints. Ultimately Scenic falls back on rejection sampling, which in the
worst case will run forever if the constraints are inconsistent (although we impose a limit on the number of iterations: see Scenario.generate).

10 Chapter 1. Table of Contents

Scenic

1.2.7 A Worked Example

We conclude with a larger example of a Scenic program which also illustrates the language’s utility across domains
and simulators. Specifically, we consider the problem of testing a motion planning algorithm for a Mars rover able to
climb over rocks. Such robots can have very complex dynamics, with the feasibility of a motion plan depending on
exact details of the robot’s hardware and the geometry of the terrain. We can use Scenic to write a scenario generating
challenging cases for a planner to solve in simulation.

We will write a scenario representing a rubble field of rocks and piples with a bottleneck between the rover and its goal
that forces the path planner to consider climbing over a rock. First, we import a small Scenic library for the Webots
robotics simulator (scenic.simulators.webots.mars.model) which defines the (empty) workspace and
several types of objects: the Rover itself, the Goal (represented by a flag), and debris classes Rock, BigRock, and
Pipe. Rock and BigRock have fixed sizes, and the rover can climb over them; Pipe cannot be climbed over, and
can represent a pipe of arbitrary length, controlled by the height property (which corresponds to Scenic’s y axis).

1 from scenic.simulators.webots.mars.model import *

Then we create the rover at a fixed position and the goal at a random position on the other side of the workspace:

2 ego = Rover at 0 @ -2
3 goal = Goal at (-2, 2) @ (2, 2.5)

Next we pick a position for the bottleneck, requiring it to lie roughly on the way from the robot to its goal, and place
a rock there.

4 bottleneck = OrientedPoint offset by (-1.5, 1.5) @ (0.5, 1.5),
5 facing (-30, 30) deg
6 require abs((angle to goal) - (angle to bottleneck)) <= 10 deg
7 BigRock at bottleneck

Note how we define bottleneck as an OrientedPoint, with a range of possible orientations: this is to set up
a local coordinate system for positioning the pipes making up the bottleneck. Specifically, we position two pipes
of varying lengths on either side of the bottleneck, with their ends far enough apart for the robot to be able to pass
between:

8 halfGapWidth = (1.2 * ego.width) / 2
9 leftEnd = OrientedPoint left of bottleneck by halfGapWidth,

10 facing (60, 120) deg relative to bottleneck
11 rightEnd = OrientedPoint right of bottleneck by halfGapWidth,
12 facing (-120, -60) deg relative to bottleneck
13 Pipe ahead of leftEnd, with height (1, 2)
14 Pipe ahead of rightEnd, with height (1, 2)

Finally, to make the scenario slightly more interesting, we add several additional obstacles, positioned either on the far
side of the bottleneck or anywhere at random (recalling that Scenic automatically ensures that no objects will overlap).

15 BigRock beyond bottleneck by (-0.5, 0.5) @ (0.5, 1)
16 BigRock beyond bottleneck by (-0.5, 0.5) @ (0.5, 1)
17 Pipe
18 Rock
19 Rock
20 Rock

This completes the scenario, which can also be found in the Scenic repository under examples/webots/mars/
narrowGoal.scenic. Several scenes generated from the scenario and visualized in Webots are shown below.

1.2. Scenic Tutorial 11

Scenic

Fig. 3: A scene sampled from the Mars rover scenario, rendered in Webots.

12 Chapter 1. Table of Contents

Scenic

1.2.8 Further Reading

This tutorial illustrated the syntax of Scenic through several simple examples. Much more complex scenarios are
possible, such as the platoon and bumper-to-bumper traffic GTA V scenarios shown below. For many further examples
using a variety of simulators, see the examples folder, as well as the links in the Supported Simulators page.

1.2. Scenic Tutorial 13

Scenic

For a comprehensive overview of Scenic’s syntax, including details on all specifiers, operators, distributions, state-
ments, and built-in classes, see the Scenic Syntax Reference. Our Guide to Scenic Syntax summarizes all of these
language constructs in convenient tables with links to the detailed documentation.

14 Chapter 1. Table of Contents

Scenic

References

1.3 Guide to Scenic Syntax

This page summarizes the syntax of Scenic (excluding syntax inherited from Python). For more details, click the links
for individual language constructs to go to the corresponding section of the Scenic Syntax Reference.

1.3.1 Primitive Data Types

Booleans expressing truth values
Scalars representing distances, angles, etc. as floating-point numbers
Vectors representing positions and offsets in space
Headings representing orientations in space
Vector Fields associating an orientation (i.e. a heading) to each point in space
Regions representing sets of points in space

1.3.2 Distributions

(low, high) uniformly distributed in the interval
Normal(mean, stdDev) normal distribution with the given mean and standard deviation
Uniform(value, . . .) uniform over a finite set of values
Discrete({value: weight, . . . }) discrete with given values and weights

1.3.3 Objects

Property Default Meaning
position 0 @ 0 position in global coordinates
viewDistance 50 distance for the ‘can see’ operator
mutationScale 0 overall scale of mutations
positionStdDev 1 mutation standard deviation for position
heading 0 heading in global coordinates
viewAngle 360 degrees angle for the ‘can see’ operator
headingStdDev 5 degrees mutation standard deviation for heading
width 1 width of bounding box (X axis)
height 1 height of bounding box (Y axis)
regionContainedIn workspace Region the object must lie within
allowCollisions false whether collisions are allowed
requireVisible true whether object must be visible from ego

1.3. Guide to Scenic Syntax 15

Scenic

1.3.4 Specifiers

Fig. 4: Illustration of the beyond, behind, and offset by specifiers. Each OrientedPoint (e.g. P) is shown
as a bold arrow.

16 Chapter 1. Table of Contents

Scenic

Specifier for Position Meaning
at vector Positions the object

at the given global
coordinates

offset by vector Positions the object
at the given coordi-
nates in the local co-
ordinate system of
ego (which must al-
ready be defined)

offset along direction by vector Positions the object
at the given coor-
dinates, in a lo-
cal coordinate sys-
tem centered at ego
and oriented along
the given direction

(left | right) of vector [by scalar] Positions the ob-
ject further to
the left/right by
the given scalar
distance

(ahead of | behind) vector [by scalar] As above, except
placing the object
ahead of or behind
the given position

beyond vector by vector [from vector] Positions the object
at coordinates given
by the second vec-
tor, centered at the
first vector and ori-
ented along the line
of sight from the ego

visible [from (Point | OrientedPoint)] Positions the object
uniformly at ran-
dom in the visible
region of the ego,
or of the given
Point/OrientedPoint
if given

1.3. Guide to Scenic Syntax 17

Scenic

Specifiers for position and optionally heading Meaning
(in | on) region Positions the object

uniformly at ran-
dom in the given
Region

(left | right) of (OrientedPoint | Object) [by scalar] Positions the object
to the left/right of
the given Oriented-
Point, depending on
the object’s width

(ahead of | behind) (OrientedPoint | Object) [by scalar] As above, except
positioning the ob-
ject ahead of or be-
hind the given Ori-
entedPoint, thereby
depending on height

following vectorField [from vector] for scalar Positions the object
at a point obtained
by following the
given vector field
for the given dis-
tance starting from
ego

Specifiers for heading Meaning
facing heading Orients the object

along the given
heading in global
coordinates

facing vectorField Orients the object
along the given vec-
tor field at the ob-
ject’s position

facing (toward | away from) vector Orients the object
toward/away from
the given position
(thereby depending
on the object’s
position)

apparently facing heading [from vector] Orients the object
so that it has the
given heading with
respect to the line
of sight from ego
(or from the posi-
tion given by the op-
tional from vector)

18 Chapter 1. Table of Contents

Scenic

1.3.5 Operators

Fig. 5: Illustration of several operators. Each OrientedPoint (e.g. P) is shown as a bold arrow.

Scalar Operators Meaning
relative heading of heading [from heading] The relative heading

of the given heading
with respect to ego
(or the heading pro-
vided with the op-
tional from heading)

apparent heading of OrientedPoint [from vector] The apparent head-
ing of the Oriented-
Point, with respect
to the line of sight
from ego (or the po-
sition provided with
the optional from
vector)

distance [from vector] to vector The distance to the
given position from
ego (or the position
provided with the
optional from vector
)

angle [from vector] to vector The heading to the
given position from
ego (or the position
provided with the
optional from vec-
tor)

1.3. Guide to Scenic Syntax 19

Scenic

Boolean Operators Meaning
(Point | OrientedPoint) can see (vector | Object) Whether or not a

position or Objectis
visible from a Point
or OrientedPoint. V

(vector | Object) in region Whether a position
or Object lies in the
region

Heading Operators Meaning
scalar deg The given heading,

interpreted as being
in degrees

vectorField at vector The heading speci-
fied by the vector
field at the given po-
sition

direction relative to direction The first direction,
interpreted as an
offset relative to the
second direction

Vector Operators Meaning
vector (relative to | offset by) vector The first vector, in-

terpreted as an off-
set relative to the
second vector (or
vice versa)

vector offset along direction by vector The second vector,
interpreted in a local
coordinate system
centered at the first
vector and oriented
along the given
direction

Region Operators Meaning
visible region The part of the given

region visible from
ego

region visible from (Point | OrientedPoint) The part of the
given region visible
from the given
Point/OrientedPoint

20 Chapter 1. Table of Contents

Scenic

OrientedPoint Operators Meaning
vector relative to OrientedPoint The given vector, in-

terpreted in the lo-
cal coordinate sys-
tem of the Oriented-
Point

OrientedPoint offset by vector Equivalent to vector
relative to Oriented-
Point above

(front | back | left | right) of Object The midpoint of the
corresponding edge
of the bounding box
of the Object, ori-
ented along its head-
ing

(front | back) (left | right) of Object The corresponding
corner of the Ob-
ject’s bounding box,
also oriented along
its heading

1.3.6 Statements

Syntax Meaning
import module Imports a Scenic or Python module
param identifier = value, . . . Defines global parameters of the scenario
require boolean Defines a hard requirement
mutate identifier, . . . [by num-
ber]

Enables mutation of the given list of objects

1.4 Scenic Syntax Reference

1.4.1 Primitive Data Types

Scalars

representing distances, angles, etc. as floating-point numbers, which can be sampled from various distributions

Vectors

representing positions and offsets in space, constructed from coordinates with the syntax X @ Y (inspired by
Smalltalk). By convention, coordinates are in meters, although the semantics of Scenic does not depend on this.
More significantly, the vector syntax is specialized for 2-dimensional space. The 2D assumption dramatically sim-
plifies much of Scenic’s syntax (particularly that dealing with orientations, as we will see below), while still being
adequate for a variety of applications. However, it is important to note that the fundamental ideas of Scenic are not
specific to 2D, and it would be easy to extend our implementation of the language to support 3D space.

1.4. Scenic Syntax Reference 21

http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

Scenic

Headings

representing orientations in space. Conveniently, in 2D these can be expressed using a single angle (rather than Euler
angles or a quaternion). Scenic represents headings in radians, measured anticlockwise from North, so that a heading
of 0 is due North and a heading of /2 is due West. We use the convention that the heading of a local coordinate system
is the heading of its y-axis, so that, for example, -2 @ 3 means 2 meters left and 3 ahead.

Vector Fields

associating an orientation (i.e. a heading) to each point in space. For example, a vector field could represent the
shortest paths to a destination, or the nominal traffic direction on a road

Regions

representing sets of points in space. Scenic provides a variety of ways to define Regions: rectangles, circular sectors,
line segments, polygons, occupancy grids, and explicit lists of points. Regions can have an associated vector field
giving points in the region preferred orientations. For example, a Region representing a lane of traffic could have a
preferred orientation aligned with the lane, so that we can easily talk about distances along the lane, even if it curves.
Another possible use of preferred orientations is to give the surface of an object normal vectors, so that other objects
placed on the surface face outward by default.

1.4.2 Position Specifiers

offset along direction by vector

Positions the object at the given coordinates, in a local coordinate system centered at ego and oriented along the given
direction (which, if a vector field, is evaluated at ego to obtain a heading)

(left | right) of vector [by scalar]

Depends on heading and width. Without the optional by scalar, positions the object immediately to the left/right of the
given position; i.e., so that the midpoint of the object’s right/left edge is at that position. If by scalar is used, the object
is placed further to the left/right by the given distance.

(ahead of | behind) vector [by scalar]

As above, except placing the object ahead of or behind the given position (so that the midpoint of the object’s back/front
edge is at that position); thereby depending on heading and height.

beyond vector by vector [from vector]

Positions the object at coordinates given by the second vector, in a local coordinate system centered at the first vector
and oriented along the line of sight from the ego. For example, beyond taxi by 0 @ 3 means 3 meters directly behind
the taxi as viewed by the camera.

22 Chapter 1. Table of Contents

Scenic

(in | on) region

Positions the object uniformly at random in the given Region. If the Region has a preferred orientation (a vector field),
also optionally specifies heading to be equal to that orientation at the object’s position.

(left | right) of (OrientedPoint | Object) [by scalar]

Positions the object to the left/right of the given OrientedPoint, depending on the object’s width. Also optionally
specifies heading to be the same as that of the OrientedPoint. If the OrientedPoint is in fact an Object, the object being
constructed is positioned to the left/right of its left/right edge.

following vectorField [from vector] for scalar

Positions the object at a point obtained by following the given vector field for the given distance starting from ego (or
the position optionally provided with from vector). Optionally specifies heading to be the heading of the vector field
at the resulting point. Uses a forward Euler approximation of the continuous vector field

1.4.3 Heading Specifiers

apparently facing heading [from vector]

Orients the object so that it has the given heading with respect to the line of sight from ego (or from the position given
by the optional from vector). For example, apparently facing 90 deg orients the object so that the camera views its left
side head-on

1.4.4 Scalar Operators

angle [from vector] to vector

The heading to the given position from ego (or the position provided with the optional from vector). For example, if
angle to taxi is zero, then taxi is due North of ego

1.4.5 Boolean Operators

(Point | OrientedPoint) can see (vector | Object)

Whether or not a position or Objectis visible from a Point or OrientedPoint. Visible regions are defined as follows: a
Point can see out to a certain distance, and an OrientedPoint restricts this to the circular sector along its heading with
a certain angle. A position is then visible if it lies in the visible region, and an Object is visible if its bounding box
intersects the visible region. Note that Scenic’s visibility model does not take into account occlusion, although this
would be straightforward to add

1.4. Scenic Syntax Reference 23

Scenic

(vector | Object) in region

Whether a position or Object lies in the region; for the latter, the Object’s bounding box must be contained in the
region. This allows us to use the predicate in two ways

1.4.6 Heading Operators

scalar deg

The given heading, interpreted as being in degrees. For example 90 deg evaluates to /2

direction relative to direction

The first direction, interpreted as an offset relative to the second direction. For example, -5 deg relative to 90 deg is
simply 85 deg. If either direction is a vector field, then this operator yields an expression depending on the position
property of the object being specified

1.4.7 Vector Operators

vector (relative to | offset by) vector

The first vector, interpreted as an offset relative to the second vector (or vice versa). For example, 5@5 relative to
100@200 is 105@205. Note that this polymorphic operator has a specialized version for instances of OrientedPoint,
defined below (so for example -3@0 relative to taxi will not use this vector version, even though the Object taxi can
be coerced to a vector)

vector offset along direction by vector

The second vector, interpreted in a local coordinate system centered at the first vector and oriented along the given
direction (which, if a vector field, is evaluated at the first vector to obtain a heading)

vector relative to OrientedPoint

The given vector, interpreted in the local coordinate system of the OrientedPoint. So for example 1 @ 2 relative to ego
is 1 meter to the right and 2 meters ahead of ego

1.4.8 Statements

import module

Imports a Scenic or Python module. This statement behaves as in Python, but when importing a Scenic module M it
also imports any objects created and requirements imposed in M. Scenic also supports the form from module import
identifier, . . . , which as in Python imports the module plus one or more identifiers from its namespace

24 Chapter 1. Table of Contents

mailto:100@200
mailto:105@205

Scenic

param identifier = value, . . .

Defines global parameters of the scenario. These have no semantics in Scenic, simply having their values included as
part of the generated scene, but provide a general-purpose way to encode arbitrary global information

require boolean

Defines a hard requirement, requiring that the given condition hold in all instantiations of the scenario. As noted
above, this is equivalent to an observe statement in other probabilistic programming languages

mutate identifier, . . . [by number]

Enables mutation of the given list of objects, adding Gaussian noise with the given standard deviation (default 1) to
their position and heading properties. If no objects are specified, mutation applies to every Object already created

1.5 Supported Simulators

Scenic is designed to be easily interfaced to any simulator (see Interfacing to New Simulators). On this page we list
interfaces that we and others have developed; if you have a new interface, let us know and we’ll list it here!

Supported Simulators:

• Grand Theft Auto V

• Webots

• X-Plane

1.5.1 Grand Theft Auto V

The interface to Grand Theft Auto V, used in our PLDI paper, allows Scenic to position cars within the game as well
as to control the time of day and weather conditions. Many examples using the interface (including all scenarios from
the paper) can be found in examples/gta. See the paper and scenic.simulators.gta for documentation.

Importing scenes into GTA V and capturing rendered images requires a GTA V plugin, which you can find here.

1.5.2 Webots

We have several interfaces to the Webots robotics simulator, for different use cases.

• An interface for the Mars rover example used in our PLDI paper. This interface is extremely simple and might
be a good baseline for developing your own interface. See the examples in examples/webots/mars and
the documentation of scenic.simulators.webots.mars for details.

• A general interface for traffic scenarios, used in our VerifAI paper. Examples using this interface can be found
in the VerifAI repository; see also the documentation of scenic.simulators.webots.road.

• A more specific interface for traffic scenarios at intersections, using guideways from the Intelligent Intersec-
tions Toolkit. See the examples in examples/webots/guideways and the documentation of scenic.
simulators.webots.guideways for details.

1.5. Supported Simulators 25

https://www.rockstargames.com/V/
https://arxiv.org/abs/1809.09310
https://github.com/xyyue/scenic2gta
https://cyberbotics.com/
https://arxiv.org/abs/1809.09310
https://doi.org/10.1007/978-3-030-25540-4_25
https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/ucbtrans/intelligent_intersection
https://github.com/ucbtrans/intelligent_intersection

Scenic

Note: Our interfaces were written for the R2018 version of Webots, which is not free but has lower hardware
requirements than R2019. Relatively minor changes would be required to make our interfaces work with the newer
open source versions of Webots. We may get around to porting them eventually; we’d also gladly accept a pull request!

1.5.3 X-Plane

Our interface to the X-Plane flight simulator enables using Scenic to describe aircraft taxiing scenarios. This interface
is part of the VerifAI toolkit; documentation and examples can be found in the VerifAI repository.

1.6 Interfacing to New Simulators

To interface Scenic to a new simulator, there are two steps: using the Scenic API to compile scenarios and generate
scenes, and writing a Scenic library defining the virtual world provided by the simulator.

1.6.1 Using the Scenic API

Compiling a Scenic scenario is easy: just call the scenic.scenarioFromFile function with the path to a Scenic
file (there’s also a variant scenic.scenarioFromString which works on strings). This returns a Scenario
object representing the scenario; to sample a scene from it, call its generate method. Scenes are represented
by Scene objects, from which you can extract the objects and their properties as well as the values of the global
parameters (see the Scene documentation for details).

1.6.2 Defining a World Model

To make writing scenarios for your simulator easier, you should write a Scenic library specifying all the relevant
information about the simulated world. This “world model” could include:

• Scenic classes (subclasses of Object) corresponding to types of objects in the simulator;

• instances of Region corresponding to locations of interest (e.g. one for each road);

• a Workspace specifying legal locations for objects (and optionally providing methods for schematically ren-
dering scenes);

• any other information that might be useful in scenarios.

Then any Scenic programs for your simulator can import this world model and make use of the information within.

Each of the simulators natively supported by Scenic has a corresponding model.sc file containing its world model.
See the Supported Simulators page for links to the module under scenic.simulators for each simulator, where
the world model can be found. The scenic.simulators.webots.marsmodel is particularly simple and would
be a good place to start.

26 Chapter 1. Table of Contents

https://github.com/cyberbotics/webots
https://www.x-plane.com
https://github.com/BerkeleyLearnVerify/VerifAI

Scenic

1.7 Scenic Internals

This section of the documentation describes the implementation of Scenic. It is not intended for ordinary users of
Scenic, and will probably only be useful for people who need to make some change to the language (e.g. adding a new
type of distribution).

The documentation is organized by the submodules of the main scenic module:

scenic.core Scenic’s core types and associated support code.
scenic.simulators World models and associated code for particular simu-

lators.
scenic.syntax The Scenic compiler and associated support code.

1.7.1 scenic.core

Scenic’s core types and associated support code.

distributions Objects representing distributions that can be sampled
from.

external_params Support for values which are sampled outside of Scenic.
geometry Utility functions for geometric computation.
lazy_eval Support for lazy evaluation of expressions and speci-

fiers.
object_types Implementations of the built-in Scenic classes.
pruning Pruning parts of the sample space which violate require-

ments.
regions Objects representing regions in space.
scenarios Scenario and scene objects.
specifiers Specifiers and associated objects.
type_support Support for checking Scenic types.
utils Assorted utility functions and common exceptions.
vectors Scenic vectors and vector fields.
workspaces Workspaces.

scenic.core.distributions

Objects representing distributions that can be sampled from.

Summary of Module Members

Functions

dependencies Dependencies which must be sampled before this value.
distributionFunction Decorator for wrapping a function so that it can take

distributions as arguments.
distributionMethod Decorator for wrapping a method so that it can take dis-

tributions as arguments.
makeOperatorHandler

continues on next page

1.7. Scenic Internals 27

Scenic

Table 3 – continued from previous page
monotonicDistributionFunction Like distributionFunction, but additionally specifies that

the function is monotonic.
needsSampling Whether this value requires sampling.
supportInterval Lower and upper bounds on this value, if known.
toDistribution Wrap Python data types with Distributions, if necessary.
underlyingFunction Original function underlying a distribution wrapper.

Classes

AttributeDistribution Distribution resulting from accessing an attribute of a
distribution

CustomDistribution Distribution with a custom sampler given by an arbitrary
function

DefaultIdentityDict Dictionary which is the identity map by default.
DiscreteRange Distribution over a range of integers.
Distribution Abstract class for distributions.
FunctionDistribution Distribution resulting from passing distributions to a

function
MethodDistribution Distribution resulting from passing distributions to a

method of a fixed object
MultiplexerDistribution Distribution selecting among values based on another

distribution.
Normal Normal distribution
OperatorDistribution Distribution resulting from applying an operator to one

or more distributions
Options Distribution over a finite list of options.
Range Uniform distribution over a range
Samplable Abstract class for values which can be sampled, possi-

bly depending on other values.
TruncatedNormal Truncated normal distribution.
TupleDistribution Distributions over tuples (or namedtuples, or lists).

Exceptions

RejectionException Exception used to signal that the sample currently being
generated must be rejected.

Member Details

dependencies(thing)
Dependencies which must be sampled before this value.

needsSampling(thing)
Whether this value requires sampling.

supportInterval(thing)
Lower and upper bounds on this value, if known.

underlyingFunction(thing)

28 Chapter 1. Table of Contents

Scenic

Original function underlying a distribution wrapper.

exception RejectionException
Bases: Exception

Exception used to signal that the sample currently being generated must be rejected.

class DefaultIdentityDict
Bases: dict

Dictionary which is the identity map by default.

class Samplable(dependencies)
Bases: scenic.core.lazy_eval.LazilyEvaluable

Abstract class for values which can be sampled, possibly depending on other values.

Samplables may specify a proxy object ‘self._conditioned’ which must have the same distribution as the origi-
nal after conditioning on the scenario’s requirements. This allows transparent conditioning without modifying
Samplable fields of immutable objects.

static sampleAll(quantities)
Sample all the given Samplables, which may have dependencies in common.

Reproducibility note: the order in which the quantities are given can affect the order in which calls to
random are made, affecting the final result.

sample(subsamples=None)
Sample this value, optionally given some values already sampled.

sampleGiven(value)
Sample this value, given values for all its dependencies.

The default implementation simply returns a dictionary of dependency values. Subclasses must override
this method to specify how actual sampling is done.

conditionTo(value)
Condition this value to another value with the same conditional distribution.

evaluateIn(context)
See LazilyEvaluable.evaluateIn.

dependencyTree()
Debugging method to print the dependency tree of a Samplable.

class Distribution(*dependencies, valueType=None)
Bases: scenic.core.distributions.Samplable

Abstract class for distributions.

defaultValueType
alias of builtins.float

clone()
Construct an independent copy of this Distribution.

property isPrimitive
Whether this is a primitive Distribution.

bucket(buckets=None)
Construct a bucketed approximation of this Distribution.

This function factors a given Distribution into a discrete distribution over buckets together with a dis-
tribution for each bucket. The argument buckets controls how many buckets the domain of the original
Distribution is split into. Since the result is an independent distribution, the original must support clone().

1.7. Scenic Internals 29

Scenic

supportInterval()
Compute lower and upper bounds on the value of this Distribution.

class CustomDistribution(sampler, *dependencies, name='CustomDistribution', evaluator=None)
Bases: scenic.core.distributions.Distribution

Distribution with a custom sampler given by an arbitrary function

class TupleDistribution(*coordinates, builder=<class 'tuple'>)
Bases: scenic.core.distributions.Distribution, collections.abc.Sequence

Distributions over tuples (or namedtuples, or lists).

toDistribution(val)
Wrap Python data types with Distributions, if necessary.

For example, tuples containing Samplables need to be converted into TupleDistributions in order to keep track
of dependencies properly.

class FunctionDistribution(func, args, kwargs, support=None)
Bases: scenic.core.distributions.Distribution

Distribution resulting from passing distributions to a function

distributionFunction(method, support=None)
Decorator for wrapping a function so that it can take distributions as arguments.

monotonicDistributionFunction(method)
Like distributionFunction, but additionally specifies that the function is monotonic.

class MethodDistribution(method, obj, args, kwargs)
Bases: scenic.core.distributions.Distribution

Distribution resulting from passing distributions to a method of a fixed object

distributionMethod(method)
Decorator for wrapping a method so that it can take distributions as arguments.

class AttributeDistribution(attribute, obj)
Bases: scenic.core.distributions.Distribution

Distribution resulting from accessing an attribute of a distribution

class OperatorDistribution(operator, obj, operands)
Bases: scenic.core.distributions.Distribution

Distribution resulting from applying an operator to one or more distributions

class MultiplexerDistribution(index, options)
Bases: scenic.core.distributions.Distribution

Distribution selecting among values based on another distribution.

class Range(low, high)
Bases: scenic.core.distributions.Distribution

Uniform distribution over a range

class Normal(mean, stddev)
Bases: scenic.core.distributions.Distribution

Normal distribution

class TruncatedNormal(mean, stddev, low, high)
Bases: scenic.core.distributions.Normal

30 Chapter 1. Table of Contents

Scenic

Truncated normal distribution.

class DiscreteRange(low, high, weights=None)
Bases: scenic.core.distributions.Distribution

Distribution over a range of integers.

class Options(opts)
Bases: scenic.core.distributions.MultiplexerDistribution

Distribution over a finite list of options.

Specified by a dict giving probabilities; otherwise uniform over a given iterable.

scenic.core.external_params

Support for values which are sampled outside of Scenic.

External Samplers in General

External samplers provide a mechanism to use different types of sampling techniques, like optimization or
quasi-random sampling, from within a Scenic program. Ordinary random values in Scenic are instances of
Distribution; this module defines a special subclass, ExternalParameter, representing a value which is
sampled externally. Scenic programs with external parameters are handled as follows:

1. During compilation, all instances of ExternalParameter are gathered together and given
to the ExternalSampler.forParameters function; this function creates an appropriate
ExternalSampler, whose configuration can be controlled using various global parameters (param
statements).

2. When sampling a scene, before sampling any other distributions the sample method of the
ExternalSampler is called to sample all the external parameters. For active samplers, this method passes
along the feedback value given to Scenario.generate, if any.

3. Once the external parameters have values, the program is equivalent to one without external parameters, and
sampling proceeds as usual. As for every instance of Distribution, the external parameters will have their
sampleGiven method called once all their dependencies have been sampled; by default this method just
returns the value sampled for this parameter in step (2).

Note: Note that while external parameters, like all instances of Distribution, are allowed to have depen-
dencies, they are an exception to the usual rule that dependencies are always sampled before dependents, because
the ExternalSampler.sample method is called before any other sampling. However, as explained above, the
sampleGiven method is called in the proper order and external samplers which need to do sampling based on the
values of other distributions can be invoked from it. The two-step mechanism with ExternalSampler.sample
is provided for samplers which sample the whole space of external parameters at once (e.g. the VerifAI samplers).

1.7. Scenic Internals 31

Scenic

Samplers from VerifAI

The external sampling mechanism is designed to be extensible. The only built-in ExternalSampler is the
VerifaiSampler, which provides access to the samplers in the VerifAI toolkit (which in turn can use Scenic
as a modeling language).

The VerifaiSampler supports several types of external parameters corresponding to the primitive distributions:
VerifaiRange and VerifaiDiscreteRange for continuous and discrete intervals, and VerifaiOptions
for discrete sets. For example, suppose we write:

ego = Object at VerifaiRange(5, 15) @ 0

This is equivalent to the ordinary Scenic line ego = Object at (5, 15) @ 0, except that the X coordinate of
the ego is sampled by VerifAI within the range (5, 15) instead of being uniformly distributed over it. By default the
VerifaiSampler uses VerifAI’s Halton sampler, so the range will still be covered uniformly but more systemati-
cally. If we want to use a different sampler, we can set the verifaiSamplerType global parameter:

param verifaiSamplerType = 'ce'
ego = Object at VerifaiRange(5, 15) @ 0

Now the X coordinate will be sampled using VerifAI’s cross-entropy sampler. If we pass a feedback value to
Scenario.generate which scores the previous scene, then the coordinate will not be sampled uniformly but
rather converge to a distribution concentrated on values minimizing the score. Active samplers like cross-entropy can
be used for falsification in this way, driving a system toward parts of the parameter space where a specification is
violated.

The cross-entropy sampler in VerifAI can be started from a non-uniform prior. Scenic provides a convenient way to
define this prior using the ordinary syntax for distributions:

param verifaiSamplerType = 'ce'
ego = Object at VerifaiParameter.withPrior(Normal(10, 3)) @ 0

Now cross-entropy sampling will start from a normal distribution with mean 10 and standard deviation 3. Priors
are restricted to primitive distributions and in general may be approximated so that VerifAI can handle them – see
VerifaiParameter.withPrior for details.

For more information on how to customize the sampler, see VerifaiSampler.

Summary of Module Members

Classes

ExternalParameter A value determined by external code rather than
Scenic’s internal sampler.

ExternalSampler Abstract class for objects called to sample values for
each external parameter.

VerifaiDiscreteRange A DiscreteRange (integer interval) sampled by Ver-
ifAI.

VerifaiOptions An Options (discrete set) sampled by VerifAI.
VerifaiParameter An external parameter sampled using one of VerifAI’s

samplers.
VerifaiRange A Range (real interval) sampled by VerifAI.

continues on next page

32 Chapter 1. Table of Contents

https://github.com/BerkeleyLearnVerify/VerifAI
https://en.wikipedia.org/wiki/Halton_sequence
https://en.wikipedia.org/wiki/Cross-entropy_method

Scenic

Table 6 – continued from previous page
VerifaiSampler An external sampler exposing the samplers in the Veri-

fAI toolkit.

Member Details

class ExternalSampler(params, globalParams)
Bases: object

Abstract class for objects called to sample values for each external parameter.

Attributes rejectionFeedback – Value passed to the sample method when the last sample
was rejected. This value can be chosen by a Scenic scenario using the global parameter
externalSamplerRejectionFeedback.

static forParameters(params, globalParams)
Create an ExternalSampler given the sets of external and global parameters.

The scenario may explicitly select an external sampler by assigning the global parameter
externalSampler to a subclass of ExternalSampler. Otherwise, a VerifaiSampler is used
by default.

Parameters

• params (tuple) – Tuple listing each ExternalParameter.

• globalParams (dict) – Dictionary of global parameters for the Scenario. Note
that the values of these parameters may be instances of Distribution!

Returns An ExternalSampler configured for the given parameters.

sample(feedback)
Sample values for all the external parameters.

Parameters feedback – Feedback from the last sample (for active samplers).

nextSample(feedback)
Actually do the sampling. Implemented by subclasses.

valueFor(param)
Return the sampled value for a parameter. Implemented by subclasses.

class VerifaiSampler(params, globalParams)
Bases: scenic.core.external_params.ExternalSampler

An external sampler exposing the samplers in the VerifAI toolkit.

The sampler can be configured using the following Scenic global parameters:

• verifaiSamplerType – sampler type (see the verifai.server.choose_sampler function);
the default is 'halton'

• verifaiSamplerParams – DotMap of options passed to the sampler

The VerifaiSampler supports external parameters which are instances of VerifaiParameter.

class ExternalParameter
Bases: scenic.core.distributions.Distribution

A value determined by external code rather than Scenic’s internal sampler.

1.7. Scenic Internals 33

Scenic

sampleGiven(value)
Specialization of Samplable.sampleGiven for external parameters.

By default, this method simply looks up the value previously sampled by ExternalSampler.sample.

class VerifaiParameter(domain)
Bases: scenic.core.external_params.ExternalParameter

An external parameter sampled using one of VerifAI’s samplers.

static withPrior(dist, buckets=None)
Creates a VerifaiParameter using the given distribution as a prior.

Since the VerifAI cross-entropy sampler currently only supports piecewise-constant distributions, if the
prior is not of that form it may be approximated. For most built-in distributions, the approximation is
exact: for a particular distribution, check its bucket method.

class VerifaiRange(low, high, buckets=None, weights=None)
Bases: scenic.core.external_params.VerifaiParameter

A Range (real interval) sampled by VerifAI.

class VerifaiDiscreteRange(low, high, weights=None)
Bases: scenic.core.external_params.VerifaiParameter

A DiscreteRange (integer interval) sampled by VerifAI.

class VerifaiOptions(opts)
Bases: scenic.core.distributions.Options

An Options (discrete set) sampled by VerifAI.

scenic.core.geometry

Utility functions for geometric computation.

Summary of Module Members

Functions

addVectors
apparentHeadingAtPoint
averageVectors
circumcircleOfAnnulus
cleanChain
cleanPolygon
cos
findMinMax
headingOfSegment
hypot
max
min
normalizeAngle
plotPolygon
pointIsInCone

continues on next page

34 Chapter 1. Table of Contents

Scenic

Table 7 – continued from previous page
polygonUnion
positionRelativeToPoint
radialToCartesian
rotateVector
sin
subtractVectors
triangulatePolygon Triangulate the given Shapely polygon.
triangulatePolygon_gpc
triangulatePolygon_pypoly2tri
viewAngleToPoint

Classes

RotatedRectangle mixin providing collision detection for rectangular ob-
jects and regions

Member Details

givePP2TWarning = True
Whether to warn when falling back to pypoly2tri for triangulation

triangulatePolygon(polygon)
Triangulate the given Shapely polygon.

Note that we can’t use shapely.ops.triangulate since it triangulates point sets, not polygons (i.e., it
doesn’t respect edges). We need an algorithm for triangulation of polygons with holes (it doesn’t need to be a
Delaunay triangulation).

We currently use the GPC library (wrapped by the Polygon3 package) if it is installed. Since it is not free
for commercial use, we don’t require it as a dependency, falling back on the BSD-compatible pypoly2tri as
needed. In this case we issue a warning, since GPC is more robust and handles large polygons. The warning
can be disabled by setting givePP2TWarning to False.

Parameters polygon (shapely.geometry.Polygon) – Polygon to triangulate.

Returns A list of disjoint (except for edges) triangles whose union is the original polygon.

class RotatedRectangle
Bases: object

mixin providing collision detection for rectangular objects and regions

static edgeSeparates(rectA, rectB)
Whether an edge of rectA separates it from rectB

1.7. Scenic Internals 35

Scenic

scenic.core.lazy_eval

Support for lazy evaluation of expressions and specifiers.

Summary of Module Members

Functions

makeDelayedFunctionCall Utility function for creating a lazily-evaluated function
call.

makeDelayedOperatorHandler
needsLazyEvaluation
requiredProperties
toDelayedArgument
valueInContext Evaluate something in the context of an object being

constructed.

Classes

DelayedArgument Specifier arguments requiring other properties to be
evaluated first.

LazilyEvaluable Values which may require evaluation in the context of
an object being constructed.

Member Details

class LazilyEvaluable(requiredProps)
Bases: object

Values which may require evaluation in the context of an object being constructed.

If a LazilyEvaluable specifies any properties it depends on, then it cannot be evaluated to a normal value except
during the construction of an object which already has values for those properties.

evaluateIn(context)
Evaluate this value in the context of an object being constructed.

The object must define all of the properties on which this value depends.

evaluateInner(context)
Actually evaluate in the given context, which provides all required properties.

class DelayedArgument(requiredProps, value)
Bases: scenic.core.lazy_eval.LazilyEvaluable

Specifier arguments requiring other properties to be evaluated first.

The value of a DelayedArgument is given by a function mapping the context (object under construction) to a
value.

makeDelayedFunctionCall(func, args, kwargs)
Utility function for creating a lazily-evaluated function call.

36 Chapter 1. Table of Contents

Scenic

valueInContext(value, context)
Evaluate something in the context of an object being constructed.

scenic.core.object_types

Implementations of the built-in Scenic classes.

Summary of Module Members

Classes

Constructible Abstract base class for Scenic objects.
HeadingMutator Mutator adding Gaussian noise to heading.
Mutator An object controlling how the mutate statement af-

fects an Object.
Object Implementation of the Scenic class Object.
OrientedPoint Implementation of the Scenic class OrientedPoint.
Point Implementation of the Scenic class Point.
PositionMutator Mutator adding Gaussian noise to position.

Member Details

class Constructible(*args, **kwargs)
Bases: scenic.core.distributions.Samplable

Abstract base class for Scenic objects.

Scenic objects, which are constructed using specifiers, are implemented internally as instances of ordinary
Python classes. This abstract class implements the procedure to resolve specifiers and determine values for the
properties of an object, as well as several common methods supported by objects.

class Mutator
Bases: object

An object controlling how the mutate statement affects an Object.

A Mutator can be assigned to the mutator property of an Object to control the effect of the mutate
statement. When mutation is enabled for such an object using that statement, the mutator’s appliedTomethod
is called to compute a mutated version.

appliedTo(obj)
Return a mutated copy of the object. Implemented by subclasses.

class PositionMutator(stddev)
Bases: scenic.core.object_types.Mutator

Mutator adding Gaussian noise to position. Used by Point.

Attributes stddev (float) – standard deviation of noise

class HeadingMutator(stddev)
Bases: scenic.core.object_types.Mutator

Mutator adding Gaussian noise to heading. Used by OrientedPoint.

Attributes stddev (float) – standard deviation of noise

1.7. Scenic Internals 37

Scenic

class Point(*args, **kwargs)
Bases: scenic.core.object_types.Constructible

Implementation of the Scenic class Point.

The default mutator for Point adds Gaussian noise to position with a standard deviation given by the
positionStdDev property.

Attributes

• position (Vector) – Position of the point. Default value is the origin.

• visibleDistance (float) – Distance for can see operator. Default value 50.

• width (float) – Default value zero (only provided for compatibility with operators that expect
an Object).

• height (float) – Default value zero.

class OrientedPoint(*args, **kwargs)
Bases: scenic.core.object_types.Point

Implementation of the Scenic class OrientedPoint.

The default mutator for OrientedPoint adds Gaussian noise to heading with a standard deviation given
by the headingStdDev property, then applies the mutator for Point.

Attributes

• heading (float) – Heading of the OrientedPoint. Default value 0 (North).

• viewAngle (float) – View cone angle for can see operator. Default value 2𝜋.

class Object(*args, **kwargs)
Bases: scenic.core.object_types.OrientedPoint, scenic.core.geometry.
RotatedRectangle

Implementation of the Scenic class Object.

Attributes

• width (float) – Width of the object, i.e. extent along its X axis. Default value 1.

• height (float) – Height of the object, i.e. extent along its Y axis. Default value 1.

• allowCollisions (bool) – Whether the object is allowed to intersect other objects. Default
value False.

• requireVisible (bool) – Whether the object is required to be visible from the ego object.
Default value True.

• regionContainedIn (Region or None) – A Region the object is required to be contained
in. If None, the object need only be contained in the scenario’s workspace.

• cameraOffset (Vector) – Position of the camera for the can see operator, relative to
the object’s position. Default 0 @ 0.

38 Chapter 1. Table of Contents

Scenic

scenic.core.pruning

Pruning parts of the sample space which violate requirements.

Summary of Module Members

Functions

currentPropValue Get the current value of an object’s property, taking into
account prior pruning.

feasibleRHPolygon Find where objects aligned to the given fields can satisfy
the given RH bounds.

isMethodCall Match calls to a given method, taking into account dis-
tribution decorators.

matchInRegion Match uniform samples from a Region, returning the
Region if any.

matchPolygonalField Match headings defined by a PolygonalVectorField at
the given position.

maxDistanceBetween Upper bound the distance between the given Objects.
prune Prune a Scenario, removing infeasible parts of the

space.
pruneContainment Prune based on the requirement that individual Objects

fit within their container.
pruneRelativeHeading Prune based on requirements bounding the relative

heading of an Object.
relativeHeadingRange Lower/upper bound the possible RH between two head-

ings with bounded disturbances.
visibilityBound Upper bound the distance from an Object to another it

can see.

Member Details

currentPropValue(obj, prop)
Get the current value of an object’s property, taking into account prior pruning.

isMethodCall(thing, method)
Match calls to a given method, taking into account distribution decorators.

matchInRegion(position)
Match uniform samples from a Region, returning the Region if any.

matchPolygonalField(heading, position)
Match headings defined by a PolygonalVectorField at the given position.

Matches headings exactly equal to a PolygonalVectorField, or offset by a bounded disturbance. Returns a triplet
consisting of the matched field if any, together with lower/upper bounds on the disturbance.

prune(scenario, verbosity=1)
Prune a Scenario, removing infeasible parts of the space.

This function directly modifies the Distributions used in the Scenario, but leaves the conditional distribution
under the scenario’s requirements unchanged.

1.7. Scenic Internals 39

Scenic

pruneContainment(scenario, verbosity)
Prune based on the requirement that individual Objects fit within their container.

Specifically, if O is positioned uniformly in region B and has container C, then we can instead pick a position
uniformly in their intersection. If we can also lower bound the radius of O, then we can first erode C by that
distance.

pruneRelativeHeading(scenario, verbosity)
Prune based on requirements bounding the relative heading of an Object.

Specifically, if an object O is:

• positioned uniformly within a polygonal region B;

• aligned to a polygonal vector field F (up to a bounded offset);

and another object O’ is:

• aligned to a polygonal vector field F’ (up to a bounded offset);

• at most some finite maximum distance from O;

• required to have relative heading within a bounded offset of that of O;

then we can instead position O uniformly in the subset of B intersecting the cells of F which satisfy the relative
heading requirements w.r.t. some cell of F’ which is within the distance bound.

maxDistanceBetween(scenario, obj, target)
Upper bound the distance between the given Objects.

visibilityBound(obj, target)
Upper bound the distance from an Object to another it can see.

feasibleRHPolygon(field, offsetL, offsetR, tField, tOffsetL, tOffsetR, lowerBound, upperBound, maxDist)
Find where objects aligned to the given fields can satisfy the given RH bounds.

relativeHeadingRange(baseHeading, offsetL, offsetR, targetHeading, tOffsetL, tOffsetR)
Lower/upper bound the possible RH between two headings with bounded disturbances.

scenic.core.regions

Objects representing regions in space.

Summary of Module Members

Functions

regionFromShapelyObject Build a ‘Region’ from Shapely geometry.
toPolygon

40 Chapter 1. Table of Contents

Scenic

Classes

AllRegion Region consisting of all space.
CircularRegion
EmptyRegion Region containing no points.
GridRegion A Region given by an obstacle grid.
IntersectionRegion
PointInRegionDistribution Uniform distribution over points in a Region
PointSetRegion Region consisting of a set of discrete points.
PolygonalRegion Region given by one or more polygons (possibly with

holes)
PolylineRegion Region given by one or more polylines (chain of line

segments)
RectangularRegion
Region Abstract class for regions.
SectorRegion

Member Details

regionFromShapelyObject(obj, orientation=None)
Build a ‘Region’ from Shapely geometry.

class PointInRegionDistribution(region)
Bases: scenic.core.vectors.VectorDistribution

Uniform distribution over points in a Region

class Region(name, *dependencies, orientation=None)
Bases: scenic.core.distributions.Samplable

Abstract class for regions.

intersect(other, triedReversed=False)
Get a Region representing the intersection of this one with another.

static uniformPointIn(region)
Get a uniform Distribution over points in a Region.

uniformPoint()
Sample a uniformly-random point in this Region.

Can only be called on fixed Regions with no random parameters.

uniformPointInner()
Do the actual random sampling. Implemented by subclasses.

containsPoint(point)
Check if the Region contains a point. Implemented by subclasses.

containsObject(obj)
Check if the Region contains an Object.

The default implementation assumes the Region is convex; subclasses must override the method if this
is not the case.

getAABB()
Axis-aligned bounding box for this Region. Implemented by some subclasses.

1.7. Scenic Internals 41

Scenic

orient(vec)
Orient the given vector along the region’s orientation, if any.

class AllRegion(name, *dependencies, orientation=None)
Bases: scenic.core.regions.Region

Region consisting of all space.

class EmptyRegion(name, *dependencies, orientation=None)
Bases: scenic.core.regions.Region

Region containing no points.

class PolylineRegion(points=None, polyline=None, orientation=True)
Bases: scenic.core.regions.Region

Region given by one or more polylines (chain of line segments)

class PolygonalRegion(points=None, polygon=None, orientation=None)
Bases: scenic.core.regions.Region

Region given by one or more polygons (possibly with holes)

class PointSetRegion(name, points, kdTree=None, orientation=None, tolerance=1e-06)
Bases: scenic.core.regions.Region

Region consisting of a set of discrete points.

No Object can be contained in a PointSetRegion, since the latter is discrete. (This may not be true for
subclasses, e.g. GridRegion.)

Parameters

• name (str) – name for debugging

• points (iterable) – set of points comprising the region

• kdtree (scipy.spatial.KDTree, optional) – k-D tree for the points (one will be
computed if none is provided)

• orientation (VectorField, optional) – orientation for the region

• tolerance (float, optional) – distance tolerance for checking whether a point lies
in the region

class GridRegion(name, grid, Ax, Ay, Bx, By, orientation=None)
Bases: scenic.core.regions.PointSetRegion

A Region given by an obstacle grid.

A point is considered to be in a GridRegion if the nearest grid point is not an obstacle.

Parameters

• name (str) – name for debugging

• grid – 2D list, tuple, or NumPy array of 0s and 1s, where 1 indicates an obstacle and 0
indicates free space

• Ax (float) – spacing between grid points along X axis

• Ay (float) – spacing between grid points along Y axis

• Bx (float) – X coordinate of leftmost grid column

• By (float) – Y coordinate of lowest grid row

• orientation (VectorField, optional) – orientation of region

42 Chapter 1. Table of Contents

Scenic

scenic.core.scenarios

Scenario and scene objects.

Summary of Module Members

Classes

Scenario A compiled Scenic scenario, from which scenes can be
sampled.

Scene A scene generated from a Scenic scenario.

Member Details

class Scene(workspace, objects, egoObject, params)
Bases: object

A scene generated from a Scenic scenario.

Attributes

• objects (tuple(Object)) – All objects in the scene. The ego object is first.

• egoObject (Object) – The ego object.

• params (dict) – Dictionary mapping the name of each global parameter to its value.

• workspace (Workspace) – Workspace for the scenario.

show(zoom=None, block=True)
Render a schematic of the scene for debugging.

class Scenario(workspace, objects, egoObject, params, externalParams, requirements, requirement-
Deps)

Bases: object

A compiled Scenic scenario, from which scenes can be sampled.

validate()
Make some simple static checks for inconsistent built-in requirements.

generate(maxIterations=2000, verbosity=0, feedback=None)
Sample a Scene from this scenario.

Parameters

• maxIterations (int) – Maximum number of rejection sampling iterations.

• verbosity (int) – Verbosity level.

• feedback (float) – Feedback to pass to external samplers doing active sampling. See
scenic.core.external_params.

Returns A pair with the sampled Scene and the number of iterations used.

Raises RejectionException – if no valid sample is found in maxIterations iterations.

resetExternalSampler()
Reset the scenario’s external sampler, if any.

1.7. Scenic Internals 43

Scenic

If the Python random seed is reset before calling this function, this should cause the sequence of generated
scenes to be deterministic.

scenic.core.specifiers

Specifiers and associated objects.

Summary of Module Members

Classes

PropertyDefault A default value, possibly with dependencies.
Specifier Specifier providing a value for a property given depen-

dencies.

Member Details

class Specifier(prop, value, deps=None, optionals={})
Bases: object

Specifier providing a value for a property given dependencies.

Any optionally-specified properties are evaluated as attributes of the primary value.

applyTo(obj, optionals)
Apply specifier to an object, including the specified optional properties.

class PropertyDefault(requiredProperties, attributes, value)
Bases: object

A default value, possibly with dependencies.

resolveFor(prop, overriddenDefs)
Create a Specifier for a property from this default and any superclass defaults.

scenic.core.type_support

Support for checking Scenic types.

Summary of Module Members

Functions

canCoerce Can this value be coerced into the given type?
canCoerceType Can values of typeA be coerced into typeB?
coerce Coerce something into the given type.
coerceToAny Coerce something into any of the given types, printing

an error if impossible.
continues on next page

44 Chapter 1. Table of Contents

Scenic

Table 17 – continued from previous page
evaluateRequiringEqualTypes Evaluate the func, assuming thingA and thingB have the

same type.
isA Does this evaluate to a member of the given Scenic

type?
toHeading Convert something to a heading, printing an error if im-

possible.
toScalar Convert something to a scalar, printing an error if im-

possible.
toType Convert something to a given type, printing an error if

impossible.
toTypes Convert something to any of the given types, printing an

error if impossible.
toVector Convert something to a vector, printing an error if im-

possible.
underlyingType What type this value ultimately evaluates to, if we can

tell.
unifyingType Most specific type unifying the given types.

Classes

Heading Dummy class used as a target for type coercions to head-
ings.

TypeChecker Checks that a given lazy value has one of a given list of
types.

TypeEqualityChecker Lazily evaluates a function, after checking that two lazy
values have the same type.

Member Details

class Heading
Bases: object

Dummy class used as a target for type coercions to headings.

underlyingType(thing)
What type this value ultimately evaluates to, if we can tell.

isA(thing, ty)
Does this evaluate to a member of the given Scenic type?

unifyingType(opts)
Most specific type unifying the given types.

canCoerceType(typeA, typeB)
Can values of typeA be coerced into typeB?

canCoerce(thing, ty)
Can this value be coerced into the given type?

coerce(thing, ty)
Coerce something into the given type.

1.7. Scenic Internals 45

Scenic

coerceToAny(thing, types, error)
Coerce something into any of the given types, printing an error if impossible.

toTypes(thing, types, typeError='wrong type')
Convert something to any of the given types, printing an error if impossible.

toType(thing, ty, typeError='wrong type')
Convert something to a given type, printing an error if impossible.

toScalar(thing, typeError='non-scalar in scalar context')
Convert something to a scalar, printing an error if impossible.

toHeading(thing, typeError='non-heading in heading context')
Convert something to a heading, printing an error if impossible.

toVector(thing, typeError='non-vector in vector context')
Convert something to a vector, printing an error if impossible.

evaluateRequiringEqualTypes(func, thingA, thingB, typeError='type mismatch')
Evaluate the func, assuming thingA and thingB have the same type.

If func produces a lazy value, it should not have any required properties beyond those of thingA and thingB.

class TypeChecker(arg, types, error)
Bases: scenic.core.lazy_eval.DelayedArgument

Checks that a given lazy value has one of a given list of types.

class TypeEqualityChecker(func, checkA, checkB, error)
Bases: scenic.core.lazy_eval.DelayedArgument

Lazily evaluates a function, after checking that two lazy values have the same type.

scenic.core.utils

Assorted utility functions and common exceptions.

Summary of Module Members

Functions

areEquivalent Whether two objects are equivalent, i.e.
argsToString
cached Decorator for making a method with no arguments

cache its result

Exceptions

InconsistentScenarioError Error for scenarios with inconsistent requirements.
InvalidScenarioError Error raised for syntactically-valid but otherwise prob-

lematic Scenic programs.
ParseError An error produced by attempting to parse an invalid

Scenic program.
continues on next page

46 Chapter 1. Table of Contents

Scenic

Table 20 – continued from previous page
RuntimeParseError A Scenic parse error generated during execution of the

translated Python.

Member Details

cached(oldMethod)
Decorator for making a method with no arguments cache its result

areEquivalent(a, b)
Whether two objects are equivalent, i.e. have the same properties.

This is only used for debugging, e.g. to check that a Distribution is the same before and after pickling. We
don’t want to define __eq__ for such objects since for example two values sampled with the same distribution
are equivalent but not semantically identical: the code:

X = (0, 1)
Y = (0, 1)

does not make X and Y always have equal values!

exception ParseError
Bases: Exception

An error produced by attempting to parse an invalid Scenic program.

exception RuntimeParseError
Bases: scenic.core.utils.ParseError

A Scenic parse error generated during execution of the translated Python.

exception InvalidScenarioError
Bases: Exception

Error raised for syntactically-valid but otherwise problematic Scenic programs.

exception InconsistentScenarioError(line, message)
Bases: scenic.core.utils.InvalidScenarioError

Error for scenarios with inconsistent requirements.

scenic.core.vectors

Scenic vectors and vector fields.

Summary of Module Members

Functions

makeVectorOperatorHandler
scalarOperator Decorator for vector operators that yield scalars.
vectorDistributionMethod Decorator for methods that produce vectors.
vectorOperator Decorator for vector operators that yield vectors.

1.7. Scenic Internals 47

Scenic

Classes

CustomVectorDistribution Distribution with a custom sampler given by an arbitrary
function.

OrientedVector
PolygonalVectorField
Vector A 2D vector, whose coordinates can be distributions.
VectorDistribution A distribution over Vectors.
VectorField
VectorMethodDistribution Vector version of MethodDistribution.
VectorOperatorDistribution Vector version of OperatorDistribution.

Member Details

class VectorDistribution(*dependencies, valueType=None)
Bases: scenic.core.distributions.Distribution

A distribution over Vectors.

defaultValueType
alias of Vector

class CustomVectorDistribution(sampler, *dependencies, name='CustomVectorDistribution',
evaluator=None)

Bases: scenic.core.vectors.VectorDistribution

Distribution with a custom sampler given by an arbitrary function.

class VectorOperatorDistribution(operator, obj, operands)
Bases: scenic.core.vectors.VectorDistribution

Vector version of OperatorDistribution.

class VectorMethodDistribution(method, obj, args, kwargs)
Bases: scenic.core.vectors.VectorDistribution

Vector version of MethodDistribution.

scalarOperator(method)
Decorator for vector operators that yield scalars.

vectorOperator(method)
Decorator for vector operators that yield vectors.

vectorDistributionMethod(method)
Decorator for methods that produce vectors. See distributionMethod.

class Vector(x, y)
Bases: scenic.core.distributions.Samplable, collections.abc.Sequence

A 2D vector, whose coordinates can be distributions.

rotatedBy(angle)
Return a vector equal to this one rotated counterclockwise by the given angle.

48 Chapter 1. Table of Contents

Scenic

scenic.core.workspaces

Workspaces.

Summary of Module Members

Classes

Workspace A workspace describing the fixed world of a scenario

Member Details

class Workspace(region=<scenic.core.regions.AllRegion object>)
Bases: scenic.core.regions.Region

A workspace describing the fixed world of a scenario

show(plt)
Render a schematic of the workspace for debugging

zoomAround(plt, objects, expansion=2)
Zoom the schematic around the specified objects

scenicToSchematicCoords(coords)
Convert Scenic coordinates to those used for schematic rendering.

1.7.2 scenic.simulators

World models and associated code for particular simulators.

carla Scenic world model for the CARLA driving simulator.
gta Scenic world model for Grand Theft Auto V (GTAV).
webots Scenic world models for the Webots robotics simulator.
xplane Scenic world model for the X-Plane flight simulator.
formats Support for file formats not specific to particular simu-

lators.

scenic.simulators.carla

Scenic world model for the CARLA driving simulator.

This model is designed to be used with the CARLA interface to the VerifAI toolkit. See the VerifAI repository for
further documentation and examples.

The model currently supports vehicles, pedestrians, and props. Vehicles have an agent parameter, which specifies
the agent to be used to control the vehicle.

In addition, the model uses several global parameters to control weather (descriptions are from the CARLA Python
API reference):

• cloudiness (float): Weather cloudiness. It only affects the RGB camera sensor. Values range from 0 to 100.

1.7. Scenic Internals 49

https://github.com/BerkeleyLearnVerify/VerifAI

Scenic

• precipitation (float): Precipitation amount for controlling rain intensity. It only affects the RGB camera
sensor. Values range from 0 to 100.

• precipitation_deposits (float): Precipitation deposits for controlling the area of puddles on roads. It
only affects the RGB camera sensor. Values range from 0 to 100.

• wind_intensity (float): Wind intensity, it affects the clouds moving speed, the raindrop direction, and
vegetation. This doesn’t affect the car physics. Values range from 0 to 100.

• sun_azimuth_angle (float): The azimuth angle of the sun in degrees. Values range from 0 to 360 (degrees).

• sun_altitude_angle (float): Altitude angle of the sun in degrees. Values range from -90 to 90 (where 0
degrees is the horizon).

model Scenic world model for traffic scenarios in CARLA.
map Stub to allow changing the map without having to

change the model.
interface Support code for the CARLA world model.
car_models
prop_models

scenic.simulators.carla.model

Scenic world model for traffic scenarios in CARLA.

Summary of Module Members

Classes

Bicycle
Car
Cone
Motorcycle
Pedestrian
Prop
Trash
Truck
Vehicle

Member Details

scenic.simulators.carla.map

Stub to allow changing the map without having to change the model.

50 Chapter 1. Table of Contents

Scenic

Summary of Module Members

Functions

setMapPath

Member Details

scenic.simulators.carla.interface

Support code for the CARLA world model.

Summary of Module Members

Classes

CarlaWorkspace

Member Details

scenic.simulators.carla.car_models

scenic.simulators.carla.prop_models

scenic.simulators.gta

Scenic world model for Grand Theft Auto V (GTAV).

model World model for GTA.
interface Python supporting code for the GTA model.
center_detection This file contains helper functions
img_modf This file has basic image modification functions
map
messages

1.7. Scenic Internals 51

Scenic

scenic.simulators.gta.model

World model for GTA.

Summary of Module Members

Functions

createPlatoonAt Create a platoon starting from the given car.

Classes

Bus Convenience subclass for buses.
Car Scenic class for cars.
Compact Convenience subclass for compact cars.
EgoCar Convenience subclass with defaults for ego cars.

Member Details

roadDirection = <scenic.core.vectors.VectorField object>
Vector field representing the nominal traffic direction at a point on the road

road = <scenic.core.regions.GridRegion object>
Region representing the roads in the GTA map.

curb = <scenic.core.regions.PointSetRegion object>
Region representing the curbs in the GTA map.

workspace = <scenic.simulators.gta.interface.MapWorkspace object>
Workspace over the road Region.

class Car(*args, **kwargs)
Bases: scenic.core.object_types.Object

Scenic class for cars.

Attributes

• position – The default position is uniformly random over the road.

• heading – The default heading is aligned with roadDirection, plus an offset given by
roadDeviation.

• roadDeviation (float) – Relative heading with respect to the road direction at the Car’s
position. Used by the default value for heading.

• model (CarModel) – Model of the car.

• color (CarColor or RGB tuple) – Color of the car.

class EgoCar(*args, **kwargs)
Bases: scenic.simulators.gta.model.Car

Convenience subclass with defaults for ego cars.

52 Chapter 1. Table of Contents

Scenic

class Bus(*args, **kwargs)
Bases: scenic.simulators.gta.model.Car

Convenience subclass for buses.

class Compact(*args, **kwargs)
Bases: scenic.simulators.gta.model.Car

Convenience subclass for compact cars.

createPlatoonAt(car, numCars, model=None, dist=<scenic.core.distributions.Range object>,
shift=<scenic.core.distributions.Range object>, wiggle=0)

Create a platoon starting from the given car.

scenic.simulators.gta.interface

Python supporting code for the GTA model.

Summary of Module Members

Classes

CarColor A car color as an RGB tuple.
CarColorMutator Mutator that adds Gaussian HSL noise to the color

property.
CarModel A model of car in GTA.
GTA
Map Represents roads and obstacles in GTA, extracted from

a map image.
MapWorkspace Workspace whose rendering is handled by a Map
NoisyColorDistribution A distribution given by HSL noise around a base color.

Member Details

class Map(imagePath, Ax, Ay, Bx, By)
Bases: object

Represents roads and obstacles in GTA, extracted from a map image.

This code handles images from the GTA V Interactive Map, rendered with the “Road” setting.

Parameters

• imagePath (str) – path to image file

• Ax (float) – width of one pixel in GTA coordinates

• Ay (float) – height of one pixel in GTA coordinates

• Bx (float) – GTA X-coordinate of bottom-left corner of image

• By (float) – GTA Y-coordinate of bottom-left corner of image

class MapWorkspace(mappy, region)
Bases: scenic.core.workspaces.Workspace

Workspace whose rendering is handled by a Map

1.7. Scenic Internals 53

https://gta-5-map.com/

Scenic

class CarModel(name, width, height, viewAngle=1.5707963267948966)
Bases: object

A model of car in GTA.

Attributes

• name (str) – name of model in GTA

• width (float) – width of this model of car

• height (float) – height of this model of car

• viewAngle (float) – view angle in radians (default is 90 degrees)

Class Attributes models – dict mapping model names to the corresponding CarModel

class CarColor
Bases: scenic.simulators.gta.interface.CarColor

A car color as an RGB tuple.

static uniformColor()
Return a uniformly random color.

static defaultColor()
Default color distribution for cars.

The distribution starts with a base distribution over 9 discrete colors, then adds Gaussian HSL noise. The
base distribution uses color popularity statistics from a 2012 DuPont survey.

class NoisyColorDistribution(baseColor, hueNoise, satNoise, lightNoise)
Bases: scenic.core.distributions.Distribution

A distribution given by HSL noise around a base color.

Parameters

• baseColor (RGB tuple) – base color

• hueNoise (float) – noise to add to base hue

• satNoise (float) – noise to add to base saturation

• lightNoise (float) – noise to add to base lightness

class CarColorMutator
Bases: scenic.core.object_types.Mutator

Mutator that adds Gaussian HSL noise to the color property.

scenic.simulators.gta.center_detection

This file contains helper functions

54 Chapter 1. Table of Contents

https://web.archive.org/web/20121229065631/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf

Scenic

Summary of Module Members

Functions

compute_bb
compute_gradient_manual
compute_gradient_sobel
compute_heading
compute_midpoints
find_center Find which edge x lies in
generate_circle
generate_connected_edges
generate_neighbors
sample_from_road
transform_center

Classes

EdgeData

Member Details

find_center(x, theta, collected_edges, all_edges, num_samples, bw_image)
Find which edge x lies in

class EdgeData(init_theta, tangent, opp_loc, mid_loc)
Bases: tuple

property init_theta
Alias for field number 0

property tangent
Alias for field number 1

property opp_loc
Alias for field number 2

property mid_loc
Alias for field number 3

_asdict()
Return a new OrderedDict which maps field names to their values.

classmethod _make(iterable, new=<built-in method __new__ of type object>, len=<built-in func-
tion len>)

Make a new EdgeData object from a sequence or iterable

_replace(**kwds)
Return a new EdgeData object replacing specified fields with new values

1.7. Scenic Internals 55

Scenic

scenic.simulators.gta.img_modf

This file has basic image modification functions

Summary of Module Members

Functions

convert_black_white
get_edges
plot_voronoi_plot
voronoi_edge

Member Details

scenic.simulators.gta.map

Summary of Module Members

Functions

setLocalMap

Member Details

scenic.simulators.gta.messages

Summary of Module Members

Functions

frame2numpy
obj_dict

Classes

Commands
Config
Dataset
Formal_Config
Formal_Configs
Scenario
Start

continues on next page

56 Chapter 1. Table of Contents

Scenic

Table 38 – continued from previous page
Stop
Vehicle

Member Details

scenic.simulators.webots

Scenic world models for the Webots robotics simulator.

This module contains common code for working with Webots, e.g. parsing WBT files. World models for particular
uses of Webots are in submodules.

mars World model for a simple Mars rover example in We-
bots.

road World model and associated code for traffic scenarios in
Webots.

guideways World model for road intersection scenarios in Webots.
common Common Webots interface.
world_parser Parser for WBT files using ANTLR.

scenic.simulators.webots.mars

World model for a simple Mars rover example in Webots.

model Scenic model for Mars rover scenarios in Webots.

scenic.simulators.webots.mars.model

Scenic model for Mars rover scenarios in Webots.

Summary of Module Members

Classes

BigRock Large rock.
Debris Abstract class for debris scattered randomly in the

workspace.
Goal Flag indicating the goal location.
Pipe Pipe with variable length.
Rock Small rock.
Rover Mars rover.

1.7. Scenic Internals 57

Scenic

Member Details

class Goal(*args, **kwargs)
Bases: scenic.core.object_types.Object

Flag indicating the goal location.

class Rover(*args, **kwargs)
Bases: scenic.core.object_types.Object

Mars rover.

class Debris(*args, **kwargs)
Bases: scenic.core.object_types.Object

Abstract class for debris scattered randomly in the workspace.

class BigRock(*args, **kwargs)
Bases: scenic.simulators.webots.mars.model.Debris

Large rock.

class Rock(*args, **kwargs)
Bases: scenic.simulators.webots.mars.model.Debris

Small rock.

class Pipe(*args, **kwargs)
Bases: scenic.simulators.webots.mars.model.Debris

Pipe with variable length.

scenic.simulators.webots.road

World model and associated code for traffic scenarios in Webots.

This model handles Webots world files generated from Open Street Map data using the Webots OSM importer.

model Scenic world model for traffic scenarios in Webots.
world Stub to allow changing the Webots world without

changing the model.
interface Python library supporting the main Scenic module.
car_models Car models built into Webots.

scenic.simulators.webots.road.model

Scenic world model for traffic scenarios in Webots.

58 Chapter 1. Table of Contents

Scenic

Summary of Module Members

Classes

BmwX5
Bus
Car
CitroenCZero
LincolnMKZ
Motorcycle
OilBarrel
Pedestrian
RangeRoverSportSVR
SmallCar
SolidBox
ToyotaPrius
Tractor
TrafficCone
Truck
WebotsObject
WorkBarrier

Member Details

scenic.simulators.webots.road.world

Stub to allow changing the Webots world without changing the model.

Summary of Module Members

Functions

setLocalWorld Select a WBT file relative to the given module.

Member Details

worldPath = '../tests/simulators/webots/road/simple.wbt'
Path to the WBT file to load the Webots world from

setLocalWorld(module, relpath)
Select a WBT file relative to the given module.

This function is intended to be used with __file__ as the module.

1.7. Scenic Internals 59

Scenic

scenic.simulators.webots.road.interface

Python library supporting the main Scenic module.

Summary of Module Members

Functions

polygonWithPoints
regionWithPolygons

Classes

Crossroad OSM crossroads
OSMObject Objects with OSM id tags
PedestrianCrossing PedestrianCrossing nodes
Road OSM roads
WebotsWorkspace

Member Details

class OSMObject(attrs)
Bases: object

Objects with OSM id tags

class Road(attrs, driveOnLeft=False)
Bases: scenic.simulators.webots.road.interface.OSMObject

OSM roads

class Crossroad(attrs)
Bases: scenic.simulators.webots.road.interface.OSMObject

OSM crossroads

class PedestrianCrossing(attrs)
Bases: object

PedestrianCrossing nodes

scenic.simulators.webots.road.car_models

Car models built into Webots.

60 Chapter 1. Table of Contents

Scenic

Summary of Module Members

Classes

CarModel

Member Details

class CarModel(name, width, height)
Bases: tuple

_asdict()
Return a new OrderedDict which maps field names to their values.

classmethod _make(iterable, new=<built-in method __new__ of type object>, len=<built-in func-
tion len>)

Make a new CarModel object from a sequence or iterable

_replace(**kwds)
Return a new CarModel object replacing specified fields with new values

property height
Alias for field number 2

property name
Alias for field number 0

property width
Alias for field number 1

scenic.simulators.webots.guideways

World model for road intersection scenarios in Webots.

This is a more specialized version of the scenic.simulators.webots.road model which also includes guideway informa-
tion from the Intelligent Intersections Toolkit.

model
intersection
interface

scenic.simulators.webots.guideways.model

Summary of Module Members

Classes

Car
Marker

1.7. Scenic Internals 61

https://github.com/ucbtrans/intelligent_intersection

Scenic

Member Details

scenic.simulators.webots.guideways.intersection

Summary of Module Members

Functions

setLocalIntersection

Member Details

scenic.simulators.webots.guideways.interface

Summary of Module Members

Functions

localize
projectionAt
toWebots

Classes

Bordered
ConflictZone
Crosswalk
Guideway
Intersection
IntersectionWorkspace

Member Details

scenic.simulators.webots.common

Common Webots interface.

62 Chapter 1. Table of Contents

Scenic

Summary of Module Members

Functions

scenicToWebotsPosition
scenicToWebotsRotation
webotsToScenicPosition Convert Webots positions to Scenic positions.
webotsToScenicRotation

Member Details

webotsToScenicPosition(pos)
Convert Webots positions to Scenic positions.

scenic.simulators.webots.world_parser

Parser for WBT files using ANTLR.

The ANTLR parser itself, consisting of the WBTLexer.py, WBTParser.py, and WBTVisitor.py files, is autogenerated
from WBT.g4.

Summary of Module Members

Functions

findNodeTypesIn Find all nodes of the given types in a world
parse Parse a world from a WBT file

Classes

ErrorReporter ANTLR listener for reporting parse errors
Evaluator Constructs an object representing the given value from

the parse tree
Node A generic VRML node

Member Details

class Node(nodeType, attrs)
Bases: object

A generic VRML node

class ErrorReporter
Bases: antlr4.error.ErrorListener.ErrorListener

ANTLR listener for reporting parse errors

1.7. Scenic Internals 63

Scenic

class Evaluator(nodeClasses)
Bases: scenic.simulators.webots.WBTVisitor.WBTVisitor

Constructs an object representing the given value from the parse tree

parse(path)
Parse a world from a WBT file

findNodeTypesIn(types, world, nodeClasses={})
Find all nodes of the given types in a world

scenic.simulators.xplane

Scenic world model for the X-Plane flight simulator.

See the VerifAI distribution for examples of how to use Scenic with X-Plane.

model Scenic world model for the X-Plane simulator.

scenic.simulators.xplane.model

Scenic world model for the X-Plane simulator.

At the moment this is extremely simple, since the current interface does not allow changing the type of aircraft, adding
other objects, etc.

Summary of Module Members

Classes

Plane Placeholder object for the plane.

Member Details

class Plane(*args, **kwargs)
Bases: scenic.core.object_types.Object

Placeholder object for the plane.

scenic.simulators.formats

Support for file formats not specific to particular simulators.

opendrive Support for loading OpenDRIVE maps.

64 Chapter 1. Table of Contents

https://github.com/BerkeleyLearnVerify/VerifAI

Scenic

scenic.simulators.formats.opendrive

Support for loading OpenDRIVE maps.

workspace Workspaces based on OpenDRIVE maps.
xodr_parser Parser for OpenDRIVE (.xodr) files.

scenic.simulators.formats.opendrive.workspace

Workspaces based on OpenDRIVE maps.

Summary of Module Members

Classes

OpenDriveWorkspace

Member Details

scenic.simulators.formats.opendrive.xodr_parser

Parser for OpenDRIVE (.xodr) files.

Summary of Module Members

Functions

buffer_union

Classes

Clothoid An Euler spiral with curvature varying linearly between
CURV0 and CURV1.

Cubic A curve defined by the cubic polynomial a + bu + cu^2
+ du^3.

Curve Geometric elements which compose road reference
lines.

Junction
Lane
LaneSection
Line A line segment between (x0, y0) and (x1, y1).
ParamCubic A curve defined by the parametric equations u = a_u +

b_up + c_up^2 + d_up^3, v = a_v + b_vp + c_vp^2 +
d_up^3, with p in [0, p_range].

continues on next page

1.7. Scenic Internals 65

Scenic

Table 62 – continued from previous page
Poly3 Cubic polynomial.
Road
RoadLink Indicates Roads a and b, with ids id_a and id_b respec-

tively, are connected.
RoadMap

Member Details

class Poly3(a, b, c, d)
Bases: object

Cubic polynomial.

class Curve(x0, y0, hdg, length)
Bases: object

Geometric elements which compose road reference lines. See the OpenDRIVE Format Specification for coor-
dinate system details.

abstract to_points(num)
Sample NUM evenly-spaced points from curve. Points are tuples of (x, y, s) with (x, y) absolute coordi-
nates and s the arc length along the curve.

rel_to_abs(points)
Convert from relative coordinates of curve to absolute coordinates. I.e. rotate counterclockwise by self.hdg
and translate by (x0, x1).

class Cubic(x0, y0, hdg, length, a, b, c, d)
Bases: scenic.simulators.formats.opendrive.xodr_parser.Curve

A curve defined by the cubic polynomial a + bu + cu^2 + du^3. The curve starts at (X0, Y0) in direction HDG,
with length LENGTH.

class ParamCubic(x0, y0, hdg, length, au, bu, cu, du, av, bv, cv, dv, p_range=1)
Bases: scenic.simulators.formats.opendrive.xodr_parser.Curve

A curve defined by the parametric equations u = a_u + b_up + c_up^2 + d_up^3, v = a_v + b_vp + c_vp^2 +
d_up^3, with p in [0, p_range]. The curve starts at (X0, Y0) in direction HDG, with length LENGTH.

class Clothoid(x0, y0, hdg, length, curv0, curv1)
Bases: scenic.simulators.formats.opendrive.xodr_parser.Curve

An Euler spiral with curvature varying linearly between CURV0 and CURV1. The spiral starts at (X0, Y0) in
direction HDG, with length LENGTH.

class Line(x0, y0, hdg, length)
Bases: scenic.simulators.formats.opendrive.xodr_parser.Curve

A line segment between (x0, y0) and (x1, y1).

class RoadLink(id_a, id_b, contact_a, contact_b)
Bases: object

Indicates Roads a and b, with ids id_a and id_b respectively, are connected.

66 Chapter 1. Table of Contents

Scenic

1.7.3 scenic.syntax

The Scenic compiler and associated support code.

relations Extracting relations (for later pruning) from the syntax
of requirements.

translator Translator turning Scenic programs into Scenario ob-
jects.

veneer Python implementations of Scenic language constructs.

scenic.syntax.relations

Extracting relations (for later pruning) from the syntax of requirements.

Summary of Module Members

Functions

inferDistanceRelations Infer bounds on distances from a requirement.
inferRelationsFrom Infer relations between objects implied by a require-

ment.
inferRelativeHeadingRelations Infer bounds on relative headings from a requirement.

Classes

BoundRelation Abstract relation bounding something about another ob-
ject.

DistanceRelation Relation bounding another object’s distance from this
one.

RelativeHeadingRelation Relation bounding another object’s relative heading
with respect to this one.

RequirementMatcher

Member Details

inferRelationsFrom(reqNode, namespace, ego, line)
Infer relations between objects implied by a requirement.

inferRelativeHeadingRelations(matcher, reqNode, ego, line)
Infer bounds on relative headings from a requirement.

inferDistanceRelations(matcher, reqNode, ego, line)
Infer bounds on distances from a requirement.

class BoundRelation(target, lower, upper)
Bases: object

Abstract relation bounding something about another object.

1.7. Scenic Internals 67

Scenic

class RelativeHeadingRelation(target, lower, upper)
Bases: scenic.syntax.relations.BoundRelation

Relation bounding another object’s relative heading with respect to this one.

class DistanceRelation(target, lower, upper)
Bases: scenic.syntax.relations.BoundRelation

Relation bounding another object’s distance from this one.

scenic.syntax.translator

Translator turning Scenic programs into Scenario objects.

The top-level interface to Scenic is provided by two functions:

• scenarioFromString – compile a string of Scenic code;

• scenarioFromFile – compile a Scenic file.

These output a Scenario object, from which scenes can be generated. See the documentation for Scenario for
details.

When imported, this module hooks the Python import system so that Scenic modules can be imported using the
import statement. This is primarily for the translator’s own use, but you could import Scenic modules from Python
to inspect them. Because Scenic uses Python’s import system, the latter’s rules for finding modules apply, including
the handling of packages.

Scenic is compiled in two main steps: translating the code into Python, and executing the resulting Python module
to generate a Scenario object encoding the objects, distributions, etc. in the scenario. For details, see the function
compileStream below.

Summary of Module Members

Functions

compileStream Compile a stream of Scenic code and execute it in a
namespace.

compileTranslatedTree
constructScenarioFrom Build a Scenario object from an executed Scenic mod-

ule.
executeCodeIn Execute the final translated Python code in the given

namespace.
executePythonFunction Execute a Python function, giving correct Scenic back-

traces for any exceptions.
findConstructorsIn Find all constructors (Scenic classes) defined in a

namespace.
generateTracebackFrom Trim an exception’s traceback to the last line of Scenic

code.
hooked_import Version of __import__ hooked by Scenic to capture

Scenic modules.
parseTranslatedSource
partitionByImports Partition the tokens into blocks ending with import

statements.
peek

continues on next page

68 Chapter 1. Table of Contents

Scenic

Table 66 – continued from previous page
scenarioFromFile Compile a Scenic file into a Scenario.
scenarioFromStream Compile a stream of Scenic code into a Scenario.
scenarioFromString Compile a string of Scenic code into a Scenario.
storeScenarioStateIn Post-process an executed Scenic module, extracting

state from the veneer.
topLevelNamespace Creates an environment like that of a Python script being

run directly.
translateParseTree Modify the Python AST to produce the desired Scenic

semantics.

Classes

ASTSurgeon
AttributeFinder Utility class for finding all referenced attributes of a

given name.
Constructor
InfixOp
Peekable Utility class to allow iterator lookahead.
ScenicLoader
ScenicMetaFinder
TokenTranslator Translates a Scenic token stream into valid Python syn-

tax.

Exceptions

ASTParseError Parse error occuring during modification of the Python
AST.

InterpreterParseError Parse error occuring during Python execution.
PythonParseError Parse error occurring during Python parsing or compi-

lation.
TokenParseError Parse error occurring during token translation.

Member Details

scenarioFromString(string, filename='<string>', cacheImports=False)
Compile a string of Scenic code into a Scenario.

The optional filename is used for error messages.

scenarioFromFile(path, cacheImports=False)
Compile a Scenic file into a Scenario.

Parameters

• path (str) – path to a Scenic file

• cacheImports (bool) – Whether to cache any imported Scenic modules. The default
behavior is to not do this, so that subsequent attempts to import such modules will cause
them to be recompiled. If it is safe to cache Scenic modules across multiple compilations,

1.7. Scenic Internals 69

Scenic

set this argument to True. Then importing a Scenic module will have the same behavior as
importing a Python module.

Returns A Scenario object representing the Scenic scenario.

scenarioFromStream(stream, filename='<stream>', path=None, cacheImports=False)
Compile a stream of Scenic code into a Scenario.

topLevelNamespace(path=None)
Creates an environment like that of a Python script being run directly.

Specifically, __name__ is ‘__main__’, __file__ is the path used to invoke the script (not necessarily its absolute
path), and the parent directory is added to the path so that ‘import blobbo’ will import blobbo from that directory
if it exists there.

compileStream(stream, namespace, filename='<stream>')
Compile a stream of Scenic code and execute it in a namespace.

The compilation procedure consists of the following main steps:

1. Tokenize the input using the Python tokenizer.

2. Partition the tokens into blocks separated by import statements. This is done by the
partitionByImports function.

3. Translate Scenic constructions into valid Python syntax. This is done by the TokenTranslator.

4. Parse the resulting Python code into an AST using the Python parser.

5. Modify the AST to achieve the desired semantics for Scenic. This is done by the
translateParseTree function.

6. Compile and execute the modified AST.

7. After executing all blocks, extract the global state (e.g. objects). This is done by the
storeScenarioStateIn function.

class Constructor(name, parent, specifiers)
Bases: tuple

_asdict()
Return a new OrderedDict which maps field names to their values.

classmethod _make(iterable, new=<built-in method __new__ of type object>, len=<built-in func-
tion len>)

Make a new Constructor object from a sequence or iterable

_replace(**kwds)
Return a new Constructor object replacing specified fields with new values

property name
Alias for field number 0

property parent
Alias for field number 1

property specifiers
Alias for field number 2

class InfixOp(syntax, implementation, arity, token, node)
Bases: tuple

_asdict()
Return a new OrderedDict which maps field names to their values.

70 Chapter 1. Table of Contents

Scenic

classmethod _make(iterable, new=<built-in method __new__ of type object>, len=<built-in func-
tion len>)

Make a new InfixOp object from a sequence or iterable

_replace(**kwds)
Return a new InfixOp object replacing specified fields with new values

property arity
Alias for field number 2

property implementation
Alias for field number 1

property node
Alias for field number 4

property syntax
Alias for field number 0

property token
Alias for field number 3

hooked_import(*args, **kwargs)
Version of __import__ hooked by Scenic to capture Scenic modules.

partitionByImports(tokens)
Partition the tokens into blocks ending with import statements.

findConstructorsIn(namespace)
Find all constructors (Scenic classes) defined in a namespace.

exception TokenParseError(tokenOrLine, message)
Bases: scenic.core.utils.ParseError

Parse error occurring during token translation.

class Peekable(gen)
Bases: object

Utility class to allow iterator lookahead.

class TokenTranslator(constructors=())
Bases: object

Translates a Scenic token stream into valid Python syntax.

This is a stateful process because constructor (Scenic class) definitions change the way subsequent code is
parsed.

translate(tokens)
Do the actual translation of the token stream.

exception PythonParseError
Bases: SyntaxError, scenic.core.utils.ParseError

Parse error occurring during Python parsing or compilation.

class AttributeFinder(target)
Bases: ast.NodeVisitor

Utility class for finding all referenced attributes of a given name.

exception ASTParseError(line, message)
Bases: scenic.core.utils.ParseError

Parse error occuring during modification of the Python AST.

1.7. Scenic Internals 71

Scenic

translateParseTree(tree, constructors)
Modify the Python AST to produce the desired Scenic semantics.

generateTracebackFrom(exc, sourceFile)
Trim an exception’s traceback to the last line of Scenic code.

exception InterpreterParseError(exc, line)
Bases: scenic.core.utils.ParseError

Parse error occuring during Python execution.

executeCodeIn(code, namespace, filename)
Execute the final translated Python code in the given namespace.

executePythonFunction(func, filename)
Execute a Python function, giving correct Scenic backtraces for any exceptions.

storeScenarioStateIn(namespace, requirementSyntax, filename)
Post-process an executed Scenic module, extracting state from the veneer.

constructScenarioFrom(namespace)
Build a Scenario object from an executed Scenic module.

scenic.syntax.veneer

Python implementations of Scenic language constructs.

This module is automatically imported by all Scenic programs. In addition to defining the built-in functions, operators,
specifiers, etc., it also stores global state such as the list of all created Scenic objects.

Summary of Module Members

Functions

Ahead The ‘ahead of X [by Y]’ polymorphic specifier.
AngleFrom The ‘angle from <vector> to <vector>’ operator.
AngleTo The ‘angle to <vector>’ operator (using the position of

ego as the reference).
ApparentHeading The ‘apparent heading of <oriented point> [from <vec-

tor>]’ operator.
ApparentlyFacing The ‘apparently facing <heading> [from <vector>]’

specifier.
At The ‘at <vector>’ specifier.
Back The ‘back of <object>’ operator.
BackLeft The ‘back left of <object>’ operator.
BackRight The ‘back right of <object>’ operator.
Behind The ‘behind X [by Y]’ polymorphic specifier.
Beyond The ‘beyond X by Y [from Z]’ polymorphic specifier.
CanSee The ‘X can see Y’ polymorphic operator.
DistanceFrom The ‘distance from <vector> [to <vector>]’ operator.
Facing The ‘facing X’ polymorphic specifier.
FacingToward The ‘facing toward <vector>’ specifier.
FieldAt The ‘<VectorField> at <vector>’ operator.

continues on next page

72 Chapter 1. Table of Contents

Scenic

Table 69 – continued from previous page
Follow The ‘follow <field> from <vector> for <number>’ op-

erator.
Following The ‘following F [from X] for D’ specifier.
Front The ‘front of <object>’ operator.
FrontLeft The ‘front left of <object>’ operator.
FrontRight The ‘front right of <object>’ operator.
In The ‘in/on <region>’ specifier.
Left The ‘left of <object>’ operator.
LeftSpec The ‘left of X [by Y]’ polymorphic specifier.
OffsetAlong The ‘X offset along H by Y’ polymorphic operator.
OffsetAlongSpec The ‘offset along X by Y’ polymorphic specifier.
OffsetBy The ‘offset by <vector>’ specifier.
RelativeHeading The ‘relative heading of <heading> [from <heading>]’

operator.
RelativePosition The ‘relative position of <vector> [from <vector>]’ op-

erator.
RelativeTo The ‘X relative to Y’ polymorphic operator.
Right The ‘right of <object>’ operator.
RightSpec The ‘right of X [by Y]’ polymorphic specifier.
Uniform
Visible The ‘visible <region>’ operator.
VisibleFrom The ‘visible from <Point>’ specifier.
VisibleSpec The ‘visible’ specifier (equivalent to ‘visible from ego’).
With The ‘with <property> <value>’ specifier.
activate Activate the veneer when beginning to compile a Scenic

module.
alwaysProvidesOrientation Whether a Region or distribution over Regions always

provides an orientation.
deactivate Deactivate the veneer after compiling a Scenic module.
ego Function implementing loads and stores to the ‘ego’

pseudo-variable.
getAllGlobals Find all names the given lambda depends on, along with

their current bindings.
isActive Are we in the middle of compiling a Scenic module?
leftSpecHelper
mutate Function implementing the mutate statement.
param Function implementing the param statement.
registerExternalParameter Register a parameter whose value is given by an external

sampler.
registerObject Add a Scenic object to the global list of created objects.
require Function implementing the require statement.
resample The built-in resample function.
verbosePrint Built-in function printing a message when the verbosity

is >0.

1.7. Scenic Internals 73

Scenic

Member Details

class Vector(x, y)
Bases: scenic.core.distributions.Samplable, collections.abc.Sequence

A 2D vector, whose coordinates can be distributions.

rotatedBy(angle)
Return a vector equal to this one rotated counterclockwise by the given angle.

class Region(name, *dependencies, orientation=None)
Bases: scenic.core.distributions.Samplable

Abstract class for regions.

intersect(other, triedReversed=False)
Get a Region representing the intersection of this one with another.

static uniformPointIn(region)
Get a uniform Distribution over points in a Region.

uniformPoint()
Sample a uniformly-random point in this Region.

Can only be called on fixed Regions with no random parameters.

uniformPointInner()
Do the actual random sampling. Implemented by subclasses.

containsPoint(point)
Check if the Region contains a point. Implemented by subclasses.

containsObject(obj)
Check if the Region contains an Object.

The default implementation assumes the Region is convex; subclasses must override the method if this
is not the case.

getAABB()
Axis-aligned bounding box for this Region. Implemented by some subclasses.

orient(vec)
Orient the given vector along the region’s orientation, if any.

class PointSetRegion(name, points, kdTree=None, orientation=None, tolerance=1e-06)
Bases: scenic.core.regions.Region

Region consisting of a set of discrete points.

No Object can be contained in a PointSetRegion, since the latter is discrete. (This may not be true for
subclasses, e.g. GridRegion.)

Parameters

• name (str) – name for debugging

• points (iterable) – set of points comprising the region

• kdtree (scipy.spatial.KDTree, optional) – k-D tree for the points (one will be
computed if none is provided)

• orientation (VectorField, optional) – orientation for the region

• tolerance (float, optional) – distance tolerance for checking whether a point lies
in the region

74 Chapter 1. Table of Contents

Scenic

class PolygonalRegion(points=None, polygon=None, orientation=None)
Bases: scenic.core.regions.Region

Region given by one or more polygons (possibly with holes)

class PolylineRegion(points=None, polyline=None, orientation=True)
Bases: scenic.core.regions.Region

Region given by one or more polylines (chain of line segments)

class Workspace(region=<scenic.core.regions.AllRegion object>)
Bases: scenic.core.regions.Region

A workspace describing the fixed world of a scenario

show(plt)
Render a schematic of the workspace for debugging

zoomAround(plt, objects, expansion=2)
Zoom the schematic around the specified objects

scenicToSchematicCoords(coords)
Convert Scenic coordinates to those used for schematic rendering.

class Range(low, high)
Bases: scenic.core.distributions.Distribution

Uniform distribution over a range

class Options(opts)
Bases: scenic.core.distributions.MultiplexerDistribution

Distribution over a finite list of options.

Specified by a dict giving probabilities; otherwise uniform over a given iterable.

class Normal(mean, stddev)
Bases: scenic.core.distributions.Distribution

Normal distribution

Discrete
alias of scenic.core.distributions.Options

class VerifaiParameter(domain)
Bases: scenic.core.external_params.ExternalParameter

An external parameter sampled using one of VerifAI’s samplers.

static withPrior(dist, buckets=None)
Creates a VerifaiParameter using the given distribution as a prior.

Since the VerifAI cross-entropy sampler currently only supports piecewise-constant distributions, if the
prior is not of that form it may be approximated. For most built-in distributions, the approximation is
exact: for a particular distribution, check its bucket method.

class VerifaiRange(low, high, buckets=None, weights=None)
Bases: scenic.core.external_params.VerifaiParameter

A Range (real interval) sampled by VerifAI.

class VerifaiDiscreteRange(low, high, weights=None)
Bases: scenic.core.external_params.VerifaiParameter

A DiscreteRange (integer interval) sampled by VerifAI.

1.7. Scenic Internals 75

Scenic

class VerifaiOptions(opts)
Bases: scenic.core.distributions.Options

An Options (discrete set) sampled by VerifAI.

class Mutator
Bases: object

An object controlling how the mutate statement affects an Object.

A Mutator can be assigned to the mutator property of an Object to control the effect of the mutate
statement. When mutation is enabled for such an object using that statement, the mutator’s appliedTomethod
is called to compute a mutated version.

appliedTo(obj)
Return a mutated copy of the object. Implemented by subclasses.

class Point(*args, **kwargs)
Bases: scenic.core.object_types.Constructible

Implementation of the Scenic class Point.

The default mutator for Point adds Gaussian noise to position with a standard deviation given by the
positionStdDev property.

Attributes

• position (Vector) – Position of the point. Default value is the origin.

• visibleDistance (float) – Distance for can see operator. Default value 50.

• width (float) – Default value zero (only provided for compatibility with operators that expect
an Object).

• height (float) – Default value zero.

class OrientedPoint(*args, **kwargs)
Bases: scenic.core.object_types.Point

Implementation of the Scenic class OrientedPoint.

The default mutator for OrientedPoint adds Gaussian noise to heading with a standard deviation given
by the headingStdDev property, then applies the mutator for Point.

Attributes

• heading (float) – Heading of the OrientedPoint. Default value 0 (North).

• viewAngle (float) – View cone angle for can see operator. Default value 2𝜋.

class Object(*args, **kwargs)
Bases: scenic.core.object_types.OrientedPoint, scenic.core.geometry.
RotatedRectangle

Implementation of the Scenic class Object.

Attributes

• width (float) – Width of the object, i.e. extent along its X axis. Default value 1.

• height (float) – Height of the object, i.e. extent along its Y axis. Default value 1.

• allowCollisions (bool) – Whether the object is allowed to intersect other objects. Default
value False.

• requireVisible (bool) – Whether the object is required to be visible from the ego object.
Default value True.

76 Chapter 1. Table of Contents

Scenic

• regionContainedIn (Region or None) – A Region the object is required to be contained
in. If None, the object need only be contained in the scenario’s workspace.

• cameraOffset (Vector) – Position of the camera for the can see operator, relative to
the object’s position. Default 0 @ 0.

class PropertyDefault(requiredProperties, attributes, value)
Bases: object

A default value, possibly with dependencies.

resolveFor(prop, overriddenDefs)
Create a Specifier for a property from this default and any superclass defaults.

ego(obj=None)
Function implementing loads and stores to the ‘ego’ pseudo-variable.

The translator calls this with no arguments for loads, and with the source value for stores.

require(reqID, req, line, prob=1)
Function implementing the require statement.

resample(dist)
The built-in resample function.

verbosePrint(msg)
Built-in function printing a message when the verbosity is >0.

param(*quotedParams, **params)
Function implementing the param statement.

mutate(*objects)
Function implementing the mutate statement.

Visible(region)
The ‘visible <region>’ operator.

FieldAt(X, Y)
The ‘<VectorField> at <vector>’ operator.

RelativeTo(X, Y)
The ‘X relative to Y’ polymorphic operator.

Allowed forms: F relative to G (with at least one a field, the other a field or heading) <vector> relative to
<oriented point> (and vice versa) <vector> relative to <vector> <heading> relative to <heading>

OffsetAlong(X, H, Y)
The ‘X offset along H by Y’ polymorphic operator.

Allowed forms: <vector> offset along <heading> by <vector> <vector> offset along <field> by <vector>

RelativePosition(X, Y=None)
The ‘relative position of <vector> [from <vector>]’ operator.

If the ‘from <vector>’ is omitted, the position of ego is used.

RelativeHeading(X, Y=None)
The ‘relative heading of <heading> [from <heading>]’ operator.

If the ‘from <heading>’ is omitted, the heading of ego is used.

ApparentHeading(X, Y=None)
The ‘apparent heading of <oriented point> [from <vector>]’ operator.

If the ‘from <vector>’ is omitted, the position of ego is used.

1.7. Scenic Internals 77

Scenic

DistanceFrom(X, Y=None)
The ‘distance from <vector> [to <vector>]’ operator.

If the ‘to <vector>’ is omitted, the position of ego is used.

AngleTo(X)
The ‘angle to <vector>’ operator (using the position of ego as the reference).

AngleFrom(X, Y)
The ‘angle from <vector> to <vector>’ operator.

Follow(F, X, D)
The ‘follow <field> from <vector> for <number>’ operator.

CanSee(X, Y)
The ‘X can see Y’ polymorphic operator.

Allowed forms: <point> can see <object> <point> can see <vector>

With(prop, val)
The ‘with <property> <value>’ specifier.

Specifies the given property, with no dependencies.

At(pos)
The ‘at <vector>’ specifier.

Specifies ‘position’, with no dependencies.

In(region)
The ‘in/on <region>’ specifier.

Specifies ‘position’, with no dependencies. Optionally specifies ‘heading’ if the given Region has a preferred
orientation.

Beyond(pos, offset, fromPt=None)
The ‘beyond X by Y [from Z]’ polymorphic specifier.

Specifies ‘position’, with no dependencies.

Allowed forms: beyond <vector> by <number> [from <vector>] beyond <vector> by <vector> [from <vector>]

If the ‘from <vector>’ is omitted, the position of ego is used.

VisibleFrom(base)
The ‘visible from <Point>’ specifier.

Specifies ‘position’, with no dependencies.

This uses the given object’s ‘visibleRegion’ property, and so correctly handles the view regions of Points, Ori-
entedPoints, and Objects.

VisibleSpec()
The ‘visible’ specifier (equivalent to ‘visible from ego’).

Specifies ‘position’, with no dependencies.

OffsetBy(offset)
The ‘offset by <vector>’ specifier.

Specifies ‘position’, with no dependencies.

OffsetAlongSpec(direction, offset)
The ‘offset along X by Y’ polymorphic specifier.

Specifies ‘position’, with no dependencies.

78 Chapter 1. Table of Contents

Scenic

Allowed forms: offset along <heading> by <vector> offset along <field> by <vector>

Facing(heading)
The ‘facing X’ polymorphic specifier.

Specifies ‘heading’, with dependencies depending on the form: facing <number> – no dependencies; facing
<field> – depends on ‘position’.

FacingToward(pos)
The ‘facing toward <vector>’ specifier.

Specifies ‘heading’, depending on ‘position’.

ApparentlyFacing(heading, fromPt=None)
The ‘apparently facing <heading> [from <vector>]’ specifier.

Specifies ‘heading’, depending on ‘position’.

If the ‘from <vector>’ is omitted, the position of ego is used.

LeftSpec(pos, dist=0)
The ‘left of X [by Y]’ polymorphic specifier.

Specifies ‘position’, depending on ‘width’. See other dependencies below.

Allowed forms: left of <oriented point> [by <scalar/vector>] – optionally specifies ‘heading’; left of <vector>
[by <scalar/vector>] – depends on ‘heading’.

If the ‘by <scalar/vector>’ is omitted, zero is used.

RightSpec(pos, dist=0)
The ‘right of X [by Y]’ polymorphic specifier.

Specifies ‘position’, depending on ‘width’. See other dependencies below.

Allowed forms: right of <oriented point> [by <scalar/vector>] – optionally specifies ‘heading’; right of <vec-
tor> [by <scalar/vector>] – depends on ‘heading’.

If the ‘by <scalar/vector>’ is omitted, zero is used.

Ahead(pos, dist=0)
The ‘ahead of X [by Y]’ polymorphic specifier.

Specifies ‘position’, depending on ‘height’. See other dependencies below.

Allowed forms:

• ahead of <oriented point> [by <scalar/vector>] – optionally specifies ‘heading’;

• ahead of <vector> [by <scalar/vector>] – depends on ‘heading’.

If the ‘by <scalar/vector>’ is omitted, zero is used.

Behind(pos, dist=0)
The ‘behind X [by Y]’ polymorphic specifier.

Specifies ‘position’, depending on ‘height’. See other dependencies below.

Allowed forms: behind <oriented point> [by <scalar/vector>] – optionally specifies ‘heading’; behind <vec-
tor> [by <scalar/vector>] – depends on ‘heading’.

If the ‘by <scalar/vector>’ is omitted, zero is used.

Following(field, dist, fromPt=None)
The ‘following F [from X] for D’ specifier.

Specifies ‘position’, and optionally ‘heading’, with no dependencies.

1.7. Scenic Internals 79

Scenic

Allowed forms: following <field> [from <vector>] for <number>

If the ‘from <vector>’ is omitted, the position of ego is used.

Front(X)
The ‘front of <object>’ operator.

Back(X)
The ‘back of <object>’ operator.

Left(X)
The ‘left of <object>’ operator.

Right(X)
The ‘right of <object>’ operator.

FrontLeft(X)
The ‘front left of <object>’ operator.

FrontRight(X)
The ‘front right of <object>’ operator.

BackLeft(X)
The ‘back left of <object>’ operator.

BackRight(X)
The ‘back right of <object>’ operator.

The scenic module itself provides two functions as the top-level interface to Scenic:

scenarioFromFile(path, cacheImports=False)
Compile a Scenic file into a Scenario.

Parameters

• path (str) – path to a Scenic file

• cacheImports (bool) – Whether to cache any imported Scenic modules. The default
behavior is to not do this, so that subsequent attempts to import such modules will cause
them to be recompiled. If it is safe to cache Scenic modules across multiple compilations,
set this argument to True. Then importing a Scenic module will have the same behavior as
importing a Python module.

Returns A Scenario object representing the Scenic scenario.

scenarioFromString(string, filename='<string>', cacheImports=False)
Compile a string of Scenic code into a Scenario.

The optional filename is used for error messages.

1.8 Credits

If you use Scenic, we request that you cite our PLDI 2019.

Scenic is primarily maintained by Daniel J. Fremont.

The Scenic project was started at UC Berkeley in Sanjit Seshia’s research group.

The language was developed by Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia.

Edward Kim assisted in putting together this documentation.

80 Chapter 1. Table of Contents

https://people.eecs.berkeley.edu/~sseshia/pubs/b2hd-fremont-pldi19.html

Scenic

The Scenic tool has benefitted from code contributions from:

• Johnathan Chiu

• Francis Indaheng

• Martin Jansa (LG Electronics, Inc.)

• Wilson Wu

Finally, many other people provided helpful advice and discussions, including:

• Ankush Desai

• Alastair Donaldson

• Andrew Gordon

• Jonathan Ragan-Kelley

• Sriram Rajamani

• Marcell Vazquez-Chanlatte

1.8. Credits 81

Scenic

82 Chapter 1. Table of Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

83

Scenic

84 Chapter 2. Indices and Tables

CHAPTER

THREE

LICENSE

Scenic is distributed under the 3-Clause BSD License.

85

https://opensource.org/licenses/BSD-3-Clause

Scenic

86 Chapter 3. License

BIBLIOGRAPHY

[F19] Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.

[GR83] Goldberg and Robson, Smalltalk-80: The Language and its Implementation, Addison-Wesley, 1983. [PDF]

87

http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

Scenic

88 Bibliography

PYTHON MODULE INDEX

s
scenic.core, 27
scenic.core.distributions, 27
scenic.core.external_params, 31
scenic.core.geometry, 34
scenic.core.lazy_eval, 36
scenic.core.object_types, 37
scenic.core.pruning, 39
scenic.core.regions, 40
scenic.core.scenarios, 43
scenic.core.specifiers, 44
scenic.core.type_support, 44
scenic.core.utils, 46
scenic.core.vectors, 47
scenic.core.workspaces, 49
scenic.simulators, 49
scenic.simulators.carla, 49
scenic.simulators.carla.car_models, 51
scenic.simulators.carla.interface, 51
scenic.simulators.carla.map, 50
scenic.simulators.carla.model, 50
scenic.simulators.carla.prop_models, 51
scenic.simulators.formats, 64
scenic.simulators.formats.opendrive, 65
scenic.simulators.formats.opendrive.workspace,

65
scenic.simulators.formats.opendrive.xodr_parser,

65
scenic.simulators.gta, 51
scenic.simulators.gta.center_detection,

54
scenic.simulators.gta.img_modf, 56
scenic.simulators.gta.interface, 53
scenic.simulators.gta.map, 56
scenic.simulators.gta.messages, 56
scenic.simulators.gta.model, 52
scenic.simulators.webots, 57
scenic.simulators.webots.common, 62
scenic.simulators.webots.guideways, 61
scenic.simulators.webots.guideways.interface,

62
scenic.simulators.webots.guideways.intersection,

62
scenic.simulators.webots.guideways.model,

61
scenic.simulators.webots.mars, 57
scenic.simulators.webots.mars.model, 57
scenic.simulators.webots.road, 58
scenic.simulators.webots.road.car_models,

60
scenic.simulators.webots.road.interface,

60
scenic.simulators.webots.road.model, 58
scenic.simulators.webots.road.world, 59
scenic.simulators.webots.world_parser,

63
scenic.simulators.xplane, 64
scenic.simulators.xplane.model, 64
scenic.syntax, 67
scenic.syntax.relations, 67
scenic.syntax.translator, 68
scenic.syntax.veneer, 72

89

Scenic

90 Python Module Index

INDEX

Symbols
_asdict() (CarModel method), 61
_asdict() (Constructor method), 70
_asdict() (EdgeData method), 55
_asdict() (InfixOp method), 70
_make() (CarModel class method), 61
_make() (Constructor class method), 70
_make() (EdgeData class method), 55
_make() (InfixOp class method), 70
_replace() (CarModel method), 61
_replace() (Constructor method), 70
_replace() (EdgeData method), 55
_replace() (InfixOp method), 71

A
Ahead() (in module scenic.syntax.veneer), 79
AllRegion (class in scenic.core.regions), 42
AngleFrom() (in module scenic.syntax.veneer), 78
AngleTo() (in module scenic.syntax.veneer), 78
ApparentHeading() (in module

scenic.syntax.veneer), 77
ApparentlyFacing() (in module

scenic.syntax.veneer), 79
appliedTo() (Mutator method), 37, 76
applyTo() (Specifier method), 44
areEquivalent() (in module scenic.core.utils), 47
arity() (InfixOp property), 71
ASTParseError, 71
At() (in module scenic.syntax.veneer), 78
AttributeDistribution (class in

scenic.core.distributions), 30
AttributeFinder (class in scenic.syntax.translator),

71

B
Back() (in module scenic.syntax.veneer), 80
BackLeft() (in module scenic.syntax.veneer), 80
BackRight() (in module scenic.syntax.veneer), 80
Behind() (in module scenic.syntax.veneer), 79
Beyond() (in module scenic.syntax.veneer), 78
BigRock (class in scenic.simulators.webots.mars.model),

58

BoundRelation (class in scenic.syntax.relations), 67
bucket() (Distribution method), 29
Bus (class in scenic.simulators.gta.model), 52

C
cached() (in module scenic.core.utils), 47
canCoerce() (in module scenic.core.type_support), 45
canCoerceType() (in module

scenic.core.type_support), 45
CanSee() (in module scenic.syntax.veneer), 78
Car (class in scenic.simulators.gta.model), 52
CarColor (class in scenic.simulators.gta.interface), 54
CarColorMutator (class in

scenic.simulators.gta.interface), 54
CarModel (class in scenic.simulators.gta.interface), 53
CarModel (class in scenic.simulators.webots.road.car_models),

61
clone() (Distribution method), 29
Clothoid (class in scenic.simulators.formats.opendrive.xodr_parser),

66
coerce() (in module scenic.core.type_support), 45
coerceToAny() (in module scenic.core.type_support),

45
Compact (class in scenic.simulators.gta.model), 53
compileStream() (in module

scenic.syntax.translator), 70
conditionTo() (Samplable method), 29
Constructible (class in scenic.core.object_types),

37
Constructor (class in scenic.syntax.translator), 70
constructScenarioFrom() (in module

scenic.syntax.translator), 72
containsObject() (Region method), 41, 74
containsPoint() (Region method), 41, 74
createPlatoonAt() (in module

scenic.simulators.gta.model), 53
Crossroad (class in

scenic.simulators.webots.road.interface),
60

Cubic (class in scenic.simulators.formats.opendrive.xodr_parser),
66

curb (in module scenic.simulators.gta.model), 52

91

Scenic

currentPropValue() (in module
scenic.core.pruning), 39

Curve (class in scenic.simulators.formats.opendrive.xodr_parser),
66

CustomDistribution (class in
scenic.core.distributions), 30

CustomVectorDistribution (class in
scenic.core.vectors), 48

D
Debris (class in scenic.simulators.webots.mars.model),

58
defaultColor() (CarColor static method), 54
DefaultIdentityDict (class in

scenic.core.distributions), 29
defaultValueType (Distribution attribute), 29
defaultValueType (VectorDistribution attribute), 48
DelayedArgument (class in scenic.core.lazy_eval), 36
dependencies() (in module

scenic.core.distributions), 28
dependencyTree() (Samplable method), 29
Discrete (in module scenic.syntax.veneer), 75
DiscreteRange (class in scenic.core.distributions),

31
DistanceFrom() (in module scenic.syntax.veneer),

77
DistanceRelation (class in scenic.syntax.relations),

68
Distribution (class in scenic.core.distributions), 29
distributionFunction() (in module

scenic.core.distributions), 30
distributionMethod() (in module

scenic.core.distributions), 30

E
EdgeData (class in scenic.simulators.gta.center_detection),

55
edgeSeparates() (RotatedRectangle static method),

35
ego() (in module scenic.syntax.veneer), 77
EgoCar (class in scenic.simulators.gta.model), 52
EmptyRegion (class in scenic.core.regions), 42
ErrorReporter (class in

scenic.simulators.webots.world_parser),
63

evaluateIn() (LazilyEvaluable method), 36
evaluateIn() (Samplable method), 29
evaluateInner() (LazilyEvaluable method), 36
evaluateRequiringEqualTypes() (in module

scenic.core.type_support), 46
Evaluator (class in

scenic.simulators.webots.world_parser),
63

executeCodeIn() (in module
scenic.syntax.translator), 72

executePythonFunction() (in module
scenic.syntax.translator), 72

ExternalParameter (class in
scenic.core.external_params), 33

ExternalSampler (class in
scenic.core.external_params), 33

F
Facing() (in module scenic.syntax.veneer), 79
FacingToward() (in module scenic.syntax.veneer),

79
feasibleRHPolygon() (in module

scenic.core.pruning), 40
FieldAt() (in module scenic.syntax.veneer), 77
find_center() (in module

scenic.simulators.gta.center_detection), 55
findConstructorsIn() (in module

scenic.syntax.translator), 71
findNodeTypesIn() (in module

scenic.simulators.webots.world_parser),
64

Follow() (in module scenic.syntax.veneer), 78
Following() (in module scenic.syntax.veneer), 79
forParameters() (ExternalSampler static method),

33
Front() (in module scenic.syntax.veneer), 80
FrontLeft() (in module scenic.syntax.veneer), 80
FrontRight() (in module scenic.syntax.veneer), 80
FunctionDistribution (class in

scenic.core.distributions), 30

G
generate() (Scenario method), 43
generateTracebackFrom() (in module

scenic.syntax.translator), 72
getAABB() (Region method), 41, 74
givePP2TWarning (in module scenic.core.geometry),

35
Goal (class in scenic.simulators.webots.mars.model), 58
GridRegion (class in scenic.core.regions), 42

H
Heading (class in scenic.core.type_support), 45
HeadingMutator (class in scenic.core.object_types),

37
height() (CarModel property), 61
hooked_import() (in module

scenic.syntax.translator), 71

I
implementation() (InfixOp property), 71

92 Index

Scenic

In() (in module scenic.syntax.veneer), 78
InconsistentScenarioError, 47
inferDistanceRelations() (in module

scenic.syntax.relations), 67
inferRelationsFrom() (in module

scenic.syntax.relations), 67
inferRelativeHeadingRelations() (in mod-

ule scenic.syntax.relations), 67
InfixOp (class in scenic.syntax.translator), 70
init_theta() (EdgeData property), 55
InterpreterParseError, 72
intersect() (Region method), 41, 74
InvalidScenarioError, 47
isA() (in module scenic.core.type_support), 45
isMethodCall() (in module scenic.core.pruning), 39
isPrimitive() (Distribution property), 29

L
LazilyEvaluable (class in scenic.core.lazy_eval), 36
Left() (in module scenic.syntax.veneer), 80
LeftSpec() (in module scenic.syntax.veneer), 79
Line (class in scenic.simulators.formats.opendrive.xodr_parser),

66

M
makeDelayedFunctionCall() (in module

scenic.core.lazy_eval), 36
Map (class in scenic.simulators.gta.interface), 53
MapWorkspace (class in

scenic.simulators.gta.interface), 53
matchInRegion() (in module scenic.core.pruning),

39
matchPolygonalField() (in module

scenic.core.pruning), 39
maxDistanceBetween() (in module

scenic.core.pruning), 40
MethodDistribution (class in

scenic.core.distributions), 30
mid_loc() (EdgeData property), 55
module

scenic.core, 27
scenic.core.distributions, 27
scenic.core.external_params, 31
scenic.core.geometry, 34
scenic.core.lazy_eval, 36
scenic.core.object_types, 37
scenic.core.pruning, 39
scenic.core.regions, 40
scenic.core.scenarios, 43
scenic.core.specifiers, 44
scenic.core.type_support, 44
scenic.core.utils, 46
scenic.core.vectors, 47
scenic.core.workspaces, 49

scenic.simulators, 49
scenic.simulators.carla, 49
scenic.simulators.carla.car_models,

51
scenic.simulators.carla.interface,

51
scenic.simulators.carla.map, 50
scenic.simulators.carla.model, 50
scenic.simulators.carla.prop_models,

51
scenic.simulators.formats, 64
scenic.simulators.formats.opendrive,

65
scenic.simulators.formats.opendrive.workspace,

65
scenic.simulators.formats.opendrive.xodr_parser,

65
scenic.simulators.gta, 51
scenic.simulators.gta.center_detection,

54
scenic.simulators.gta.img_modf, 56
scenic.simulators.gta.interface, 53
scenic.simulators.gta.map, 56
scenic.simulators.gta.messages, 56
scenic.simulators.gta.model, 52
scenic.simulators.webots, 57
scenic.simulators.webots.common, 62
scenic.simulators.webots.guideways,

61
scenic.simulators.webots.guideways.interface,

62
scenic.simulators.webots.guideways.intersection,

62
scenic.simulators.webots.guideways.model,

61
scenic.simulators.webots.mars, 57
scenic.simulators.webots.mars.model,

57
scenic.simulators.webots.road, 58
scenic.simulators.webots.road.car_models,

60
scenic.simulators.webots.road.interface,

60
scenic.simulators.webots.road.model,

58
scenic.simulators.webots.road.world,

59
scenic.simulators.webots.world_parser,

63
scenic.simulators.xplane, 64
scenic.simulators.xplane.model, 64
scenic.syntax, 67
scenic.syntax.relations, 67
scenic.syntax.translator, 68

Index 93

Scenic

scenic.syntax.veneer, 72
monotonicDistributionFunction() (in mod-

ule scenic.core.distributions), 30
MultiplexerDistribution (class in

scenic.core.distributions), 30
mutate() (in module scenic.syntax.veneer), 77
Mutator (class in scenic.core.object_types), 37
Mutator (class in scenic.syntax.veneer), 76

N
name() (CarModel property), 61
name() (Constructor property), 70
needsSampling() (in module

scenic.core.distributions), 28
nextSample() (ExternalSampler method), 33
Node (class in scenic.simulators.webots.world_parser),

63
node() (InfixOp property), 71
NoisyColorDistribution (class in

scenic.simulators.gta.interface), 54
Normal (class in scenic.core.distributions), 30
Normal (class in scenic.syntax.veneer), 75

O
Object (class in scenic.core.object_types), 38
Object (class in scenic.syntax.veneer), 76
OffsetAlong() (in module scenic.syntax.veneer), 77
OffsetAlongSpec() (in module

scenic.syntax.veneer), 78
OffsetBy() (in module scenic.syntax.veneer), 78
OperatorDistribution (class in

scenic.core.distributions), 30
opp_loc() (EdgeData property), 55
Options (class in scenic.core.distributions), 31
Options (class in scenic.syntax.veneer), 75
orient() (Region method), 41, 74
OrientedPoint (class in scenic.core.object_types),

38
OrientedPoint (class in scenic.syntax.veneer), 76
OSMObject (class in

scenic.simulators.webots.road.interface),
60

P
param() (in module scenic.syntax.veneer), 77
ParamCubic (class in

scenic.simulators.formats.opendrive.xodr_parser),
66

parent() (Constructor property), 70
parse() (in module

scenic.simulators.webots.world_parser),
64

ParseError, 47

partitionByImports() (in module
scenic.syntax.translator), 71

PedestrianCrossing (class in
scenic.simulators.webots.road.interface),
60

Peekable (class in scenic.syntax.translator), 71
Pipe (class in scenic.simulators.webots.mars.model), 58
Plane (class in scenic.simulators.xplane.model), 64
Point (class in scenic.core.object_types), 37
Point (class in scenic.syntax.veneer), 76
PointInRegionDistribution (class in

scenic.core.regions), 41
PointSetRegion (class in scenic.core.regions), 42
PointSetRegion (class in scenic.syntax.veneer), 74
Poly3 (class in scenic.simulators.formats.opendrive.xodr_parser),

66
PolygonalRegion (class in scenic.core.regions), 42
PolygonalRegion (class in scenic.syntax.veneer), 74
PolylineRegion (class in scenic.core.regions), 42
PolylineRegion (class in scenic.syntax.veneer), 75
PositionMutator (class in scenic.core.object_types),

37
PropertyDefault (class in scenic.core.specifiers), 44
PropertyDefault (class in scenic.syntax.veneer), 77
prune() (in module scenic.core.pruning), 39
pruneContainment() (in module

scenic.core.pruning), 39
pruneRelativeHeading() (in module

scenic.core.pruning), 40
PythonParseError, 71

R
Range (class in scenic.core.distributions), 30
Range (class in scenic.syntax.veneer), 75
Region (class in scenic.core.regions), 41
Region (class in scenic.syntax.veneer), 74
regionFromShapelyObject() (in module

scenic.core.regions), 41
RejectionException, 29
rel_to_abs() (Curve method), 66
RelativeHeading() (in module

scenic.syntax.veneer), 77
relativeHeadingRange() (in module

scenic.core.pruning), 40
RelativeHeadingRelation (class in

scenic.syntax.relations), 67
RelativePosition() (in module

scenic.syntax.veneer), 77
RelativeTo() (in module scenic.syntax.veneer), 77
require() (in module scenic.syntax.veneer), 77
resample() (in module scenic.syntax.veneer), 77
resetExternalSampler() (Scenario method), 43
resolveFor() (PropertyDefault method), 44, 77
Right() (in module scenic.syntax.veneer), 80

94 Index

Scenic

RightSpec() (in module scenic.syntax.veneer), 79
Road (class in scenic.simulators.webots.road.interface),

60
road (in module scenic.simulators.gta.model), 52
roadDirection (in module

scenic.simulators.gta.model), 52
RoadLink (class in scenic.simulators.formats.opendrive.xodr_parser),

66
Rock (class in scenic.simulators.webots.mars.model), 58
rotatedBy() (Vector method), 48, 74
RotatedRectangle (class in scenic.core.geometry),

35
Rover (class in scenic.simulators.webots.mars.model),

58
RuntimeParseError, 47

S
Samplable (class in scenic.core.distributions), 29
sample() (ExternalSampler method), 33
sample() (Samplable method), 29
sampleAll() (Samplable static method), 29
sampleGiven() (ExternalParameter method), 33
sampleGiven() (Samplable method), 29
scalarOperator() (in module scenic.core.vectors),

48
Scenario (class in scenic.core.scenarios), 43
scenarioFromFile() (in module scenic), 80
scenarioFromFile() (in module

scenic.syntax.translator), 69
scenarioFromStream() (in module

scenic.syntax.translator), 70
scenarioFromString() (in module scenic), 80
scenarioFromString() (in module

scenic.syntax.translator), 69
Scene (class in scenic.core.scenarios), 43
scenic.core

module, 27
scenic.core.distributions

module, 27
scenic.core.external_params

module, 31
scenic.core.geometry

module, 34
scenic.core.lazy_eval

module, 36
scenic.core.object_types

module, 37
scenic.core.pruning

module, 39
scenic.core.regions

module, 40
scenic.core.scenarios

module, 43
scenic.core.specifiers

module, 44
scenic.core.type_support

module, 44
scenic.core.utils

module, 46
scenic.core.vectors

module, 47
scenic.core.workspaces

module, 49
scenic.simulators

module, 49
scenic.simulators.carla

module, 49
scenic.simulators.carla.car_models

module, 51
scenic.simulators.carla.interface

module, 51
scenic.simulators.carla.map

module, 50
scenic.simulators.carla.model

module, 50
scenic.simulators.carla.prop_models

module, 51
scenic.simulators.formats

module, 64
scenic.simulators.formats.opendrive

module, 65
scenic.simulators.formats.opendrive.workspace

module, 65
scenic.simulators.formats.opendrive.xodr_parser

module, 65
scenic.simulators.gta

module, 51
scenic.simulators.gta.center_detection

module, 54
scenic.simulators.gta.img_modf

module, 56
scenic.simulators.gta.interface

module, 53
scenic.simulators.gta.map

module, 56
scenic.simulators.gta.messages

module, 56
scenic.simulators.gta.model

module, 52
scenic.simulators.webots

module, 57
scenic.simulators.webots.common

module, 62
scenic.simulators.webots.guideways

module, 61
scenic.simulators.webots.guideways.interface

module, 62
scenic.simulators.webots.guideways.intersection

Index 95

Scenic

module, 62
scenic.simulators.webots.guideways.model

module, 61
scenic.simulators.webots.mars

module, 57
scenic.simulators.webots.mars.model

module, 57
scenic.simulators.webots.road

module, 58
scenic.simulators.webots.road.car_models

module, 60
scenic.simulators.webots.road.interface

module, 60
scenic.simulators.webots.road.model

module, 58
scenic.simulators.webots.road.world

module, 59
scenic.simulators.webots.world_parser

module, 63
scenic.simulators.xplane

module, 64
scenic.simulators.xplane.model

module, 64
scenic.syntax

module, 67
scenic.syntax.relations

module, 67
scenic.syntax.translator

module, 68
scenic.syntax.veneer

module, 72
scenicToSchematicCoords() (Workspace

method), 49, 75
setLocalWorld() (in module

scenic.simulators.webots.road.world), 59
show() (Scene method), 43
show() (Workspace method), 49, 75
Specifier (class in scenic.core.specifiers), 44
specifiers() (Constructor property), 70
storeScenarioStateIn() (in module

scenic.syntax.translator), 72
supportInterval() (Distribution method), 29
supportInterval() (in module

scenic.core.distributions), 28
syntax() (InfixOp property), 71

T
tangent() (EdgeData property), 55
to_points() (Curve method), 66
toDistribution() (in module

scenic.core.distributions), 30
toHeading() (in module scenic.core.type_support), 46
token() (InfixOp property), 71
TokenParseError, 71

TokenTranslator (class in scenic.syntax.translator),
71

topLevelNamespace() (in module
scenic.syntax.translator), 70

toScalar() (in module scenic.core.type_support), 46
toType() (in module scenic.core.type_support), 46
toTypes() (in module scenic.core.type_support), 46
toVector() (in module scenic.core.type_support), 46
translate() (TokenTranslator method), 71
translateParseTree() (in module

scenic.syntax.translator), 72
triangulatePolygon() (in module

scenic.core.geometry), 35
TruncatedNormal (class in

scenic.core.distributions), 30
TupleDistribution (class in

scenic.core.distributions), 30
TypeChecker (class in scenic.core.type_support), 46
TypeEqualityChecker (class in

scenic.core.type_support), 46

U
underlyingFunction() (in module

scenic.core.distributions), 28
underlyingType() (in module

scenic.core.type_support), 45
uniformColor() (CarColor static method), 54
uniformPoint() (Region method), 41, 74
uniformPointIn() (Region static method), 41, 74
uniformPointInner() (Region method), 41, 74
unifyingType() (in module

scenic.core.type_support), 45

V
validate() (Scenario method), 43
valueFor() (ExternalSampler method), 33
valueInContext() (in module

scenic.core.lazy_eval), 36
Vector (class in scenic.core.vectors), 48
Vector (class in scenic.syntax.veneer), 74
VectorDistribution (class in scenic.core.vectors),

48
vectorDistributionMethod() (in module

scenic.core.vectors), 48
VectorMethodDistribution (class in

scenic.core.vectors), 48
vectorOperator() (in module scenic.core.vectors),

48
VectorOperatorDistribution (class in

scenic.core.vectors), 48
verbosePrint() (in module scenic.syntax.veneer),

77
VerifaiDiscreteRange (class in

scenic.core.external_params), 34

96 Index

Scenic

VerifaiDiscreteRange (class in
scenic.syntax.veneer), 75

VerifaiOptions (class in
scenic.core.external_params), 34

VerifaiOptions (class in scenic.syntax.veneer), 75
VerifaiParameter (class in

scenic.core.external_params), 34
VerifaiParameter (class in scenic.syntax.veneer),

75
VerifaiRange (class in scenic.core.external_params),

34
VerifaiRange (class in scenic.syntax.veneer), 75
VerifaiSampler (class in

scenic.core.external_params), 33
visibilityBound() (in module

scenic.core.pruning), 40
Visible() (in module scenic.syntax.veneer), 77
VisibleFrom() (in module scenic.syntax.veneer), 78
VisibleSpec() (in module scenic.syntax.veneer), 78

W
webotsToScenicPosition() (in module

scenic.simulators.webots.common), 63
width() (CarModel property), 61
With() (in module scenic.syntax.veneer), 78
withPrior() (VerifaiParameter static method), 34, 75
Workspace (class in scenic.core.workspaces), 49
Workspace (class in scenic.syntax.veneer), 75
workspace (in module scenic.simulators.gta.model),

52
worldPath (in module

scenic.simulators.webots.road.world), 59

Z
zoomAround() (Workspace method), 49, 75

Index 97

	Table of Contents
	Indices and Tables
	License
	Bibliography
	Python Module Index
	Index

