
Scenic

Daniel J. Fremont, Eric Vin, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia

Jun 30, 2023

INTRODUCTION

1 Table of Contents 3

2 Indices and Tables 357

3 License 359

Bibliography 361

Python Module Index 363

Index 365

i

ii

Scenic

Scenic is a domain-specific probabilistic programming language for modeling the environments of cyber-physical sys-
tems like robots and autonomous cars. A Scenic program defines a distribution over scenes, configurations of physical
objects and agents; sampling from this distribution yields concrete scenes which can be simulated to produce training
or testing data. Scenic can also define (probabilistic) policies for dynamic agents, allowing modeling scenarios where
agents take actions over time in response to the state of the world.

Scenic was designed and implemented by Daniel J. Fremont, Eric Vin, Edward Kim, Tommaso Dreossi, Shromona
Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia, with contributions from many others.
For a description of the language and some of its applications, see our journal paper, which extends our PLDI 2019
paper on Scenic 1.x. Our publications page lists additional papers using Scenic.

Note: The syntax of Scenic 3.0 is not completely backwards-compatible with earlier versions of Scenic, which were
used in our papers prior to 2023. See What’s New in Scenic for a list of syntax changes and new features. Old code can
likely be easily ported; you can also install older releases if necessary from GitHub.

If you have any problems using Scenic, please submit an issue to our GitHub repository or contact Daniel at dfre-
mont@ucsc.edu.

INTRODUCTION 1

https://doi.org/10.1007/s10994-021-06120-5
https://arxiv.org/abs/1809.09310
https://arxiv.org/abs/1809.09310
https://github.com/BerkeleyLearnVerify/Scenic/releases
https://github.com/BerkeleyLearnVerify/Scenic
mailto:dfremont@ucsc.edu
mailto:dfremont@ucsc.edu

Scenic

2 INTRODUCTION

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Getting Started with Scenic

1.1.1 Installation

Scenic requires Python 3.8 or newer. Run python --version to make sure you have a new enough version; if not,
you can install one from the Python website or using pyenv (e.g. running pyenv install 3.11). If the version of
Python you want to use is called something different than just python on your system, e.g. python3.11, use that name
in place of python when creating a virtual environment below.

There are two ways to install Scenic:

• from our repository, which has the very latest features but may not be stable. The repository also contains example
scenarios such as those used in the instructions below and our tutorials.

• from the Python Package Index (PyPI), which will get you the latest official release of Scenic but will not include
example scenarios, etc.

If this is your first time using Scenic, we suggest installing from the repository so that you can try out the example
scenarios.

Once you’ve decided which method you want to use, follow the instructions below for your operating system. If you
encounter any errors, please see our Notes on Installing Scenic for suggestions.

macOS

Start by downloading Blender and OpenSCAD and installing them into your Applications directory.

Next, activate the virtual environment in which you want to install Scenic. To create and activate a new virtual envi-
ronment called venv, you can run the following commands:

python3 -m venv venv
source venv/bin/activate

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just
python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

Repository

3

https://www.python.org/downloads/
https://github.com/pyenv/pyenv
https://www.blender.org/download/
https://openscad.org/downloads.html
https://docs.python.org/3/tutorial/venv.html

Scenic

The following commands will clone the Scenic repository into a folder called Scenic and install Scenic from there. It
is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you
won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development
dependencies: see Developing Scenic.

PyPI

The following command will install the latest full release of Scenic from PyPI:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions. If you want to get the
very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

Next, activate the virtual environment in which you want to install Scenic. To create and activate a new virtual envi-
ronment called venv, you can run the following commands:

python3 -m venv venv
source venv/bin/activate

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just
python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

Repository

The following commands will clone the Scenic repository into a folder called Scenic and install Scenic from there. It
is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you
won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development
dependencies: see Developing Scenic.

PyPI

The following command will install the latest full release of Scenic from PyPI:

4 Chapter 1. Table of Contents

https://github.com/BerkeleyLearnVerify/Scenic
https://pypi.org/project/scenic/
https://docs.python.org/3/tutorial/venv.html
https://github.com/BerkeleyLearnVerify/Scenic
https://pypi.org/project/scenic/

Scenic

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions. If you want to get the
very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

Linux

Start by installing the Python-Tk interface, Blender, and OpenSCAD. You can likely use your system’s package man-
ager; e.g. on Debian/Ubuntu run:

sudo apt-get install python3-tk blender openscad

For other Linux distributions or if you need to install from source, see the download pages for Blender and OpenSCAD.

Next, activate the virtual environment in which you want to install Scenic. To create and activate a new virtual envi-
ronment called venv, you can run the following commands:

python3 -m venv venv
source venv/bin/activate

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just
python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

Repository

The following commands will clone the Scenic repository into a folder called Scenic and install Scenic from there. It
is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you
won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development
dependencies: see Developing Scenic.

PyPI

The following command will install the latest full release of Scenic from PyPI:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions. If you want to get the
very latest version available on PyPI (which may still be behind the repository), run:

1.1. Getting Started with Scenic 5

https://www.blender.org/download/
https://openscad.org/downloads.html
https://docs.python.org/3/tutorial/venv.html
https://github.com/BerkeleyLearnVerify/Scenic
https://pypi.org/project/scenic/

Scenic

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

Next, activate the virtual environment in which you want to install Scenic. To create and activate a new virtual envi-
ronment called venv, you can run the following commands:

python3 -m venv venv
source venv/bin/activate

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just
python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

Repository

The following commands will clone the Scenic repository into a folder called Scenic and install Scenic from there. It
is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you
won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development
dependencies: see Developing Scenic.

PyPI

The following command will install the latest full release of Scenic from PyPI:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions. If you want to get the
very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

Windows

These instructions cover installing Scenic natively on Windows; if you are using the Windows Subsystem for Linux (on
Windows 10 and newer), see the WSL tab instead.

Start by downloading and running the installers for Blender and OpenSCAD.

Next, activate the virtual environment in which you want to install Scenic. To create and activate a new virtual envi-
ronment called venv, you can run the following commands:

6 Chapter 1. Table of Contents

https://docs.python.org/3/tutorial/venv.html
https://github.com/BerkeleyLearnVerify/Scenic
https://pypi.org/project/scenic/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.blender.org/download/
https://openscad.org/downloads.html
https://docs.python.org/3/tutorial/venv.html

Scenic

Next, activate the virtual environment in which you want to install Scenic. To create and activate a new virtual envi-
ronment called venv, you can run the following commands:

python -m venv venv
venv\Scripts\activate.bat

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just
python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

Repository

The following commands will clone the Scenic repository into a folder called Scenic and install Scenic from there. It
is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you
won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development
dependencies: see Developing Scenic.

PyPI

The following command will install the latest full release of Scenic from PyPI:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions. If you want to get the
very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just
python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

Repository

The following commands will clone the Scenic repository into a folder called Scenic and install Scenic from there. It
is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you
won’t need to reinstall Scenic.

1.1. Getting Started with Scenic 7

https://docs.python.org/3/tutorial/venv.html
https://github.com/BerkeleyLearnVerify/Scenic
https://pypi.org/project/scenic/
https://github.com/BerkeleyLearnVerify/Scenic

Scenic

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development
dependencies: see Developing Scenic.

PyPI

The following command will install the latest full release of Scenic from PyPI:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions. If you want to get the
very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

WSL

These instructions cover installing Scenic on the Windows Subsystem for Linux (WSL).

If you haven’t already installed WSL, you can do that by running wsl --install (in either Command Prompt or
PowerShell) and restarting your computer. Then open a WSL terminal and run the following commands to install
Python, the Python-Tk interface, Blender, and OpenSCAD:

sudo apt-get update
sudo apt-get install python3 python3-tk blender openscad

Next, activate the virtual environment in which you want to install Scenic. To create and activate a new virtual envi-
ronment called venv, you can run the following commands:

Next, activate the virtual environment in which you want to install Scenic. To create and activate a new virtual envi-
ronment called venv, you can run the following commands:

python3 -m venv venv
source venv/bin/activate

If you get an error about needing a package like python3.10-venv, run

sudo apt-get install python3.10-venv

(putting in the appropriate Python version) and try the commands above again.

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just
python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

Repository

8 Chapter 1. Table of Contents

https://pypi.org/project/scenic/
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html

Scenic

The following commands will clone the Scenic repository into a folder called Scenic and install Scenic from there. It
is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you
won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development
dependencies: see Developing Scenic.

PyPI

The following command will install the latest full release of Scenic from PyPI:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions. If you want to get the
very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

Once your virtual environment is activated, you no longer need to use a name like python3 or python3.11; use just
python to ensure you’re running the copy of Python in your virtual environment.

Next, make sure your pip tool is up-to-date:

python -m pip install --upgrade pip

Now you can install Scenic either from the repository or from PyPI:

Repository

The following commands will clone the Scenic repository into a folder called Scenic and install Scenic from there. It
is an “editable install”, so if you later update the repository with git pull or make changes to the code yourself, you
won’t need to reinstall Scenic.

git clone https://github.com/BerkeleyLearnVerify/Scenic
cd Scenic
python -m pip install -e .

If you will be developing Scenic, you will want to use a variant of the last command to install additional development
dependencies: see Developing Scenic.

PyPI

The following command will install the latest full release of Scenic from PyPI:

python -m pip install scenic

Note that this command skips experimental alpha and beta releases, preferring stable versions. If you want to get the
very latest version available on PyPI (which may still be behind the repository), run:

python -m pip install --pre scenic

1.1. Getting Started with Scenic 9

https://github.com/BerkeleyLearnVerify/Scenic
https://pypi.org/project/scenic/
https://github.com/BerkeleyLearnVerify/Scenic
https://pypi.org/project/scenic/

Scenic

You can also install specific versions with a command like:

python -m pip install scenic==2.0.0

You can now verify that Scenic is properly installed by running the command:

scenic --version

This should print out a message like Scenic 3.0.0 showing which version of Scenic is installed. If you get an error
(or got one earlier when following the instructions above), please see our Notes on Installing Scenic for suggestions.

Note: If a feature described in this documentation seems to be missing, your version of Scenic may be too old: take a
look at What’s New in Scenic to see when the feature was added.

To help read Scenic code, we suggest you install a syntax highlighter plugin for your text editor. Plugins for Sublime
Text and Visual Studio Code can be installed from within those tools; for other editors supporting the TextMate grammar
format, the grammar is available here.

1.1.2 Trying Some Examples

The Scenic repository contains many example scenarios, found in the examples directory. They are organized in
various directories with the name of the simulator, abstract application domain, or visualizer they are written for. For
example, gta and webots for the GTA (Grand Theft Auto V) and Webots simulators; the driving directory for the
abstract driving domain; and the visualizer directory for the built in Scenic visualizer.

Each simulator has a specialized Scenic interface which requires additional setup (see Supported Simulators); however,
for convenience Scenic provides an easy way to visualize scenarios without running a simulator. Simply run scenic,
giving a path to a Scenic file:

scenic examples/webots/vacuum/vacuum_simple.scenic

This will compile the Scenic program and sample from it (which may take several seconds), displaying a schematic of
the resulting scene. Since this is a simple scenario designed to evaluate the performance of a robot vacuum, you should
get something like this:

10 Chapter 1. Table of Contents

https://github.com/UCSCFormalMethods/Scenic-tmLanguage

Scenic

The green cylinder is the vacuum, surrounded by various pieces of furniture in a room. You can adjust the camera angle
by clicking and dragging, and zoom in and out using the mouse wheel. If you close the window or press q, Scenic will
sample another scene from the same scenario and display it. This will repeat until you kill the generator (Control-c
in the terminal on Linux; Command-q in the viewer window on MacOS).

Some scenarios were written for older versions of Scenic, which were entirely 2D. Those scenarios should be run using
the --2d command-line option, which will enable 2D backwards-compatibility mode. Information about whether or
not the --2d flag should be used can be found in the README of each example directory.

One such scenario is the badly-parked car example from our GTA case study, which can be run with the following
command:

scenic --2d examples/gta/badlyParkedCar2.scenic

This will open Scenic’s 2D viewer, and should look something like this:

Here the circled rectangle is the ego car; its view cone extends to the right, where we see another car parked rather
poorly at the side of the road (the white lines are curbs). (Note that on MacOS, scene generation with the 2D viewer is
stopped differently than with the 3D viewer: right-click on its icon in the Dock and select Quit.)

Scenarios for the other simulators can be viewed in the same way. Here are a few for different simulators:

scenic --2d examples/driving/pedestrian.scenic
scenic examples/webots/mars/narrowGoal.scenic
scenic --2d examples/webots/road/crossing.scenic

1.1. Getting Started with Scenic 11

Scenic

The scenic command has options for setting the random seed, running dynamic simulations, printing debugging
information, etc.: see Command-Line Options.

1.1.3 Learning More

Depending on what you’d like to do with Scenic, different parts of the documentation may be helpful:

• If you want to start learning how to write Scenic programs, see Scenic Fundamentals.

• If you want to learn how to write dynamic scenarios in Scenic, see Dynamic Scenarios.

• If you want to use Scenic with a simulator, see Supported Simulators (which also describes how to interface
Scenic to a new simulator, if the one you want isn’t listed).

• If you want to control Scenic from Python rather than using the command-line tool (for example if you want to
collect data from the generated scenarios), see Using Scenic Programmatically.

• If you want to add a feature to the language or otherwise need to understand Scenic’s inner workings, see our
pages on Developing Scenic and Scenic Internals.

12 Chapter 1. Table of Contents

Scenic

1.2 Notes on Installing Scenic

This page describes common issues with installing Scenic and suggestions for fixing them.

1.2.1 All Platforms

Missing Python Version

If when running pip you get an error saying that your machine does not have a compatible version, this means that
you do not have Python 3.8 or later on your PATH. Install a newer version of Python, either directly from the Python
website or using pyenv (e.g. running pyenv install 3.10.4). Then use that version of Python when creating a
virtual environment before installing Scenic.

“setup.py” not found

This error indicates that you are using too old a version of pip: you need at least version 21.3. Run python -m pip
install --upgrade pip to upgrade.

Dependency Conflicts

If you install Scenic using pip, you might see an error message like the following:

ERROR: pip’s dependency resolver does not currently take into account all the packages that are installed.
This behaviour is the source of the following dependency conflicts.

This error means that in order to install Scenic, pip had to break the dependency constraints of some package you had
previously installed (the error message will indicate which one). So while Scenic will work correctly, something else
may now be broken. This won’t happen if you install Scenic into a fresh virtual environment.

Cannot Find Scenic

If when running the scenic command you get a “command not found” error, or when trying to import the scenic
module you get a ModuleNotFoundError, then Scenic has not been installed where your shell or Python respectively
can find it. The most likely problem is that you installed Scenic for one copy of Python but are now using a different
one: for example, if you installed Scenic in a Python virtual environment (which we highly recommend), you may
have forgotten to activate that environment, and so are using your system Python instead. See the virtual environment
tutorial for instructions.

Scene Schematics Don’t Appear (2D)

If no window appears when you ask Scenic to generate and display a scene using the --2d flag (as in the example
commands in Getting Started with Scenic), this means that Matplotlib has no interactive backend installed. On Linux,
try installing the python3-tk package (e.g. sudo apt-get install python3-tk).

1.2. Notes on Installing Scenic 13

https://www.python.org/downloads/
https://www.python.org/downloads/
https://github.com/pyenv/pyenv
https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://matplotlib.org/stable/users/explain/backends.html

Scenic

Missing SDL

If you get an error about SDL being missing, you may need to install it. On Linux (or Windows with WSL), install
the libsdl2-dev package (e.g. sudo apt-get install libsdl2-dev); on macOS, if you use Homebrew you can
run brew install sdl2. For other platforms, see the SDL website.

Using a Local Scenic Version with VerifAI

If you are using Scenic as part of the VerifAI toolkit, the VerifAI installation process will automatically install Scenic
from PyPI. However, if you need to use your own fork of Scenic or some features which have not yet been released
on PyPI, you will need to install Scenic manually in VerifAI’s virtual environment. The easiest way to do this is as
follows:

1. Install VerifAI in a virtual environment of your choice.

2. Activate the virtual environment.

3. Change directory to your clone of the Scenic repository.

4. Run pip install -e .

You can test that this process has worked correctly by going back to the VerifAI repo and running the Scenic part of its
test suite with pytest tests/test_scenic.py.

Note: Installing Scenic in this way bypasses dependency resolution for VerifAI. If your local version of Scenic requires
different versions of some of VerifAI’s dependencies, you may get errors from pip about dependency conflicts. Such
errors do not actually prevent Scenic from being installed; however you may get unexpected behavior from VerifAI
at runtime. If you are developing forks of Scenic and VerifAI, a more stable approach would be to modify VerifAI’s
pyproject.toml to point to your fork of Scenic instead of the scenic package on PyPI.

1.2.2 MacOS

Installing python-fcl on Apple silicon

If on an Apple-silicon machine you get an error related to pip being unable to install python-fcl, it can be installed
manually using the following steps:

1. Clone the python-fcl repository.

2. Navigate to the repository.

3. Install dependencies using Homebrew with the following command: brew install fcl eigen octomap

4. Activate your virtual environment if you haven’t already.

5. Install the package using pip with the following command: CPATH=$(brew --prefix)/include:$(brew
--prefix)/include/eigen3 LD_LIBRARY_PATH=$(brew --prefix)/lib python -m pip install
.

14 Chapter 1. Table of Contents

https://www.libsdl.org/
https://brew.sh/
https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/BerkeleyAutomation/python-fcl
https://brew.sh

Scenic

1.2.3 Windows

Using WSL

For greatest ease of installation, we recommend using the Windows Subsystem for Linux (WSL, a.k.a. “Bash on
Windows”) on Windows 10 and newer.

Some WSL users have reported encountering the error no display name and no $DISPLAY environmental
variable, but have had success applying the techniques outlined here.

It is possible to run Scenic natively on Windows; however, in the past there have been issues with some of Scenic’s
dependencies either not providing wheels for Windows or requiring manual installation of additional libraries.

Problems building Shapely

In the past, the shapely package did not install properly on Windows. If you encounter this issue, try installing it
manually following the instructions here.

1.3 What’s New in Scenic

This page describes what new features have been added in each version of Scenic, as well as any syntax changes which
break backwards compatibility. Scenic uses semantic versioning, so a program written for Scenic 2.1 should also work
in Scenic 2.5, but not necessarily in Scenic 3.0. You can run scenic --version to see which version of Scenic you
are using.

1.3.1 Scenic 3.x

The Scenic 3.x series adds native support for 3D geometry, precise modeling of the shapes of objects, and temporal
requirements. It also features a new parser enabling clearer error messages, greater language extensibility, and various
improvements to the syntax.

See porting to Scenic 3 for tools to help migrate existing 2D scenarios.

Scenic 3.0.0

Backwards-incompatible syntax changes:

• Objects must be explicitly created using the new keyword, e.g. new Object at (1, 2) instead of the old
Object at (1, 2). This removes an ambiguity in the Scenic grammar, and makes non-creation uses of class
names like myClasses = [Car, Bicycle, Pedestrian] clearer.

• Monitor definitions must include a parenthesized list of arguments, like behaviors: you should write monitor
MyMonitor(): for example instead of the old monitor MyMonitor:. Furthermore, monitors are no longer
automatically enforced in the scenario where they are defined: you must explicitly instantiate them with the new
require monitor statement.

• As the heading property is now derived from the 3D orientation (see below), it can no longer be set directly.
Classes providing a default value for heading should instead provide a default value for parentOrientation.
Code like with heading 30 deg should be replaced with the more idiomatic facing 30 deg.

Backwards-incompatible semantics changes:

• Objects are no longer required to be visible from the ego by default. (The requireVisible property is now
False by default.)

1.3. What’s New in Scenic 15

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://github.com/microsoft/WSL/issues/4106#issuecomment-876470388
https://github.com/Toblerity/Shapely#built-distributions

Scenic

• Visibility checks take occlusion into account by default (see below). The visible regions of objects are now 3D
regions.

• Checking containment of objects in regions is now precise (previously, Scenic only checked if all of the corners
of the object were contained in the region).

• While evaluating a precondition or invariant of a behavior or scenario, code that would cause the simulation to
be rejected (such as sampling from an empty list) is now considered as simply making the precondition/invariant
false.

• The left of Object specifier and its variants now correctly take into account the dimensions of both the
object being created and the given object (the implementation previously did not account for the latter, despite
the documentation saying otherwise).

• The offset by specifier now optionally specifies parentOrientation.

Backwards-incompatible API changes:

• The maxIterations argument of Simulator.simulate now has default value 1, rather than 100. A default
value of 1 is the most reasonable in general since it means that when a simulation is rejected, a new scene will
have to be generated (instead of trying many simulations from the same starting scene, which might well fail in
the same way).

• For simulator interface writers: the Simulator.createSimulation and Simulation APIs have changed; ini-
tial creation of objects is now done automatically, and other initialization must be done in the new Simulation.
setup method. See scenic.core.simulators for details.

Major new features:

• Scenic uses 3D geometry. Vectors now have 3 coordinates: if a third coordinate is not provided, it is assumed to
be zero, so that scenarios taking place entirely in the z=0 plane will continue to work as before. Orientations of
objects in space are represented by a new orientation property (internally a quaternion), which is computed by
applying intrinsic yaw, pitch, and roll rotations, given by new properties by those names. These rotations are
applied to the object’s parentOrientation, which by default aligns with the Scenic global coordinate system
but is optionally specified by left of and similar specifiers; this makes it easy to orient an object with respect
to another object. See the relevant section of the tutorial for examples.

• Scenic models the precise shapes of objects, rather than simply using bounding boxes for collision detection and
visibility checks. Objects have a new shape property (an instance of the Shape class) representing their shape;
shapes can be created from standard 3D mesh formats such as STL.

• Visibility checks now take occlusion into account as well as precise shapes of objects. This is done using raytrac-
ing: the number of rays can be controlled on a per-object basis using viewRayDensity and related properties.

• The require statement accepts arbitrary properties in Linear Temporal Logic (not just the require always
and require eventually forms previously allowed).

• Sampled Scene objects can now be serialized to short sequences of bytes and restored later. Similarly, executed
Simulation objects can be saved and replayed. See Storing Scenes/Simulations for Later Use for details.

• Scenic syntax highlighters for Sublime Text, Visual Studio Code, and other TextMate-compatible editors are now
available: see Getting Started with Scenic. For users of Pygments, the scenic package automatically installs a
Pygments lexer (and associated style) for Scenic.

Minor new features:

• It is no longer necessary to define an ego object. If no ego is defined, the egoObject attribute of a sampled
Scene is None.

• Syntax errors should now always indicate the correct part of the source code.

16 Chapter 1. Table of Contents

https://pygments.org/
https://docs.python.org/3/library/constants.html#None

Scenic

1.3.2 Scenic 2.x

The Scenic 2.x series is a major new version of Scenic which adds native support for dynamic scenarios, scenario
composition, and more.

Scenic 2.1.0

Major new features:

• Modular scenarios and ways to compose them together, introduced as a prototype in 2.0.0, are now finalized,
with many fixes and improvements. See Composing Scenarios for an overview of the new syntax.

• The record statement for recording values at every step of dynamic simulations (or only at the start/end).

• A built-in Newtonian physics simulator for debugging dynamic scenarios without having to install an external
simulator (see scenic.simulators.newtonian).

• The interface to the Webots simulator has been greatly generalized, and now supports dynamic scenarios (see
scenic.simulators.webots).

Minor new features:

• You can now write require expr as name to give a name to a requirement; similarly for require always,
termination conditions, etc.

• Compatibility with Python 3.7 is restored. Scenic 2 now supports all versions of Python from 3.7 to 3.11.

Scenic 2.0.0

Backwards-incompatible syntax changes:

• The interval notation (low, high) for uniform distributions has been removed: use Range(low, high) in-
stead. As a result of this change, the usual Python syntax for tuples is now legal in Scenic.

• The height property of Object, measuring its extent along the Y axis, has been renamed length to better match
its intended use. The name height will be used again in a future version of Scenic with native support for 3D
geometry.

Major new features:

• Scenic now supports writing and executing dynamic scenarios, where agents take actions over time according to
behaviors specified in Scenic. See Dynamic Scenarios for an overview of the new syntax.

• An abstract Driving Domain allowing traffic scenarios to be written in a platform-agnostic way and executed in
multiple simulators (in particular, both CARLA and LGSVL). This library includes functionality to parse road
networks from standard formats (currently OpenDRIVE) and expose information about them for use in Scenic
scenarios.

• A much generalized and improved interface to CARLA. (Many thanks to the CARLA team for contributing this.)

• An interface to the LGSVL driving simulator. (Many thanks to the LG team for helping develop this interface.)

Minor new features:

• Operators and specifiers which take vectors as arguments will now accept tuples and lists of length 2; for example,
you can write Object at (1, 2). The old syntax Object at 1@2 is still supported.

• The model statement allows a scenario to specify which world model it uses, while being possible to override
from the command line with the --model option.

1.3. What’s New in Scenic 17

Scenic

• Global parameters can be overridden from the command line using the --param option (e.g. to specify a different
map to use for a scenario).

• The unpacking operator * can now be used with Uniform to select a random element of a random list/tuple (e.g.
lane = Uniform(*network.lanes); sec = Uniform(*lane.sections)).

• The Python built-in function filter is now supported, and can be used along with unpacking as above to select
a random element of a random list satisfying a given condition (see filter for an example).

(Many other minor features didn’t make it into this list.)

1.4 Scenic Fundamentals

This tutorial motivates and illustrates the main features of Scenic, focusing on aspects of the language that make it
particularly well-suited for describing geometric scenarios. We begin by walking through Scenic’s core features from
first principles, using simple toy examples displayed in Scenic’s built-in visualizer. We then consider discuss two case
studies in depth: using Scenic to generate traffic scenes to test and train autonomous cars (as in [F22], [F19]), and
testing a motion planning algorithm for a Mars rover able to climb over rocks. These examples show Scenic interfacing
with actual simulators, and demonstrate how it can be applied to real problems.

We’ll focus here on the spatial aspects of scenarios; for adding temporal dynamics to a scenario, see our page on
Dynamic Scenarios.

1.4.1 Objects, Geometry, and Specifiers

To start with, we’ll construct a very basic Scenic program:

1 ego = new Object

Running this program should cause a window to pop up, looking like this:

You can rotate and move the camera of the visualizer around using the mouse. The only Object currently present is
the one we created using the new keyword (rendered as a green box). Since we assigned this object to the ego name, it
has special significance to Scenic, as we’ll see later. For now it only has the effect of highlighting the object green in
Scenic’s visualizer. Pressing w will render all objects as wireframes, which will allow you to see the coordinate axes in
the center of the ego object (at the origin).

18 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#filter

Scenic

Since we didn’t provide any additional information to Scenic about this object, its properties like position,
orientation, width, etc. were assigned default values from the object’s class: here, the built-in class Object, rep-
resenting a physical object. So we end up with a generic cube at the origin. To define the properties of an object,
Scenic provides a flexible system of specifiers based on the many ways one can describe the position and orientation
of an object in natural language. We can see a few of these specifiers in action in the following slightly more complex
program (see the Syntax Guide for a summary of all the specifiers, and the Specifiers Reference for detailed definitions):

1 ego = new Object with shape ConeShape(),
2 with width 2,
3 with length 2,
4 with height 1.5,
5 facing (-90 deg, 45 deg, 0)
6

7 chair = new Object at (4,0,2),
8 with shape MeshShape.fromFile(localPath("meshes/chair.obj"),
9 initial_rotation=(0,90 deg,0), dimensions=(1,1,1))

10

11 plane_shape = MeshShape.fromFile(path=localPath("meshes/plane.obj"))
12

13 plane = new Object left of chair by 1,
14 with shape plane_shape,
15 with width 2,
16 with length 2,
17 with height 1,
18 facing directly toward ego

This should generate the following scene:

The first object we create, the ego, has a cone shape. Scenic provides several built-in shapes like this (see Shape for
a list). We then set the object’s dimensions using the with specifier, which can set any property (even properties not
built into Scenic, which you might access in your own code or which a particular simulator might understand). Finally,
we set the object’s global orientation (its orientation property) using the facing specifier. The tuple after facing
contains the Euler angles of the desired orientation (yaw, pitch, roll).

The second object we create is first placed at a specific point in space using the at specifier (setting the object’s

1.4. Scenic Fundamentals 19

Scenic

position property). We then set its shape to one imported from a mesh file, using the MeshShape class, applying an
initial rotation to tell Scenic which side of the chair is its front. We also set default dimensions of the shape, which the
object will then automatically inherit. If we hadn’t set these default dimensions, Scenic would automatically infer the
dimensions from the mesh file.

On line 11 we load a shape from a file, specifically to highlight that since Scenic is built on top of Python, we can write
arbitrary Python expressions in Scenic (with some exceptions).

For our third and final object, we use the left of specifier to place it to the left of chair (the second object) by 1
unit. We set its shape and dimensions, similar to before, and then orient it to face directly toward the ego object using
the facing directly toward specifier. This gives a first hint of the power of specifiers, with Scenic automatically
working out how to compute the object’s orientation so that it faces the ego regardless of how we specified its
position (in fact, we could move the left of specifier to be after the facing directly toward and the code
would still work).

Scenic will automatically reject scenarios that don’t make physical sense, for instance when objects intersect each
other1. For an example of this, try changing the code above to have a much larger ego object, to the point where it
would intersect with the plane. While this isn’t too important in the scenarios we’ve seen so far, it becomes very useful
when we start constructing random scenarios.

1.4.2 Randomness and Regions

So far all of our Scenic programs have defined concrete scenes, i.e. they uniquely define all the aspects of a scene, so
every time we run the program we’ll get the same scene. This is because so far we haven’t introduced any randomness.
Scenic is a probabilistic programming language, meaning a single Scenic program can in fact define a probability
distribution over many possible scenes.

Let’s look at a simple Scenic program with some random elements:

1 ego = new Object with shape Uniform(BoxShape(), SpheroidShape(), ConeShape()),
2 with width Range(1,2),
3 with length Range(1,2),
4 with height Range(1,3),
5 facing (Range(0,360) deg, Range(0,360) deg, Range(0,360) deg)

This will generate an object with a shape that is either a box, a spheroid, or a cone (each with equal probability). It
will have a random width, length, and height within the ranges specified, and uniformly random rotation angles. Some
examples:

1 Although collisions can be allowed on a per-object basis: see the allowCollisions property of Object.

20 Chapter 1. Table of Contents

Scenic

Random values can be used almost everywhere in Scenic; the major exception is that control flow (e.g. if statements
and for loops) cannot depend on random values. This restriction enables more efficient sampling (see [F19]) and can
often be worked around: for example it is still possible to select random elements satisfying desired criteria from lists
(see filter).

Another key construct in Scenic is a Region, which represents a set of points in space. Having defined a region of
interest, for example a lane of a road, you can then sample points from it, check whether objects are contained in it,
etc. You can also use a region to define the workspace, a designated region which all objects in the scenario must be
contained in (useful, for example, if the simulated world has fixed obstacles that Scenic objects should not intersect).
For example, the following code:

1 region = RectangularRegion((0,0,0), 0, 10, 10)
2 workspace = Workspace(region)
3

4 new Object in region, with shape SpheroidShape()
5 new Object in region, with shape SpheroidShape()
6 new Object in region, with shape SpheroidShape()

should generate a scene similar to this:

Note that in this scene the coordinate axes in the center are displayed due to the --axes flag, which can help clarify
orientation.

We first create a 10-unit square RectangularRegion, and set it as the scenario’s workspace. RectangularRegion is
a 2D region, meaning it does not have a volume and therefore can’t really contain objects. It is still a valid workspace,
however, since for containment checks involving 2D regions, Scenic automatically uses the region’s footprint, which
extends infinitely in the positive and negative Z directions. We then create 3 spherical objects and place them using the

1.4. Scenic Fundamentals 21

https://docs.python.org/3/reference/compound_stmts.html#if
https://docs.python.org/3/reference/compound_stmts.html#for

Scenic

in specifier, which sets the position of an object (its center) to a uniformly-random point in the given region.

Similarly, we can use the on specifier to place the base of an object uniformly at random in a region, where the base
is by default the center of the bottom side of its bounding box. The on specifier is also overloaded to work on objects,
by default extracting the top surface of the object’s mesh and placing the object on that. This can lead to very compact
syntax for randomly placing objects on others, as seen in the following example:

1 workspace = Workspace(RectangularRegion((0,0,0), 0, 4, 4))
2 floor = workspace
3

4 chair = new Object on floor,
5 with shape MeshShape.fromFile(path=localPath("meshes/chair.obj"),
6 dimensions=(1,1,1), initial_rotation=(0, 90 deg, 0))
7

8 ego = new Object on chair,
9 with shape ConeShape(dimensions=(0.25,0.25,0.25))

which might generate something like this:

22 Chapter 1. Table of Contents

Scenic

1.4.3 Orientations in Depth

Notice how in the last example the cone is oriented to be tangent with the curved surface of the chair, even though
we never set an orientation with facing. To explain this behavior, we need to look deeper into Scenic’s orientation
system. All objects have an orientation property, which is their orientation in global coordinates2. If you just want
to set the orientation by giving explicit angles in global coordinates, you can use the facing specifier as we saw above.
However, it’s often useful to specify the orientation of an object in terms of some other coordinate system, for instance
that of another object. To support such use cases, Scenic does not allow directly setting the value of orientation
using with: instead, its value is derived from the values of 4 other properties, parentOrientation, yaw, pitch,
and roll. The parentOrientation property defines the parent orientation of the object, which is the orientation
with respect to which the (intrinsic Euler) angles yaw, pitch, and roll are interpreted. Specifically, orientation is
obtained as follows:

1. start from parentOrientation;

2. apply a yaw (a CCW (counter-clockwise) rotation around the positive Z axis) of yaw;

3. apply a pitch (a CCW rotation around the resulting positive X axis) of pitch;

4. apply a roll (a CCW rotation around the resulting positive Y axis) of roll.

By default, parentOrientation is aligned with the global coordinate system, so that yaw for example is just the
angle by which to rotate the object around the Z axis (this corresponds to the heading property in older versions of
Scenic). But by setting parentOrientation to the orientation of another object, we can easily compose rota-
tions together: “face the same way as the plane, but upside-down” could be implemented with parentOrientation
plane.orientation, with roll 180 deg.

In fact it is often unnecessary to set parentOrientation yourself, since many of Scenic’s specifiers do so automati-
cally when there is a natural choice of orientation to use. This includes all specifiers which position one object in terms
of another: if we write new Object ahead of plane by 100, the ahead of specifier specifies position to be
100 meters ahead of the plane but also specifies parentOrientation to be plane.orientation. So by default the
new object will be oriented the same way as the plane; to implement the “upside-down” part, we could simply write new
Object ahead of plane by 100, with roll 180 deg. Importantly, the ahead of specifier here only speci-
fies parentOrientation optionally, giving it a new default value: if you want a different value, you can override that
default by explicitly writing with parentOrientation value. (We’ll return to how Scenic manages default values
and “optional” specifications later.)

Another case where a specifier sets parentOrientation automatically is our cone-on-a-chair example above: in the
code new Object on chair, the on specifier not only specifies position to be a random point on the top surface

2 Represented as an instance of the Orientation class, which internally uses quaternions (although you shouldn’t need to worry about that). In
the rare case where you need to manipulate orientations beyond what Scenic’s operators provide, see the documentation for Orientation.

1.4. Scenic Fundamentals 23

Scenic

of the chair but also specifies parentOrientation to be an orientation tangent to the surface at that point. Thus the
cone lies flat on the surface by default without our needing to specify its orientation; we could even add code like with
roll 45 deg to rotate the cone while keeping it tangent with the surface.

In general, the on region specifier specifies parentOrientation whenever the region in question has a preferred
orientation: a Vector Field (another primitive Scenic type) which defines an orientation at each point in the region.
The class MeshSurfaceRegion, used to represent surfaces of an object, has a default preferred orientation which is
tangent to the surface, allowing us to easily place objects on irregular surfaces as we’ve seen. Preferred orientations
can also be convenient for modeling the nominal driving direction on roads, for example (we’ll return to this use case
below).

1.4.4 Points, Oriented Points, and Classes

We’ve seen that Scenic has a built-in class Object for representing physical objects, and that individual objects are
instantiated using the new keyword. Object is actually the bottom class in a hierarchy of built-in Scenic classes that
support this syntax: its superclass is OrientedPoint, whose superclass in turn is Point. The base class Point provides
the position property, while its subclass OrientedPoint adds orientation (plus parentOrientation, yaw, etc.).
These two classes do not represent physical objects and aren’t included in scenes generated by Scenic, but they provide
a convenient way to use specifier syntax to construct positions and orientations for later use without creating actual
objects. A Point can be used anywhere where a vector is expected (e.g. at point), and an OrientedPoint can also be
used anywhere where an orientation is expected. With both a position and an orientation, an OrientedPoint defines a
local coordinate system, and so can be used with specifiers like ahead of to position objects:

spot = new OrientedPoint on curb
new Object left of spot by 0.25

Here, suppose curb is a region with a preferred orientation aligned with the plane of the road and along the curb;
then the first line creates an OrientedPoint at a uniformly-random position on the curb, oriented along the curb. So the
second line then creates an Object offset 0.25 meters into the road, regardless of which direction the road happens to
run in the global coordinate system.

Scenic also allows users to define their own classes. In our earlier example placing spheres in a region, we explicitly
wrote out the specifiers for each object we created even though they were all identical. Such repetition can often be
avoided by using functions and loops, and by defining a class of object providing new default values for properties of
interest. Our example could be equivalently written:

1 workspace = Workspace(RectangularRegion((0,0,0), 0, 10, 10))
2

3 class SphereObject:
4 position: new Point in workspace
5 shape: SpheroidShape()
6

7 for i in range(3):
8 new SphereObject

Here we define the SphereObject class, providing new default values for the position and shape properties, overrid-
ing those inherited from Object (the default superclass if none is explicitly given). So for example the default position
for a SphereObject is the expression new Point in workspace, which creates a Point that can be automatically
interpreted as a position. This gives us a way to get the convenience of specifiers in class definitions. Note that this is a
random expression, and it is evaluated independently each time a SphereObject is defined; so the loop creates 3 ob-
jects which will all have different positions (and as usual Scenic will ensure they do not overlap). We can still override
the default value as needed: adding the line new SphereObject at (0,0,5) would create a SphereObject which
still used the default value of shape but whose position is exactly (0,0,5).

24 Chapter 1. Table of Contents

Scenic

In addition to the special syntax seen above for defining properties of a class and instantiating an instance of a class,
Scenic classes support inheritance and methods in the same way as Python:

class Vehicle:
pass

class Taxicab(Vehicle):
magicNumber: 42

def myMethod(self, x):
return self.width + self.magicNumber + x

ego = new Taxicab with magicNumber 1729
y = ego.myMethod(3.14)

1.4.5 Models and Simulators

For the next part of this tutorial, we’ll move beyond the internal Scenic visualizer to an actual simulator. Specifically,
we will consider examples from our case study using Scenic to generate traffic scenes in GTA V to test and train
autonomous cars ([F19], [F22]).

To start, suppose we want scenes of one car viewed from another on the road. We can write this very concisely in
Scenic:

1 from scenic.simulators.gta.model import Car
2 ego = new Car
3 new Car

Line 1 imports the GTA world model, a Scenic library defining everything specific to our GTA interface. This includes
the definition of the class Car, as well as information about the road geometry that we’ll see later. We’ll suppress this
import statement in subsequent examples.

Line 2 then creates a Car and assigns it to the special variable ego specifying the ego object, which we’ve seen before.
This is the reference point for the scenario: our simulator interfaces typically use it as the viewpoint for rendering
images, and many of Scenic’s geometric operators use ego by default when a position is left implicit3.

Finally, line 3 creates a second Car. Compiling this scenario with Scenic, sampling a scene from it, and importing the
scene into GTA V yields an image like this:

Note that both the ego car (where the camera is located) and the second car are both located on the road and facing
along it, despite the fact that the code above does not specify the position or any other properties of the two cars. This
is because reasonable default values for these properties have already been defined in the Car definition (shown here
slightly simplified):

1 class Car:
2 position: new Point on road
3 heading: roadDirection at self.position # note: can only set `heading` in 2D mode
4 width: self.model.width
5 length: self.model.length
6 model: CarModel.defaultModel() # a distribution over several car models
7 requireVisible: True # so all cars appear in the rendered images

Here road is a region defined in the gta model to specify which points in the workspace are on a road. Similarly,
roadDirection is a Vector Field specifying the nominal traffic direction at such points. The operator F at X simply

3 In fact, since ego is a variable and can be reassigned, we can set ego to one object, build a part of the scene around it, then reassign ego and
build another part of the scene.

1.4. Scenic Fundamentals 25

Scenic

Fig. 1: A scene sampled from the simple car scenario, rendered in GTA V.

gets the direction of the field F at point X, so line 3 sets a Car’s default heading to be the road direction at its position.
The default position, in turn, is a new Point on road, which means a uniformly random point on the road. Thus,
in our simple scenario above both cars will be placed on the road facing a reasonable direction, without our having to
specify this explicitly.

One further point of interest in the code above is that the default value for heading depends on the value of position,
and the default values of width and length depend on model. Scenic allows default value expressions to use the
special syntax self.property to refer to the value of another property of the object being defined: Scenic tracks the
resulting dependencies and evaluates the expressions in an appropriate order (or raises an error if there are any cyclic
dependencies). This capability is also frequently used by specifiers, as we explain next.

1.4.6 Specifiers in Depth

Why Specifiers?

The syntax left of X and facing Y for specifying positions and orientations may seem unusual compared to typical
constructors in object-oriented languages. There are two reasons why Scenic uses this kind of syntax: first, readability.
The second is more subtle and based on the fact that in natural language there are many ways to specify positions and
other properties, some of which interact with each other. Consider the following ways one might describe the location
of a car:

1. “is at position X” (an absolute position)

2. “is just left of position X” (a position based on orientation)

3. “is 3 m West of the taxi” (a relative position)

4. “is 3 m left of the taxi” (a local coordinate system)

5. “is one lane left of the taxi” (another local coordinate system)

6. “appears to be 10 m behind the taxi” (relative to the line of sight)

7. “is 10 m along the road from the taxi” (following a potentially-curving vector field)

26 Chapter 1. Table of Contents

Scenic

These are all fundamentally different from each other: for example, (4) and (5) differ if the taxi is not parallel to the
lane.

Furthermore, these specifications combine other properties of the object in different ways: to place the object “just
left of” a position, we must first know the object’s orientation; whereas if we wanted to face the object “towards” a
location, we must instead know its position. There can be chains of such dependencies: for example, the description
“the car is 0.5 m left of the curb” means that the right edge of the car is 0.5 m away from the curb, not its center, which
is what the car’s position property stores. So the car’s position depends on its width, which in turn depends on
its model. In a typical object-oriented language, these dependencies might be handled by first computing values for
position and all other properties, then passing them to a constructor. For “a car is 0.5 m left of the curb” we might
write something like:

hypothetical Python-like language (not Scenic)
model = Car.defaultModelDistribution.sample()
pos = curb.offsetLeft(0.5 + model.width / 2)
car = Car(pos, model=model)

Notice how modelmust be used twice, because model determines both the model of the car and (indirectly) its position.
This is inelegant, and breaks encapsulation because the default model distribution is used outside of the Car constructor.
The latter problem could be fixed by having a specialized constructor or factory function:

hypothetical Python-like language (not Scenic)
car = CarLeftOfBy(curb, 0.5)

However, such functions would proliferate since we would need to handle all possible combinations of ways to specify
different properties (e.g. do we want to require a specific model? Are we overriding the width provided by the model
for this specific car?). Instead of having a multitude of such monolithic constructors, Scenic uses specifiers to factor
the definition of objects into potentially-interacting but syntactically-independent parts:

new Car left of curb by 0.5,
with model CarModel.models['BUS']

Here the specifiers left of X by D and with model M do not have an order, but together specify the properties
of the car. Scenic works out the dependencies between properties (here, position is provided by left of, which
depends on width, whose default value depends on model) and evaluates them in the correct order. To use the default
model distribution we would simply omit line 2; keeping it affects the position of the car appropriately without having
to specify BUS more than once.

Dependencies and Modifying Specifiers

In addition to explicit dependencies when one specifier uses a property defined by another, Scenic also tracks depen-
dencies which arise when an expression implicitly refers to the properties of the object being defined. For example,
suppose we wanted to elaborate the scenario above by saying the car is oriented up to 5° off of the nominal traffic
direction. We can write this using the roadDirection vector field and Scenic’s general operator X relative to Y ,
which can interpret vectors and orientations as being in a variety of local coordinate systems:

new Car left of curb by 0.5,
facing Range(-5, 5) deg relative to roadDirection

Notice that since roadDirection is a vector field, it defines a different local coordinate system at each point in space:
at different points on the map, roads point different directions! Thus an expression like 15 deg relative to field
does not define a unique heading. The example above works because Scenic knows that the expression Range(-5, 5)
deg relative to roadDirection depends on a reference position, and automatically uses the position of the
Car being defined.

1.4. Scenic Fundamentals 27

Scenic

Another kind of dependency arises from modifying specifiers, which are specifiers that can take an already-specified
value for a property and modify it (thereby in a sense both depending on that property and specifying it). The main
example is the on region specifier, which in addition to the usage we saw above for placing an object randomly
within a region, also can be used as a modifying specifier: if the position property has already been specified, then
on region projects that position onto the region. So for example the code new Object ahead of plane by 100,
on ground does not raise an error even though both ahead of and on specify position: Scenic first computes a
position 100 m ahead of the plane, and then projects that position down onto the ground.

Specifier Priorities

As we’ve discussed previously, specifiers can specify multiple properties, and they can specify some properties option-
ally, allowing other specifiers to override them. In fact, when a specifier specifies a property it does so with a priority
represented by a positive integer. A property specified with priority 1 cannot be overridden; increasingly large integers
represent lower priorities, so a priority-2 specifier overrides one with priority 3. This system enables more-specific
specifiers to naturally take precedence over more general specifiers while reducing the amount of boilerplate code you
need to write. Consider for example the following sequence of object creations, where we provide progressively more
information about the object:

• In new Object ahead of plane by 100, the ahead of specifier specifies parentOrientation with pri-
ority 3, so that the new object is aligned with the plane (a reasonable default since we’re positioning the object
with respect to the plane).

• In new Object ahead of plane by 100, on ground, the on ground specifies parentOrientation
with priority 2, so it takes precedence and the object is aligned with the ground rather than the plane (which
makes more sense since “on ground” implies the object likely lies flat on the ground).

• Finally, in new Object ahead of plane by 100, on ground, with parentOrientation (0, 90
deg, 0), the with specifier specifies parentOrientation with priority 1, so it takes precedence and Scenic
uses the explicit orientation the user provided.

As these examples show, specifier priorities enable concise specifications of objects to have intuitive default behavior
when no explicit information is given, while at the same time overriding this behavior remains straightforward.

For a more thorough look at the specifier system, including which specifiers specify which properties and at which
priorities, consult the Specifiers Reference.

1.4.7 Declarative Hard and Soft Constraints

Notice that in the scenarios above we never explicitly ensured that two cars will not intersect each other. Despite this,
Scenic will never generate such scenes. This is because Scenic enforces several default requirements, as mentioned
above:

• All objects must be contained in the workspace, or a particular specified region (its container). For example, we
can define the Car class so that all of its instances must be contained in the region road by default.

• Objects must not intersect each other (unless explicitly allowed).

Scenic also allows the user to define custom requirements checking arbitrary conditions built from various geometric
predicates. For example, the following scenario produces a car headed roughly towards the camera, while still facing
the nominal road direction:

ego = new Car on road
car2 = new Car offset by (Range(-10, 10), Range(20, 40)), with viewAngle 30 deg
require car2 can see ego

Here we have used the X can see Y predicate, which in this case is checking that the ego car is inside the 30° view
cone of the second car.

28 Chapter 1. Table of Contents

Scenic

Requirements, called observations in other probabilistic programming languages, are very convenient for defining
scenarios because they make it easy to restrict attention to particular cases of interest. Note how difficult it would be
to write the scenario above without the require statement: when defining the ego car, we would have to somehow
specify those positions where it is possible to put a roughly-oncoming car 20–40 meters ahead (for example, this is
not possible on a one-way road). Instead, we can simply place ego uniformly over all roads and let Scenic work
out how to condition the distribution so that the requirement is satisfied4. As this example illustrates, the ability to
declaratively impose constraints gives Scenic greater versatility than purely-generative formalisms. Requirements also
improve encapsulation by allowing us to restrict an existing scenario without altering it. For example:

from myScenarioLib import genericTaxiScenario # import another Scenic scenario
fifthAvenue = ... # extract a Region from a map here
require genericTaxiScenario.taxi in fifthAvenue

The constraints in our examples above are hard requirements which must always be satisfied. Scenic also allows
imposing soft requirements that need only be true with some minimum probability:

require[0.5] car2 can see ego # condition only needs to hold with prob. >= 0.5

Such requirements can be useful, for example, in ensuring adequate representation of a particular condition when
generating a training set: for instance, we could require that at least 90% of generated images have a car driving on the
right side of the road.

1.4.8 Mutations

A common testing paradigm is to randomly generate variations of existing tests. Scenic supports this paradigm by
providing syntax for performing mutations in a compositional manner, adding variety to a scenario without changing
its code. For example, given a complex scenario involving a taxi, we can add one additional line:

from bigScenario import taxi
mutate taxi

The mutate statement will add Gaussian noise to the position and orientation properties of taxi, while still
enforcing all built-in and custom requirements. The standard deviation of the noise can be scaled by writing, for
example, mutate taxi by 2 (which adds twice as much noise), and in fact can be controlled separately for position
and orientation (see scenic.core.object_types.Mutator).

1.4.9 A Worked Example

We conclude with a larger example of a Scenic program which also illustrates the language’s utility across domains and
simulators. Specifically, we consider the problem of testing a motion planning algorithm for a Mars rover able to climb
over hills and rocks. Such robots can have very complex dynamics, with the feasibility of a motion plan depending on
exact details of the robot’s hardware and the geometry of the terrain. We can use Scenic to write a scenario generating
challenging cases for a planner to solve in simulation. Some of the specifiers and operators we’ll use have not been
discussed before in the tutorial; as usual, information about them can be found in the Syntax Guide.

We will write a scenario representing a hilly field of rocks and pipes with a bottleneck between the rover and its goal
that forces the path planner to consider climbing over a rock. First, we import a small Scenic library for the Webots
robotics simulator and a mars specific library which defines the (empty) workspace and several types of objects: the
Rover itself, the Goal (represented by a flag), the MarsGround and MarsHill classes which are used to create the
hilly terrain, and debris classes Rock, BigRock, and Pipe. Rock and BigRock have fixed sizes, and the rover can

4 On the other hand, Scenic may have to work hard to satisfy difficult constraints. Ultimately Scenic falls back on rejection sampling, which in
the worst case will run forever if the constraints are inconsistent (although we impose a limit on the number of iterations: see Scenario.generate).

1.4. Scenic Fundamentals 29

Scenic

climb over them; Pipe cannot be climbed over, and can represent a pipe of arbitrary length, controlled by the length
property (which corresponds to Scenic’s Y axis).

1 model scenic.simulators.webots.mars.model
2 from mars_lib import *

Here we’ve used the model statement to select the world model for the scenario: it is equivalent to from scenic.
simulators.webots.model import * except that the choice of model can be overridden from the command line
when compiling the scenario (using the --model option). This is useful for scenarios that use one of Scenic’s Abstract
Domains: the scenario can be written once in a simulator-agnostic manner, then used with different simulators by
selecting the appropriate simulator-specific world model.

Now we can start to create objects. The first object we will create will be the hilly ground. To do this, we use the
MarsGround which has a terrain property which should be set to a collection of MarsHill classes, each of which
adds a gaussian hill to the ground. Note that the MarsGround object has allowCollisions set to True, allowing
objects to intersect and be slightly embedded in the ground. In the following code we create a ground object with 60
small hills (which are allowed to stack on top of each other):

5 ground = new MarsGround on (0,0,0), with terrain [new MarsHill for _ in range(60)]

We next create the rover at a fixed position and the goal at a random position on the other side of the workspace, ensuring
both are on the ground:

8 ego = new Rover at (0, -3), on ground, with controller 'sojourner'
9 goal = new Goal at (Range(-2, 2), Range(2, 3)), on ground, facing (0,0,0)

Next we pick a position for the bottleneck, requiring it to lie roughly on the way from the robot to its goal, and place a
rock there. Here we use the simple form of facing which takes a scalar argument, effectively setting the yaw of the
object in the global coordinate system (so that 0 deg is due North, for example, and 90 deg is due West).

15 bottleneck = new OrientedPoint at ego offset by Range(-1.5, 1.5) @ Range(0.5, 1.5),␣
→˓facing Range(-30, 30) deg

16 require abs((angle to goal) - (angle to bottleneck)) <= 10 deg
17 new BigRock at bottleneck, on ground

Note how we define bottleneck as an OrientedPoint, with a range of possible orientations: this is to set up a local
coordinate system for positioning the pipes making up the bottleneck. Specifically, we position two pipes of varying
lengths on either side of the bottleneck, projected onto the ground, with their ends far enough apart for the robot to be
able to pass between. Note that we explicitly specify parentOrientation to be the global coordinate system, which
prevents the pipes from lying tangent to the ground as we want them flat and partially embedded in the ground.

16 gap = 1.2 * ego.width
17 halfGap = gap / 2
18

19 leftEdge = new OrientedPoint left of bottleneck by halfGap,
20 facing Range(60, 120) deg relative to bottleneck.heading
21 rightEdge = new OrientedPoint right of bottleneck by halfGap,
22 facing Range(-120, -60) deg relative to bottleneck.heading
23

24 new Pipe ahead of leftEdge, with length Range(1, 2), on ground, facing leftEdge, with␣
→˓parentOrientation 0

25 new Pipe ahead of rightEdge, with length Range(1, 2), on ground, facing rightEdge, with␣
→˓parentOrientation 0

Finally, to make the scenario slightly more interesting, we add several additional obstacles, positioned either on the far
side of the bottleneck or anywhere at random (recalling that Scenic automatically ensures that no objects will overlap).

30 Chapter 1. Table of Contents

Scenic

29 new Pipe on ground, with parentOrientation 0
30 new BigRock beyond bottleneck by Range(0.25, 0.75) @ Range(0.75, 1), on ground
31 new BigRock beyond bottleneck by Range(-0.75, -0.25) @ Range(0.75, 1), on ground
32 new Rock on ground
33 new Rock on ground
34 new Rock on ground

This completes the scenario, which can also be found in the Scenic repository under examples/webots/mars/
narrowGoal.scenic. Scenes generated from the scenario, and visualized in Scenic’s internal visualizer and Webots,
are shown below.

Fig. 2: A scene sampled from the Mars rover scenario, rendered in Scenic’s internal visualizer.

1.4.10 Further Reading

This tutorial illustrated the syntax of Scenic through several simple examples. Much more complex scenarios are
possible, such as the platoon and bumper-to-bumper traffic GTA V scenarios shown below. For many further examples
using a variety of simulators, see the examples folder, as well as the links in the Supported Simulators page.

1.4. Scenic Fundamentals 31

Scenic

Fig. 3: A scene sampled from the Mars rover scenario, rendered in Webots.

32 Chapter 1. Table of Contents

Scenic

Our tutorial on Dynamic Scenarios describes how to define scenarios with dynamic agents that move or take other
actions over time. We also have a tutorial on Composing Scenarios: defining scenarios in a modular, reusable way and
combining them to build up more complex scenarios.

For a comprehensive overview of Scenic’s syntax, including details on all specifiers, operators, distributions, state-
ments, and built-in classes, see the Language Reference. Our Syntax Guide summarizes all of these language constructs
in convenient tables with links to the detailed documentation.

References

1.5 Dynamic Scenarios

The Scenic Fundamentals described how Scenic can model scenarios like “a badly-parked car” by defining spatial
relationships between objects. Here, we’ll cover how to model temporal aspects of scenarios: for a scenario like “a
badly-parked car, which pulls into the road as the ego car approaches”, we need to specify not only the initial position
of the car but how it behaves over time.

1.5.1 Agents, Actions, and Behaviors

In Scenic, we call objects which take actions over time dynamic agents, or simply agents. These are ordinary Scenic
objects, so we can still use all of Scenic’s syntax for describing their initial positions, orientations, etc. In addition, we
specify their dynamic behavior using a built-in property called behavior. Here’s an example using one of the built-in
behaviors from the Driving Domain:

model scenic.domains.driving.model
new Car with behavior FollowLaneBehavior

A behavior defines a sequence of actions for the agent to take, which need not be fixed but can be probabilistic and
depend on the state of the agent or other objects. In Scenic, an action is an instantaneous operation executed by an agent,
like setting the steering angle of a car or turning on its headlights. Most actions are specific to particular application
domains, and so different sets of actions are provided by different simulator interfaces. For example, the Driving
Domain defines a SetThrottleAction for cars.

To define a behavior, we write a function which runs over the course of the scenario, periodically issuing actions. Scenic
uses a discrete notion of time, so at each time step the function specifies zero or more actions for the agent to take. For
example, here is a very simplified version of the FollowLaneBehavior above:

behavior FollowLaneBehavior():
while True:

throttle, steering = ... # compute controls
take SetThrottleAction(throttle), SetSteerAction(steering)

We intend this behavior to run for the entire scenario, so we use an infinite loop. In each step of the loop, we compute
appropriate throttle and steering controls, then use the take statement to take the corresponding actions. When that

1.5. Dynamic Scenarios 33

Scenic

statement is executed, Scenic pauses the behavior until the next time step of the simulation, when the function resumes
and the loop repeats.

When there are multiple agents, all of their behaviors run in parallel; each time step, Scenic sends their selected actions
to the simulator to be executed and advances the simulation by one step. It then reads back the state of the simulation,
updating the positions and other dynamic properties of the objects.

Behaviors can access the current state of the world to decide what actions to take:

behavior WaitUntilClose(threshold=15):
while (distance from self to ego) > threshold:

wait
do FollowLaneBehavior()

Here, we repeatedly query the distance from the agent running the behavior (self) to the ego car; as long as it is
above a threshold, we wait, which means take no actions. Once the threshold is met, we start driving by invoking
the FollowLaneBehavior we saw above using the do statement. Since FollowLaneBehavior runs forever, we will
never return to the WaitUntilClose behavior.

The example above also shows how behaviors may take arguments, like any Scenic function. Here, threshold is an
argument to the behavior which has default value 15 but can be customized, so we could write for example:

ego = new Car
car2 = new Car visible, with behavior WaitUntilClose
car3 = new Car visible, with behavior WaitUntilClose(20)

Both car2 and car3 will use the WaitUntilClose behavior, but independent copies of it with thresholds of 15 and
20 respectively.

Unlike ordinary Scenic code, control flow constructs such as if and while are allowed to depend on random vari-
ables inside a behavior. Any distributions defined inside a behavior are sampled at simulation time, not during scene
sampling. Consider the following behavior:

1 behavior Foo():
2 threshold = Range(4, 7)
3 while True:
4 if self.distanceToClosest(Pedestrian) < threshold:
5 strength = TruncatedNormal(0.8, 0.02, 0.5, 1)
6 take SetBrakeAction(strength), SetThrottleAction(0)
7 else:
8 take SetThrottleAction(0.5), SetBrakeAction(0)

Here, the value of threshold is sampled only once, at the beginning of the scenario when the behavior starts running.
The value strength, on the other hand, is sampled every time control reaches line 5, so that every time step when the

34 Chapter 1. Table of Contents

Scenic

car is braking we use a slightly different braking strength (0.8 on average, but with Gaussian noise added with standard
deviation 0.02, truncating the possible values to between 0.5 and 1).

1.5.2 Interrupts

It is frequently useful to take an existing behavior and add a complication to it; for example, suppose we want a car that
follows a lane, stopping whenever it encounters an obstacle. Scenic provides a concept of interrupts which allows us
to reuse the basic FollowLaneBehavior without having to modify it:

behavior FollowAvoidingObstacles():
try:

do FollowLaneBehavior()
interrupt when self.distanceToClosest(Object) < 5:

take SetBrakeAction(1)

This try-interrupt statement has similar syntax to the Python try statement (and in fact allows except clauses
just as in Python), and begins in the same way: at first, the code block after the try: (the body) is executed. At
the start of every time step during its execution, the condition from each interrupt clause is checked; if any are
true, execution of the body is suspended and we instead begin to execute the corresponding interrupt handler. In the
example above, there is only one interrupt, which fires when we come within 5 meters of any object. When that happens,
FollowLaneBehavior is paused and we instead apply full braking for one time step. In the next step, we will resume
FollowLaneBehavior wherever it left off, unless we are still within 5 meters of an object, in which case the interrupt
will fire again.

If there are multiple interrupt clauses, successive clauses take precedence over those which precede them. Further-
more, such higher-priority interrupts can fire even during the execution of an earlier interrupt handler. This makes it
easy to model a hierarchy of behaviors with different priorities; for example, we could implement a car which drives
along a lane, passing slow cars and avoiding collisions, along the following lines:

behavior Drive():
try:

do FollowLaneBehavior()
interrupt when self.distanceToNextObstacle() < 20:

do PassingBehavior()
interrupt when self.timeToCollision() < 5:

do CollisionAvoidance()

Here, the car begins by lane following, switching to passing if there is a car or other obstacle too close ahead. During
either of those two sub-behaviors, if the time to collision gets too low, we switch to collision avoidance. Once the
CollisionAvoidance behavior completes, we will resume whichever behavior was interrupted earlier. If we were in
the middle of PassingBehavior, it will run to completion (possibly being interrupted again) before we finally resume
FollowLaneBehavior.

As this example illustrates, when an interrupt handler completes, by default we resume execution of the interrupted
code. If this is undesired, the abort statement can be used to cause the entire try-interrupt statement to exit. For
example, to run a behavior until a condition is met without resuming it afterward, we can write:

behavior ApproachAndTurnLeft():
try:

do FollowLaneBehavior()
interrupt when (distance from self to intersection) < 10:

abort # cancel lane following
do WaitForTrafficLightBehavior()
do TurnLeftBehavior()

1.5. Dynamic Scenarios 35

https://docs.python.org/3/reference/compound_stmts.html#try

Scenic

This is a common enough use case of interrupts that Scenic provides a shorthand notation:

behavior ApproachAndTurnLeft():
do FollowLaneBehavior() until (distance from self to intersection) < 10
do WaitForTrafficLightBehavior()
do TurnLeftBehavior()

Scenic also provides a shorthand for interrupting a behavior after a certain period of time:

behavior DriveForAWhile():
do FollowLaneBehavior() for 30 seconds

The alternative form do behavior for n steps uses time steps instead of real simulation time.

Finally, note that when try-interrupt statements are nested, interrupts of the outer statement take precedence. This
makes it easy to build up complex behaviors in a modular way. For example, the behavior Drive we wrote above is
relatively complicated, using interrupts to switch between several different sub-behaviors. We would like to be able to
put it in a library and reuse it in many different scenarios without modification. Interrupts make this straightforward;
for example, if for a particular scenario we want a car that drives normally but suddenly brakes for 5 seconds when it
reaches a certain area, we can write:

behavior DriveWithSuddenBrake():
haveBraked = False
try:

do Drive()
interrupt when self in targetRegion and not haveBraked:

do StopBehavior() for 5 seconds
haveBraked = True

With this behavior, Drive operates as it did before, interrupts firing as appropriate to switch between lane following,
passing, and collision avoidance. But during any of these sub-behaviors, if the car enters the targetRegion it will
immediately brake for 5 seconds, then pick up where it left off.

1.5.3 Stateful Behaviors

As the last example shows, behaviors can use local variables to maintain state, which is useful when implementing
behaviors which depend on actions taken in the past. To elaborate on that example, suppose we want a car which
usually follows the Drive behavior, but every 15-30 seconds stops for 5 seconds. We can implement this behavior as
follows:

behavior DriveWithRandomStops():
delay = Range(15, 30) seconds
last_stop = 0
try:

do Drive()
interrupt when simulation().currentTime - last_stop > delay:

do StopBehavior() for 5 seconds
delay = Range(15, 30) seconds
last_stop = simulation().currentTime

Here delay is the randomly-chosen amount of time to run Drive for, and last_stop keeps track of the time when
we last started to run it. When the time elapsed since last_stop exceeds delay, we interrupt Drive and stop for 5
seconds. Afterwards, we pick a new delay before the next stop, and save the current time in last_stop, effectively
resetting our timer to zero.

36 Chapter 1. Table of Contents

Scenic

Note: It is possible to change global state from within a behavior by using the Python global statement, for instance
to communicate between behaviors. If using this ability, keep in mind that the order in which behaviors of different
agents is executed within a single time step could affect your results. The default order is the order in which the agents
were defined, but it can be adjusted by overriding the Simulation.scheduleForAgents method.

1.5.4 Requirements and Monitors

Just as you can declare spatial constraints on scenes using the require statement, you can also impose constraints on
dynamic scenarios. For example, if we don’t want to generate any simulations where car1 and car2 are simultaneously
visible from the ego car, we could write:

require always not ((ego can see car1) and (ego can see car2))

Here, always condition is a temporal operator which can only be used inside a requirement, and which evaluates to
true if and only if the condition is true at every time step of the scenario. So if the condition above is ever false during a
simulation, the requirement will be violated, causing Scenic to reject that simulation and sample a new one. Similarly,
we can require that a condition hold at some time during the scenario using the eventually operator:

require eventually ego in intersection

It is also possible to relate conditions at different time steps. For example, to require that car1 enters the intersection
no later than when car2 does, we can use the until operator:

require car2 not in intersection until car1 in intersection
require eventually car2 in intersection

Temporal operators can be combined with Boolean operators to build up more complex requirements1, e.g.:

require (always car.speed < 30) implies (always distance to car > 10)

See Temporal Operators for a complete list of the available operators and their semantics.

You can also use the ordinary require statement inside a behavior to require that a given condition hold at a certain
point during the execution of the behavior. For example, here is a simple elaboration of the WaitUntilClose behavior
we saw above which requires that no pedestrian comes close to self until the ego does (after which we place no further
restrictions):

behavior WaitUntilClose(threshold=15):
while distance from self to ego > threshold:

require self.distanceToClosest(Pedestrian) > threshold
wait

do FollowLaneBehavior()

If you want to enforce a complex requirement that isn’t conveniently expressible either using the temporal operators
built into Scenic or by modifying a behavior, you can define a monitor. Like behaviors, monitors are functions which
run in parallel with the scenario, but they are not associated with any agent and any actions they take are ignored (so
you might as well only use the wait statement). Here is a monitor for requiring that a given car spends at most a certain
amount of time in the intersection:

1 For those familiar with temporal logic, you can encode any formula of Linear Temporal Logic.

1.5. Dynamic Scenarios 37

https://docs.python.org/3/reference/simple_stmts.html#global

Scenic

1 monitor LimitTimeInIntersection(car, limit=100):
2 stepsInIntersection = 0
3 while True:
4 require stepsInIntersection <= limit
5 if car in intersection:
6 stepsInIntersection += 1
7 wait

We use the variable stepsInIntersection to remember how many time steps car has spent in the intersection; if
it ever exceeds the limit, the requirement on line 4 will fail and we will reject the simulation. Note the necessity of
the wait statement on line 7: if we omitted it, the loop could run forever without any time actually passing in the
simulation.

Like behaviors, monitors can take parameters, allowing a monitor defined in a library to be reused in various situations.
To instantiate a monitor in a scenario, use the require monitor statement:

require monitor LimitTimeInIntersection(ego)
require monitor LimitTimeInIntersection(taxi, limit=200)

1.5.5 Preconditions and Invariants

Even general behaviors designed to be used in multiple scenarios may not operate correctly from all possible starting
states: for example, FollowLaneBehavior assumes that the agent is actually in a lane rather than, say, on a sidewalk.
To model such assumptions, Scenic provides a notion of guards for behaviors. Most simply, we can specify one or
more preconditions:

behavior MergeInto(newLane):
precondition: self.lane is not newLane and self.road is newLane.road
...

Here, the precondition requires that whenever the MergeInto behavior is executed by an agent, the agent must not
already be in the destination lane but should be on the same road. We can add any number of such preconditions; like
ordinary requirements, violating any precondition causes the simulation to be rejected.

Since behaviors can be interrupted, it is possible for a behavior to resume execution in a state it doesn’t expect: imagine
a car which is lane following, but then swerves onto the shoulder to avoid an accident; naïvely resuming lane following,
we find we are no longer in a lane. To catch such situations, Scenic allows us to define invariants which are checked
at every time step during the execution of a behavior, not just when it begins running. These are written similarly to
preconditions:

behavior FollowLaneBehavior():
invariant: self in road
...

While the default behavior for guard violations is to reject the simulation, in some cases it may be possible to recover
from a violation by taking some additional actions. To enable this kind of design, Scenic signals guard violations by
raising a GuardViolation exception which can be caught like any other exception; the simulation is only rejected if the
exception propagates out to the top level. So to model the lane-following-with-collision-avoidance behavior suggested
above, we could write code like this:

behavior Drive():
while True:

try:
(continues on next page)

38 Chapter 1. Table of Contents

Scenic

(continued from previous page)

do FollowLaneBehavior()
interrupt when self.distanceToClosest(Object) < 5:

do CollisionAvoidance()
except InvariantViolation: # FollowLaneBehavior has failed

do GetBackOntoRoad()

When any object comes within 5 meters, we suspend lane following and switch to collision avoidance. When the
CollisionAvoidance behavior completes, FollowLaneBehavior will be resumed; if its invariant fails because we
are no longer on the road, we catch the resulting InvariantViolation exception and run a GetBackOntoRoad
behavior to restore the invariant. The whole try statement then completes, so the outermost loop iterates and we begin
lane following once again.

1.5.6 Terminating the Scenario

By default, scenarios run forever, unless the --time option is used to impose a time limit. However, scenarios can also
define termination criteria using the terminate when statement; for example, we could decide to end a scenario as
soon as the ego car travels at least a certain distance:

start = new Point on road
ego = new Car at start
terminate when (distance to start) >= 50

Additionally, the terminate statement can be used inside behaviors and monitors: if it is ever executed, the scenario
ends. For example, we can use a monitor to terminate the scenario once the ego spends 30 time steps in an intersection:

monitor StopAfterTimeInIntersection:
totalTime = 0
while totalTime < 30:

if ego in intersection:
totalTime += 1

wait
terminate

Note: In order to make sure that requirements are not violated, termination criteria are only checked after all require-
ments. So if in the same time step a monitor uses the terminate statement but another behavior uses require with
a false condition, the simulation will be rejected rather than terminated.

1.5.7 Trying Some Examples

You can see all of the above syntax in action by running some of our examples of dynamic scenarios. We have examples
written for the CARLA and LGSVL driving simulators, and those in examples/driving in particular are designed to
use Scenic’s abstract driving domain and so work in either of these simulators, as well as Scenic’s built-in Newtonian
physics simulator. The Newtonian simulator is convenient for testing and simple experiments; you can find details on
how to install the more realistic simulators in our Supported Simulators page (they should work on both Linux and
Windows, but not macOS, at the moment).

Let’s try running examples/driving/badlyParkedCarPullingIn.scenic, which implements the “a badly-parked
car, which pulls into the road as the ego car approaches” scenario we mentioned above. To start out, you can run it like
any other Scenic scenario to get the usual schematic diagram of the generated scenes:

1.5. Dynamic Scenarios 39

Scenic

$ scenic examples/driving/badlyParkedCarPullingIn.scenic --2d

To run dynamic simulations, add the --simulate option (-S for short). Since this scenario is not written for a par-
ticular simulator, you’ll need to specify which one you want by using the --model option (-m for short) to select the
corresponding Scenic world model: for example, to use the Newtonian simulator we could add --model scenic.
simulators.newtonian.driving_model. It’s also a good idea to put a time bound on the simulations, which we
can do using the --time option.

$ scenic examples/driving/badlyParkedCarPullingIn.scenic \
--2d \
--simulate \
--model scenic.simulators.newtonian.driving_model \
--time 200

Running the scenario in CARLA is exactly the same, except we use the --model scenic.simulators.carla.
model option instead (make sure to start CARLA running first). For LGSVL, the one difference is that this scenario
specifies a map which LGSVL doesn’t have built in; fortunately, it’s easy to switch to a different map. For scenarios
using the driving domain, the map file is specified by defining a global parameter map, and for the LGSVL interface we
use another parameter lgsvl_map to specify the name of the map in LGSVL (the CARLA interface likewise uses a
parameter carla_map). These parameters can be set at the command line using the --param option (-p for short); for
example, let’s pick the “BorregasAve” LGSVL map, an OpenDRIVE file for which is included in the Scenic repository.
We can then run a simulation by starting LGSVL in “API Only” mode and invoking Scenic as follows:

$ scenic examples/driving/badlyParkedCarPullingIn.scenic \
--2d \
--simulate \
--model scenic.simulators.lgsvl.model \
--time 200 \
--param map assets/maps/LGSVL/borregasave.xodr \
--param lgsvl_map BorregasAve

Try playing around with different example scenarios and different choices of maps (making sure that you keep the
map and lgsvl_map/carla_map parameters consistent). For both CARLA and LGSVL, you don’t have to restart the
simulator between scenarios: just kill Scenic2 and restart it with different arguments.

1.5.8 Further Reading

This tutorial illustrated most of Scenic’s core syntax for dynamic scenarios. As with the rest of Scenic’s syntax, these
constructs are summarized in our Syntax Guide, with links to detailed documentation in the Language Reference. You
may also be interested in some other sections of the documentation:

Composing Scenarios
Building more complex scenarios out of simpler ones in a modular way.

Supported Simulators
Details on which simulator interfaces support dynamic scenarios.

Execution of Dynamic Scenarios
The gory details of exactly how behaviors run, monitors are checked, etc. (probably not worth reading
unless you’re having a subtle timing issue).

2 Or use the --count option to have Scenic automatically terminate after a desired number of simulations.

40 Chapter 1. Table of Contents

Scenic

1.6 Composing Scenarios

Scenic provides facilities for defining multiple scenarios in a single program and composing them in various ways.
This enables writing a library of scenarios which can be repeatedly used as building blocks to construct more complex
scenarios.

1.6.1 Modular Scenarios

The scenario statement defines a named, reusable scenario, optionally with tunable parameters: what we call a
modular scenario. For example, here is a scenario which creates a parked car on the shoulder of the ego’s current lane
(assuming there is one), using some APIs from the Driving Domain:

scenario ParkedCar(gap=0.25):
precondition: ego.laneGroup._shoulder != None
setup:

spot = new OrientedPoint on visible ego.laneGroup.curb
parkedCar = new Car left of spot by gap

The setup block contains Scenic code which executes when the scenario is instantiated, and which can define classes,
create objects, declare requirements, etc. as in any ordinary Scenic scenario. Additionally, we can define preconditions
and invariants, which operate in the same way as for dynamic behaviors.

Having now defined the ParkedCar scenario, we can use it in a more complex scenario, potentially multiple times:

scenario Main():
setup:

ego = new Car
compose:

do ParkedCar(), ParkedCar(0.5)

Here our Main scenario itself only creates the ego car; then its compose block orchestrates how to run other modular
scenarios. In this case, we invoke two copies of the ParkedCar scenario in parallel, specifying in one case that the gap
between the parked car and the curb should be 0.5 m instead of the default 0.25. So the scenario will involve three cars
in total, and as usual Scenic will automatically ensure that they are all on the road and do not intersect.

1.6.2 Parallel and Sequential Composition

The scenario above is an example of parallel composition, where we use the do statement to run two scenarios at the
same time. We can also use sequential composition, where one scenario begins after another ends. This is done the
same way as in behaviors: in fact, the compose block of a scenario is executed in the same way as a monitor, and allows
all the same control-flow constructs. For example, we could write a compose block as follows:

1 while True:
2 do ParkedCar(gap=0.25) for 30 seconds
3 do ParkedCar(gap=0.5) for 30 seconds

Here, a new parked car is created every 30 seconds,1 with the distance to the curb alternating between 0.25 and 0.5
m. Note that without the for 30 seconds qualifier, we would never get past line 2, since the ParkedCar scenario
does not define any termination conditions using terminate when (or terminate in a compose block) and so runs
forever by default. If instead we want to create a new car only when the ego has passed the current one, we can use a
do-until statement:

1 In a real implementation, we would probably want to require that the parked car is not initially visible from the ego, to avoid the sudden
appearance of cars out of nowhere.

1.6. Composing Scenarios 41

Scenic

while True:
subScenario = ParkedCar(gap=0.25)
do subScenario until (distance past subScenario.parkedCar) > 10

Note how we can refer to the parkedCar variable created in the ParkedCar scenario as a property of the scenario.
Combined with the ability to pass objects as parameters of scenarios, this is convenient for reusing objects across
scenarios.

1.6.3 Interrupts, Overriding, and Initial Scenarios

The try-interrupt statement used in behaviors can also be used in compose blocks to switch between scenarios.
For example, suppose we already have a scenario where the ego is following a leadCar, and want to elaborate it by
adding a parked car which suddenly pulls in front of the lead car. We could write a compose block as follows:

1 following = FollowingScenario()
2 try:
3 do following
4 interrupt when (distance to following.leadCar) < 10:
5 do ParkedCarPullingAheadOf(following.leadCar)

If the ParkedCarPullingAheadOf scenario is defined to end shortly after the parked car finishes entering the lane,
the interrupt handler will complete and Scenic will resume executing FollowingScenario on line 3 (unless the ego
is still within 10 m of the lead car).

Suppose that we want the lead car to behave differently while the parked car scenario is running; for example, perhaps the
behavior for the lead car defined in FollowingScenario does not handle a parked car suddenly pulling in. To enable
changing the behavior or other properties of an object in a sub-scenario, Scenic provides the override statement,
which we can use as follows:

scenario ParkedCarPullingAheadOf(target):
setup:

override target with behavior FollowLaneAvoidingCollisions
parkedCar = new Car left of ...

Here we override the behavior property of target for the duration of the scenario, reverting it back to its original
value (and thereby continuing to execute the old behavior) when the scenario terminates. The override object
specifier, ... statement takes a comma-separated list of specifiers like an instance creation, and can specify any
properties of the object except for dynamic properties like position or speed which can only be indirectly controlled
by taking actions.

In order to allow writing scenarios which can both stand on their own and be invoked during another scenario, Scenic
provides a special conditional statement testing whether we are inside the initial scenario, i.e., the very first scenario
to run. For instance:

scenario TwoLanePedestrianScenario():
setup:

if initial scenario: # create ego on random 2-lane road
roads = filter(lambda r: len(r.lanes) == 2, network.roads)
road = Uniform(*roads) # pick uniformly from list
ego = new Car on road

else: # use existing ego car; require it is on a 2-lane road
require len(ego.road.lanes) == 2
road = ego.road

new Pedestrian on visible road.sidewalkRegion, with behavior ...

42 Chapter 1. Table of Contents

Scenic

1.6.4 Random Selection of Scenarios

For very general scenarios, like “driving through a city, encountering typical human traffic”, we may want a variety of
different events and interactions to be possible. We saw in the Dynamic Scenarios tutorial how we can write behaviors
for individual agents which choose randomly between possible actions; Scenic allows us to do the same with entire
scenarios. Most simply, since scenarios are first-class objects, we can write functions which operate on them, perhaps
choosing a scenario from a list of options based on some complex criterion:

chosenScenario = pickNextScenario(ego.position, ...)
do chosenScenario

However, some scenarios may only make sense in certain contexts; for example, a red light runner scenario can take
place only at an intersection. To facilitate modeling such situations, Scenic provides variants of the do statement which
randomly choose scenarios to run amongst only those whose preconditions are satisfied:

1 do choose RedLightRunner, Jaywalker, ParkedCar(gap=0.5)
2 do choose {RedLightRunner: 2, Jaywalker: 1, ParkedCar(gap=0.5): 1}
3 do shuffle RedLightRunner, Jaywalker, ParkedCar

Here, line 1 checks the preconditions of the three given scenarios, then executes one (and only one) of the enabled
scenarios. If for example the current road has no shoulder, then ParkedCar will be disabled and we will have a
50/50 chance of executing either RedLightRunner or Jaywalker (assuming their preconditions are satisfied). If
none of the three scenarios are enabled, Scenic will reject the simulation. Line 2 shows a non-uniform variant, where
RedLightRunner is twice as likely to be chosen as each of the other scenarios (so if only ParkedCar is disabled, we
will pick RedLightRunner with probability 2/3; if none are disabled, 2/4). Finally, line 3 is a shuffled variant, where
all three scenarios will be executed, but in random order.2

1.7 Syntax Guide

This page summarizes the syntax of Scenic, excluding the basic syntax of variable assignments, functions, loops, etc.,
which is identical to Python (see the Python Tutorial for an introduction). For more details, click the links for individual
language constructs to go to the corresponding section of the Language Reference.

1.7.1 Primitive Data Types

Booleans expressing truth values
Scalars representing distances, angles, etc. as floating-point numbers
Vectors representing positions and offsets in space
Headings representing 2D orientations in the XY plane
Orientations representing 3D orientations in space
Vector Fields associating an orientation to each point in space
Regions representing sets of points in space
Shapes representing shapes (regions modulo similarity)

2 Respecting preconditions, so in particular the simulation will be rejected if at some point none of the remaining scenarios to execute are enabled.

1.7. Syntax Guide 43

https://docs.python.org/3/tutorial/

Scenic

1.7.2 Distributions

Range(low, high) uniformly-distributed real number in the interval
DiscreteRange(low, high) uniformly-distributed integer in the (fixed) interval
Normal(mean, stdDev) normal distribution with the given mean and standard devia-

tion
TruncatedNormal(mean, stdDev, low,
high)

normal distribution truncated to the given window

Uniform(value, ...) uniform over a finite set of values
Discrete({value: weight, ...}) discrete with given values and weights
new Point in region uniformly-distributed Point in a region

1.7.3 Statements

Compound Statements

Syntax Meaning
class name[(superclass)]: Defines a Scenic class.
behavior name(arguments): Defines a dynamic behavior.
monitor name(arguments): Defines a monitor.
scenario name(arguments): Defines a modular scenario.
try: ... interrupt when
boolean:

Run code with interrupts inside a dynamic behavior or modular sce-
nario.

Simple Statements

Syntax Meaning
model name Select the world model.
import module Import a Scenic or Python module.
param name = value, ... Define global parameters of the scenario.
require boolean Define a hard requirement.
require[number] boolean Define a soft requirement.
require LTL formula Define a dynamic hard requirement.
require monitor monitor Define a dynamic requirement using a monitor.
terminate when boolean Define a termination condition.
terminate after scalar (seconds |
steps)

Set the scenario to terminate after a given amount of time.

mutate identifier, ... [by number] Enable mutation of the given list of objects.
record [initial | final] value as
name

Save a value at every time step or only at the start/end of the
simulation.

44 Chapter 1. Table of Contents

Scenic

Dynamic Statements

These statements can only be used inside a dynamic behavior, monitor, or compose block of a modular scenario.

Syntax Meaning
take action, ... Take the action(s) specified.
wait Take no actions this time step.
terminate Immediately end the scenario.
terminate simulation Immediately end the entire simulation.
do behavior/scenario, ... Run one or more sub-behaviors/sub-scenarios until they

complete.
do behavior/scenario, ... until boolean Run sub-behaviors/scenarios until they complete or a con-

dition is met.
do behavior/scenario, ... for scalar
(seconds | steps)

Run sub-behaviors/scenarios for (at most) a specified period
of time.

do choose behavior/scenario, ... Run one choice of sub-behavior/scenario whose precondi-
tions are satisfied.

do shuffle behavior/scenario, ... Run several sub-behaviors/scenarios in a random order, sat-
isfying preconditions.

abort Break out of the current try-interrupt statement.
override object specifier, ... Override properties of an object for the duration of the cur-

rent scenario.

1.7.4 Objects

The syntax new class specifier, ... creates an instance of a Scenic class.

The Scenic class Point provides the basic position properties in the first table below; its subclass OrientedPoint adds
the orientation properties in the second table. Finally, the class Object, which represents physical objects and is the
default superclass of user-defined Scenic classes, adds the properties in the third table. See the Objects and Classes
Reference for details.

Property Default Meaning
position1 (0, 0, 0) position in global coordinates
visibleDistance 50 distance for the ‘can see’ operator
viewRayDensity 5 determines ray count (if ray count is not provided)
viewRayDistanceScaling False whether to scale number of rays with distance (if ray count is not provided)
viewRayCount None tuple of number of rays to send in each dimension.
mutationScale 0 overall scale of mutations
positionStdDev (1,1,0) mutation standard deviation for position

Properties added by OrientedPoint:

Property Default Meaning
yaw1 0 yaw in local coordinates
pitch1 0 pitch in local coordinates
roll1 0 roll in local coordinates
parentOrientation global basis for local coordinate system
viewAngles (2,) angles for visibility calculations
orientationStdDev (5°, 0, 0) mutation standard deviation for orientation

1 These are dynamic properties, updated automatically every time step during dynamic simulations.

1.7. Syntax Guide 45

Scenic

Properties added by Object:

Property Default Meaning
width 1 width of bounding box (X axis)
length 1 length of bounding box (Y axis)
height 1 height of bounding box (Z axis)
shape BoxShape shape of the object
allowCollisions False whether collisions are allowed
regionContainedIn workspace Region the object must lie within
baseOffset (0, 0, -self.height/2) offset determining the base of the object
contactTolerance 1e-4 max distance to be considered on a surface
sideComponentThresholds (-0.5, 0.5) per side thresholds to determine side surfaces
cameraOffset (0, 0, 0) position of camera for can see
requireVisible False whether object must be visible from ego
occluding True whether object occludes visibility
showVisibleRegion False whether to display the visible region
color None color of object
velocityPage 45, 1 from speed initial (instantaneous) velocity
speedPage 45, 1 0 initial (later, instantaneous) speed
angularVelocityPage 45, 1 (0, 0, 0) initial (instantaneous) angular velocity
angularSpeedPage 45, 1 0 angular speed (change in heading/time)
behavior None dynamic behavior, if any
lastActions None tuple of actions taken in last timestamp

1.7.5 Specifiers

The with property value specifier can specify any property, including new properties not built into Scenic. Addi-
tional specifiers for the position and orientation properties are listed below.

46 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Scenic

Fig. 4: Illustration of the beyond, behind, and offset by specifiers. Each OrientedPoint (e.g. P) is shown as a
bold arrow.

Specifier for position Meaning
at vector Positions the object at the given global coordinates
in region Positions the object uniformly at random in the given Region
contained in region Positions the object uniformly at random entirely contained in the given

Region
on region Positions the base of the object uniformly at random in the given Region,

or modifies the position so that the base is in the Region.
offset by vector Positions the object at the given coordinates in the local coordinate system

of ego (which must already be defined)
offset along direction by
vector

Positions the object at the given coordinates, in a local coordinate system
centered at ego and oriented along the given direction

beyond vector by (vector
| scalar) [from (vector |
OrientedPoint)]

Positions the object with respect to the line of sight from a point or the ego

visible [from (Point |
OrientedPoint)]

Ensures the object is visible from the ego, or from the given
Point/OrientedPoint if given, while optionally specifying position to be in
the appropriate visible region.

not visible [from (Point |
OrientedPoint)]

Ensures the object is not visible from the ego, or from the given
Point/OrientedPoint if given, while optionally specifying position to be out-
side the appropriate visible region.

(left | right) of (vector |
OrientedPoint | Object) [by
scalar]

Positions the object to the left/right by the given scalar distance.

(ahead of | behind) (vector
| OrientedPoint | Object)
[by scalar]

Positions the object to the front/back by the given scalar distance

(above | below) (vector |
OrientedPoint | Object) [by
scalar]

Positions the object above/below by the given scalar distance

following vectorField [from
vector] for scalar

Position by following the given vector field for the given distance starting
from ego or the given vector

1.7. Syntax Guide 47

Scenic

Specifier for orientation Meaning
facing orientation Orients the object along the given orientation in global coordinates
facing vectorField Orients the object along the given vector field at the object’s position
facing (toward | away from)
vector

Orients the object toward/away from the given position (thereby depending
on the object’s position)

facing directly (toward |
away from) vector

Orients the object directly toward/away from the given position (thereby
depending on the object’s position)

apparently facing heading
[from vector]

Orients the object so that it has the given heading with respect to the line
of sight from ego (or the given vector)

1.7.6 Operators

In the following tables, operators are grouped by the type of value they return.

Fig. 5: Illustration of several operators. Each OrientedPoint (e.g. P) is shown as a bold arrow.

Scalar Operators Meaning
relative heading of heading
[from heading]

The relative heading of the given heading with respect to ego (or the
from heading)

apparent heading of
OrientedPoint [from vector]

The apparent heading of the OrientedPoint, with respect to the line of
sight from ego (or the given vector)

distance [from vector] to
vector

The distance to the given position from ego (or the from vector)

angle [from vector] to vector The heading (azimuth) to the given position from ego (or the from
vector)

altitude [from vector] to
vector

The altitude to the given position from ego (or the from vector)

48 Chapter 1. Table of Contents

Scenic

Boolean Operators Meaning
(Point | OrientedPoint) can see
(vector | Object)

Whether or not a position or Object is visible from a Point or
OrientedPoint.

(vector | Object) in region Whether a position or Object lies in the region

Orientation Operators Meaning
scalar deg The given angle, interpreted as being in degrees
vectorField at vector The orientation specified by the vector field at the given position
direction relative to
direction

The first direction (a heading, orientation, or vector field), interpreted as an offset
relative to the second direction

Vector Operators Meaning
vector (relative to |
offset by) vector

The first vector, interpreted as an offset relative to the second vector (or vice
versa)

vector offset along
direction by vector

The second vector, interpreted in a local coordinate system centered at the first
vector and oriented along the given direction

Region Operators Meaning
visible region The part of the given region visible from ego
not visible region The part of the given region not visible from ego
region visible from (Point |
OrientedPoint)

The part of the given region visible from the given Point or
OrientedPoint.

region not visible from (Point |
OrientedPoint)

The part of the given region not visible from the given Point or
OrientedPoint.

OrientedPoint Operators Meaning
vector relative to OrientedPoint The given vector, interpreted in the local coordinate system of the

OrientedPoint
OrientedPoint offset by vector Equivalent to vector relative to OrientedPoint above
(front | back | left | right) of
Object

The midpoint of the corresponding side of the bounding box of the
Object, inheriting the Object’s orientation.

(front | back) (left | right) of
Object

The midpoint of the corresponding edge of the bounding box of the
Object, inheriting the Object’s orientation.

(front | back) (left | right) of
Object

The midpoint of the corresponding edge of the bounding box of the
Object, inheriting the Object’s orientation.

(top | bottom) (front | back)
(left | right) of Object

The corresponding corner of the bounding box of the Object, inher-
iting the Object’s orientation.

Temporal Operators Meaning
always condition Require the condition to hold at every time step.
eventually condition Require the condition to hold at some time step.
next condition Require the condition to hold in the next time step.
condition until condition Require the first condition to hold until the second becomes true.
condition implies condition Require the second condition to hold if the first condition holds.

1.7. Syntax Guide 49

Scenic

1.7.7 Built-in Functions

Function Description
Misc Python functions Various Python functions including min, max, open, etc.
filter Filter a possibly-random list (allowing limited randomized control flow).
resample Sample a new value from a distribution.
localPath Convert a relative path to an absolute path, based on the current directory.
verbosePrint Like print, but silent at low-enough verbosity levels.
simulation Get the the current simulation object.

1.8 Language Reference

Language Constructs

These pages describe the syntax of Scenic in detail. For a one-page summary of Scenic’s syntax, see the Syntax Guide.
For details on the syntax for functions, loops, etc. inherited from Python, see the Python Language Reference.

1.8.1 General Notes on Syntax

Keywords

Keywords

The following words are reserved by Scenic and cannot be used as identifiers (i.e. as names of variables, functions,
classes, properties, etc.).

False break except lambda require
None by finally new return
True class for nonlocal to
and continue from not try
as def global of until
assert del if on while
async do import or with
at elif in pass yield
await else is raise

Soft Keywords

The following words have special meanings in Scenic in certain contexts, but are still available for use as identifiers.
Users should take care not to use these names when doing so would introduce ambiguity. For example, consider the
following code:

distance = 5 # not a good variable name to use here
new Object beyond A by distance from B

This might appear to use the three-argument form of the beyond specifier, creating the new object at distance 5 beyond
A from the point of view of B. But in fact Scenic parses the code as beyond A by (distance from B), because the
interpretation of distance as being part of the distance from operator takes precedence.

50 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/reference/index.html

Scenic

To avoid confusion, we recommend not using distance, angle, offset, altitude, or visible as identifiers in
code that uses Scenic operators or specifiers (inside pure-Python helper functions is fine).

_ behind facing mutate see
abort below final next setup
above beyond follow not shuffle
additive bottom following of simulation
after can from offset simulator
ahead case front override steps
along choose heading param take
altitude compose implies past terminate
always contained initial position top
angle deg interrupt precondition toward
apparent directly invariant record visible
apparently distance left relative wait
away dynamic match right when
back ego model scenario workspace
behavior eventually monitor seconds

1.8.2 Data Types Reference

This page describes the primitive data types built into Scenic. In addition to these types, Scenic provides a class
hierarchy for points, oriented points, and objects: see the Objects and Classes Reference.

Boolean

Booleans represent truth values, and can be True or False.

Note: These are equivalent to the Python bool type.

Scalar

Scalars represent distances, angles, etc. as floating-point numbers, which can be sampled from various distributions.

Note: These are equivalent to the Python float type; however, any context which accepts a scalar will also allow an
int or a NumPy numeric type such as numpy.single (to be precise, any instance of numbers.Real is legal).

Vector

Vectors represent positions and offsets in space. They are constructed from coordinates using a length-3 list or tuple
([X, Y, Z] or (X, Y, Z). Alternatively, they can be constructed with the syntax X @ Y (inspired by Smalltalk) or
a length-2 list or tuple, with an implied z value of 0. By convention, coordinates are in meters, although the semantics
of Scenic does not depend on this.

For convenience, instances of Point can be used in any context where a vector is expected: so for example if P is a
Point, then P offset by (1, 2) is equivalent to P.position offset by (1, 2).

Changed in version 3.0: Vectors are now 3 dimensional.

1.8. Language Reference 51

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.single
https://docs.python.org/3/library/numbers.html#numbers.Real
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

Scenic

Heading

Headings represent yaw in the global XY plane. Scenic represents headings in radians, measured anticlockwise from
North, so that a heading of 0 is due North and a heading of /2 is due West. We use the convention that the heading of
a local coordinate system is the heading of its Y-axis, so that, for example, the vector -2 @ 3 means 2 meters left and
3 ahead.

For convenience, instances of OrientedPoint can be used in any context where a heading is expected: so for example
if OP is an OrientedPoint, then relative heading of OP is equivalent to relative heading of OP.heading.
Since OrientedPoint is a subclass of Point, expressions involving two oriented points like OP1 relative to OP2 can
be ambiguous: the polymorphic operator relative to accepts both vectors and headings, and either version could be
meant here. Scenic rejects such expressions as being ambiguous: more explicit syntax like OP1.position relative
to OP2 must be used instead.

Orientation

Orientations represent orientations in 3D space. Scenic represents orientations internally using quaternions, though
for convenience they can be created using Euler angles. Scenic follows the right hand rule with the Z,X,Y order of
rotations. In other words, Euler angles are given as (Yaw, Pitch, Roll), in radians, and applied in that order. To help
visualize, one can consider their right hand with fingers extended orthogonally. The index finger points along positive
X, the middle finger bends left along positive Y, and the thumb ends up pointing along positive Z. For rotations, align
your right thumb with a positive axis and the way your fingers curl is a positive rotation.

New in version 3.0.

Vector Field

Vector fields associate an orientation to each point in space. For example, a vector field could represent the shortest paths
to a destination, or the nominal traffic direction on a road (e.g. scenic.domains.driving.model.roadDirection).

Changed in version 3.0: Vector fields now return an Orientation instead of a scalar heading.

Region

Regions represent sets of points in space. Scenic provides a variety of ways to define regions in 2D and 3D space:
meshes, rectangles, circular sectors, line segments, polygons, occupancy grids, and explicit lists of points, among
others.

Regions can have an associated vector field giving points in the region preferred orientations. For example, a region
representing a lane of traffic could have a preferred orientation aligned with the lane, so that we can easily talk about
distances along the lane, even if it curves. Another possible use of preferred orientations is to give the surface of an
object normal vectors, so that other objects placed on the surface face outward by default.

The main operations available for use with all regions are:

• the (vector | Object) in region operator to test containment within a region;

• the visible region operator to get the part of a region which is visible from the ego;

• the in region specifier to choose a position uniformly at random inside a region;

• the on region specifier to choose a position like in region or to project an existing position onto the region’s
surface.

If you need to perform more complex operations on regions, or are writing a world model and need to define your own
regions, you will have to work with the Region class (which regions are instances of) and its subclasses for particular

52 Chapter 1. Table of Contents

Scenic

types of regions. These are listed in the Regions Types reference. If you are working on Scenic’s internals, see the
scenic.core.regions module for full details.

Shape

Shapes represent the shape of an object, i.e., the volume it occupies modulo translation, rotation, and scaling. Shapes
are represented by meshes, automatically converted to unit size and centered; Scenic considers the side of the shape
facing the positive Y axis to be its front.

Shapes can be created from an arbitrary mesh or using one of the geometric primitives below. For convenience, a shape
created with specified dimensions will set the default dimensions for any Object created with that shape. When creating
a MeshShape, if no dimensions are provided then dimensions will be inferred from the mesh. MeshShape also takes
an optional initial_rotation parameter, which allows directions other than the positive Y axis to be considered the
front of the shape.

class MeshShape(mesh, dimensions=None, scale=1, initial_rotation=None)
A Shape subclass defined by a trimesh.base.Trimesh object.

The mesh passed must be a trimesh.base.Trimesh object that represents a well defined volume (i.e. the
is_volume property must be true), meaning the mesh must be watertight, have consistent winding and have
outward facing normals.

Parameters

• mesh – A mesh object.

• dimensions – The raw (before scaling) dimensions of the shape. If dimensions and scale
are both specified the dimensions are first set by dimensions, and then scaled by scale.

• scale – Scales all the dimensions of the shape by a multiplicative factor. If dimensions and
scale are both specified the dimensions are first set by dimensions, and then scaled by scale.

• initial_rotation – A 3-tuple containing the yaw, pitch, and roll respectively to apply
when loading the mesh. Note the initial_rotation must be fixed.

classmethod fromFile(path, filetype=None, compressed=None, binary=False, **kwargs)
Load a mesh shape from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file. “foo.obj” is assumed to be an un-
compressed .obj file. “foo” is an unknown filetype, so unless a filetype is provided an exception will be
raised.

Parameters

• path (str) – Path to the file to import.

• filetype (str) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load.

• compressed (bool) – Whether or not this file is compressed (with bz2). This will be
inferred if not provided.

• binary (bool) – Whether or not to open the file as a binary file.

• kwargs – Additional arguments to the MeshShape initializer.

class BoxShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)
A box shape with all dimensions 1 by default.

class CylinderShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None, sections=24)
A cylinder shape with all dimensions 1 by default.

1.8. Language Reference 53

https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh
https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://trimsh.org/trimesh.html#trimesh.load
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scenic

class ConeShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)
A cone shape with all dimensions 1 by default.

class SpheroidShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)
A spheroid shape with all dimensions 1 by default.

1.8.3 Region Types Reference

This page covers the scenic.core.regions.Region class and its subclasses; for an introduction to the concept of
regions in Scenic and the basic operations available for them, see Region.

• Abstract Regions

• Point Sets and Lines

• 2D Regions

• 3D Regions

• Niche Regions

Abstract Regions

class Region(name, *dependencies, orientation=None)
An abstract base class for Scenic Regions

intersects(other)
Check if this Region intersects another.

Return type
bool

intersect(other, triedReversed=False)
Get a Region representing the intersection of this one with another.

If both regions have a preferred orientation, the one of self is inherited by the intersection.

Return type
Region

union(other, triedReversed=False)
Get a Region representing the union of this one with another.

Not supported by all region types.

Return type
Region

54 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#bool

Scenic

Point Sets and Lines

class PointSetRegion(name, points, kdTree=None, orientation=None, tolerance=1e-06)
Region consisting of a set of discrete points.

No Object can be contained in a PointSetRegion, since the latter is discrete. (This may not be true for sub-
classes, e.g. GridRegion.)

Parameters

• name (str) – name for debugging

• points (arraylike) – set of points comprising the region

• kdTree (scipy.spatial.KDTree, optional) – k-D tree for the points (one will be computed
if none is provided)

• orientation (Vector Field; optional) – preferred orientation for the region

• tolerance (float; optional) – distance tolerance for checking whether a point lies in
the region

class PolylineRegion(points=None, polyline=None, orientation=True, name=None)
Region given by one or more polylines (chain of line segments).

The region may be specified by giving either a sequence of points or shapely polylines (a LineString or
MultiLineString).

Parameters

• points – sequence of points making up the polyline (or None if using the polyline argument
instead).

• polyline – shapely polyline or collection of polylines (or None if using the points argu-
ment instead).

• orientation (optional) – preferred orientation to use, or True to use an orientation
aligned with the direction of the polyline (the default).

• name (str; optional) – name for debugging.

property start

Get an OrientedPoint at the start of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if there is one (the default orientation
pointing along the polyline).

property end

Get an OrientedPoint at the end of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if there is one (the default orientation
pointing along the polyline).

signedDistanceTo(point)
Compute the signed distance of the PolylineRegion to a point.

The distance is positive if the point is left of the nearest segment, and negative otherwise.

Return type
float

1.8. Language Reference 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float

Scenic

pointAlongBy(distance, normalized=False)
Find the point a given distance along the polyline from its start.

If normalized is true, then distance should be between 0 and 1, and is interpreted as a fraction of the
length of the polyline. So for example pointAlongBy(0.5, normalized=True) returns the polyline’s
midpoint.

Return type
Vector

__getitem__(i)
Get the ith point along this polyline.

If the region consists of multiple polylines, this order is linear along each polyline but arbitrary across
different polylines.

Return type
Vector

__len__()

Get the number of vertices of the polyline.

Return type
int

class PathRegion(points=None, polylines=None, tolerance=1e-08, name=None)
A region composed of multiple polylines in 3D space.

One of points or polylines should be provided.

Parameters

• points – A list of points defining a single polyline.

• polylines – A list of list of points, defining multiple polylines.

• tolerance – Tolerance used internally.

2D Regions

2D regions represent a 2D shape parallel to the XY plane, at a certain elevation in space. All 2D regions inherit from
PolygonalRegion.

Unlike the more PolygonalRegion, the simple geometric shapes are allowed to depend on random values: for exam-
ple, the visible region of an Object is a SectorRegion based at the object’s position, which might not be fixed.

Since 2D regions cannot contain an Object (which must be 3D), they define a footprint for convenience. Footprints
are always a PolygonalFootprintRegion, which represents a 2D polygon extruded infinitely in the positive and
negative vertical direction. When checking containment of an Object in a 2D region, Scenic will atuomatically use the
footprint.

class PolygonalRegion(points=None, polygon=None, z=0, orientation=None, name=None, additionalDeps=[])
Region given by one or more polygons (possibly with holes) at a fixed z coordinate.

The region may be specified by giving either a sequence of points defining the boundary of the polygon, or a
collection of shapely polygons (a Polygon or MultiPolygon).

Parameters

• points – sequence of points making up the boundary of the polygon (or None if using the
polygon argument instead).

56 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Scenic

• polygon – shapely polygon or collection of polygons (or None if using the points argument
instead).

• z – The z coordinate the polygon is located at.

• orientation (Vector Field; optional) – preferred orientation to use.

• name (str; optional) – name for debugging.

property boundary: PolylineRegion

Get the boundary of this region as a PolylineRegion.

class CircularRegion(center, radius, resolution=32, name=None)
A circular region with a possibly-random center and radius.

Parameters

• center (Vector) – center of the disc.

• radius (float) – radius of the disc.

• resolution (int; optional) – number of vertices to use when approximating this region
as a polygon.

• name (str; optional) – name for debugging.

class SectorRegion(center, radius, heading, angle, resolution=32, name=None)
A sector of a CircularRegion.

This region consists of a sector of a disc, i.e. the part of a disc subtended by a given arc.

Parameters

• center (Vector) – center of the corresponding disc.

• radius (float) – radius of the disc.

• heading (float) – heading of the centerline of the sector.

• angle (float) – angle subtended by the sector.

• resolution (int; optional) – number of vertices to use when approximating this region
as a polygon.

• name (str; optional) – name for debugging.

class RectangularRegion(position, heading, width, length, name=None)
A rectangular region with a possibly-random position, heading, and size.

Parameters

• position (Vector) – center of the rectangle.

• heading (float) – the heading of the length axis of the rectangle.

• width (float) – width of the rectangle.

• length (float) – length of the rectangle.

• name (str; optional) – name for debugging.

1.8. Language Reference 57

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

3D Regions

3D regions represent points in 3D space.

Most 3D regions inherit from either MeshVolumeRegion or MeshSurfaceRegion, which represent the volume
(of a watertight mesh) and the surface of a mesh respectively. Various region classes are also provided to create
primitive shapes. MeshVolumeRegion can be converted to MeshSurfaceRegion (and vice versa) using the the
getSurfaceRegion and getVolumeRegion methods.

Mesh regions can use one of two engines for mesh operations: Blender or OpenSCAD. This can be controlled using
the engine parameter, passing "blender" or "scad" respectively. Blender is generally more tolerant but can produce
unreliable output, such as meshes that have microscopic holes. OpenSCAD is generally more precise, but may crash
on certain inputs that it considers ill-defined. By default, Scenic uses Blender internally.

PolygonalFootprintRegions represent the footprint of a 2D region. See 2D Regions for more details.

class MeshVolumeRegion(*args, **kwargs)
Bases: MeshRegion

A region representing the volume of a mesh.

The mesh passed must be a trimesh.base.Trimesh object that represents a well defined volume (i.e. the
is_volume property must be true), meaning the mesh must be watertight, have consistent winding and have
outward facing normals.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False). The
mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon, and then
rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note that
scaling and rotation transformations may not behave as expected, since they are performed around the origin.

Parameters

• mesh – The base mesh for this region.

• name – An optional name to help with debugging.

• dimensions – An optional 3-tuple, with the values representing width, length, height re-
spectively. The mesh will be scaled such that the bounding box for the mesh has these di-
mensions.

• position – An optional position, which determines where the center of the region will be.

• rotation – An optional Orientation object which determines the rotation of the object in
space.

• orientation – An optional vector field describing the preferred orientation at every point
in the region.

• tolerance – Tolerance for internal computations.

• centerMesh – Whether or not to center the mesh after copying and before transformations.

• onDirection – The direction to use if an object being placed on this region doesn’t specify
one.

• engine – Which engine to use for mesh operations. Either “blender” or “scad”.

getSurfaceRegion()

Return a region equivalent to this one, except as a MeshSurfaceRegion

58 Chapter 1. Table of Contents

https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh

Scenic

classmethod fromFile(path, filetype=None, compressed=None, binary=False, **kwargs)
Load a mesh region from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file. “foo.obj” is assumed to be an un-
compressed .obj file. “foo” is an unknown filetype, so unless a filetype is provided an exception will be
raised.

Parameters

• path (str) – Path to the file to import.

• filetype (str) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load.

• compressed (bool) – Whether or not this file is compressed (with bz2). This will be
inferred if not provided.

• binary (bool) – Whether or not to open the file as a binary file.

• kwargs – Additional arguments to the MeshRegion initializer.

class MeshSurfaceRegion(*args, **kwargs)
Bases: MeshRegion

A region representing the surface of a mesh.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False). The
mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon, and then
rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note that
scaling and rotation transformations may not behave as expected, since they are performed around the origin.

If an orientation is not passed to this mesh, a default orientation is provided which provides an orientation that
aligns an object’s z axis with the normal vector of the face containing that point, and has a yaw aligned with a
yaw of 0 in the global coordinate system.

Parameters

• mesh – The base mesh for this region.

• name – An optional name to help with debugging.

• dimensions – An optional 3-tuple, with the values representing width, length, height re-
spectively. The mesh will be scaled such that the bounding box for the mesh has these di-
mensions.

• position – An optional position, which determines where the center of the region will be.

• rotation – An optional Orientation object which determines the rotation of the object in
space.

• orientation – An optional vector field describing the preferred orientation at every point
in the region.

• tolerance – Tolerance for internal computations.

• centerMesh – Whether or not to center the mesh after copying and before transformations.

• onDirection – The direction to use if an object being placed on this region doesn’t specify
one.

getVolumeRegion()

Return a region equivalent to this one, except as a MeshVolumeRegion

1.8. Language Reference 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://trimsh.org/trimesh.html#trimesh.load
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scenic

classmethod fromFile(path, filetype=None, compressed=None, binary=False, **kwargs)
Load a mesh region from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file. “foo.obj” is assumed to be an un-
compressed .obj file. “foo” is an unknown filetype, so unless a filetype is provided an exception will be
raised.

Parameters

• path (str) – Path to the file to import.

• filetype (str) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load.

• compressed (bool) – Whether or not this file is compressed (with bz2). This will be
inferred if not provided.

• binary (bool) – Whether or not to open the file as a binary file.

• kwargs – Additional arguments to the MeshRegion initializer.

class BoxRegion(*args, **kwargs)
Region in the shape of a rectangular cuboid, i.e. a box.

By default the unit box centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh parameter which is excluded.

class SpheroidRegion(*args, **kwargs)
Region in the shape of a spheroid.

By default the unit sphere centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh parameter which is excluded.

class PolygonalFootprintRegion(polygon, name=None)
Region that contains all points in a polygonal footprint, regardless of their z value.

This region cannot be sampled from, as it has infinite height and therefore infinite volume.

Parameters

• polygon – A shapely Polygon or MultiPolygon, that defines the footprint of this region.

• name – An optional name to help with debugging.

Niche Regions

class GridRegion(name, grid, Ax, Ay, Bx, By, orientation=None)
Bases: PointSetRegion

A Region given by an obstacle grid.

A point is considered to be in a GridRegion if the nearest grid point is not an obstacle.

Parameters

• name (str) – name for debugging

• grid – 2D list, tuple, or NumPy array of 0s and 1s, where 1 indicates an obstacle and 0
indicates free space

• Ax (float) – spacing between grid points along X axis

• Ay (float) – spacing between grid points along Y axis

60 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://trimsh.org/trimesh.html#trimesh.load
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

• Bx (float) – X coordinate of leftmost grid column

• By (float) – Y coordinate of lowest grid row

• orientation (Vector Field; optional) – orientation of region

1.8.4 Distributions Reference

Scenic provides functions for sampling from various types of probability distributions, and it is also possible to define
custom types of distributions.

If you want to sample multiple times from the same distribution (for example if the distribution is passed as an argument
to a helper function), you can use the resample function.

Built-in Distributions

Range(low, high)

Uniformly-distributed real number in the interval.

DiscreteRange(low, high)

Uniformly-distributed integer in the (fixed) interval.

Normal(mean, stdDev)

Normal distribution with the given mean and standard deviation.

TruncatedNormal(mean, stdDev, low, high)

Normal distribution as above, but truncated to the given window.

Uniform(value, . . .)

Uniform over a finite set of values. The Uniform distribution can also be used to uniformly select over a list of un-
known length. This can be done using the unpacking operator (which supports distributions over lists) as follows:
Uniform(*list).

Discrete({value: weight, . . . })

Discrete distribution over a finite set of values, with weights (which need not add up to 1). Each value is sampled with
probability proportional to its weight.

1.8. Language Reference 61

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

Uniform Distribution over a Region

Scenic can also sample points uniformly at random from a Region, using the in region and on region specifiers.
Most subclasses of Region support random sampling. A few regions, such as the everywhere region representing all
space, cannot be sampled from since a uniform distribution over them does not exist.

Defining Custom Distributions

If necessary, custom distributions may be implemented by subclassing the Distribution class. New subclasses must
implement the sampleGiven method, which computes a random sample from the distribution given values for its
dependencies (if any). See Range (the implementation of the uniform distribution over a range of real numbers) for
a simple example of how to define a subclass. Additional functionality can be enabled by implementing the optional
clone, bucket, and supportInterval methods; see their documentation for details.

1.8.5 Statements Reference

Compound Statements

Class Definition

class <name>[(<superclass>)]:
[<property>: <value>]*

Defines a Scenic class. If a superclass is not explicitly specified, Object is used (see Objects and Classes Reference).
The body of the class defines a set of properties its objects have, together with default values for each property. Prop-
erties are inherited from superclasses, and their default values may be overridden in a subclass. Default values may
also use the special syntax self.property to refer to one of the other properties of the same object, which is then
a dependency of the default value. The order in which to evaluate properties satisfying all dependencies is computed
(and cyclic dependencies detected) during Specifier Resolution.

Scenic classes may also define attributes and methods in the same way as Python classes.

Behavior Definition

behavior <name>(<arguments>):
[precondition: <boolean>]*
[invariant: <boolean>]*
<statement>+

Defines a dynamic behavior, which can be assigned to a Scenic object by setting its behavior property using the with
behavior behavior specifier; this makes the object an agent. See our tutorial on Dynamic Scenarios for examples
of how to write behaviors.

Behavior definitions have the same form as function definitions, with an argument list and a body consisting of one or
more statements; the body may additionally begin with definitions of preconditions and invariants. Preconditions are
checked when a behavior is started, and invariants are checked at every time step of the simulation while the behavior is
executing (including time step zero, like preconditions, but not including time spent inside sub-behaviors: this allows
sub-behaviors to break and restore invariants before they return).

The body of a behavior executes in parallel with the simulation: in each time step, it must either take specified
action(s) or wait and perform no actions. After each take or wait statement, the behavior’s execution is suspended,

62 Chapter 1. Table of Contents

Scenic

the simulation advances one step, and the behavior is then resumed. It is thus an error for a behavior to enter an infinite
loop which contains no take or wait statements (or do statements invoking a sub-behavior; see below): the behavior
will never yield control to the simulator and the simulation will stall.

Behaviors end naturally when their body finishes executing (or if they return): if this happens, the agent performing
the behavior will take no actions for the rest of the scenario. Behaviors may also terminate the current scenario,
ending it immediately.

Behaviors may invoke sub-behaviors, optionally for a limited time or until a desired condition is met, using do state-
ments. It is also possible to (temporarily) interrupt the execution of a sub-behavior under certain conditions and resume
it later, using try-interrupt statements.

Monitor Definition

monitor <name>(<arguments>):
<statement>+

Defines a type of monitor, which can be run in parallel with the simulation like a dynamic behavior. Monitors are
not associated with an Object and cannot take actions, but can wait to wait for the next time step (or use terminate
or terminate simulation to end the scenario/simulation). A monitor can be instantiated in a scenario with the
require monitor statement.

The main purpose of monitors is to evaluate complex temporal properties that are not expressible using the temporal
operators available for require LTL formula statements. They can maintain state and use require to enforce
requirements depending on that state. For examples of monitors, see our tutorial on Dynamic Scenarios.

Changed in version 3.0: Monitors may take arguments, and must be explicitly instantiated using a require monitor
statement.

Modular Scenario Definition

scenario <name>(<arguments>):
[precondition: <boolean>]*
[invariant: <boolean>]*
[setup:

<statement>+]
[compose:

<statement>+]

scenario <name>(<arguments>):
<statement>+

Defines a Scenic modular scenario. Scenario definitions, like behavior definitions, may include preconditions and
invariants. The body of a scenario consists of two optional parts: a setup block and a compose block. The setup
block contains code that runs once when the scenario begins to execute, and is a list of statements like a top-level Scenic
program (so it may create objects, define requirements, etc.). The compose block orchestrates the execution of sub-
scenarios during a dynamic scenario, and may use do and any of the other statements allowed inside behaviors (except
take, which only makes sense for an individual agent). If a modular scenario does not use preconditions, invariants,
or sub-scenarios (i.e., it only needs a setup block) it may be written in the second form above, where the entire body
of the scenario comprises the setup block.

See also:

Our tutorial on Composing Scenarios gives many examples of how to use modular scenarios.

1.8. Language Reference 63

https://docs.python.org/3/reference/compound_stmts.html#try

Scenic

Try-Interrupt Statement

try:
<statement>+

[interrupt when <boolean>:
<statement>+]*

[except <exception> [as <name>]:
<statement>+]*

A try-interrupt statement can be placed inside a behavior (or compose block of a modular scenario) to run a series
of statements, including invoking sub-behaviors with do, while being able to interrupt at any point if given conditions
are met. When a try-interrupt statement is encountered, the statements in the try block are executed. If at any
time step one of the interrupt conditions is met, the corresponding interrupt block (its handler) is entered and
run. Once the interrupt handler is complete, control is returned to the statement that was being executed under the try
block.

If there are multiple interrupt clauses, successive clauses take precedence over those which precede them; further-
more, during execution of an interrupt handler, successive interrupt clauses continue to be checked and can interrupt
the handler. Likewise, if try-interrupt statements are nested, the outermost statement takes precedence and can
interrupt the inner statement at any time. When one handler interrupts another and then completes, the original handler
is resumed (and it may even be interrupted again before control finally returns to the try block).

The try-interrupt statement may conclude with any number of except blocks, which function identically to their
Python counterparts.

Simple Statements

The following statements can occur throughout a Scenic program unless otherwise stated.

model name

Select a world model to use for this scenario. The statement model X is equivalent to from X import * except that X
can be replaced using the --model command-line option or the model keyword argument to the top-level APIs. When
writing simulator-agnostic scenarios, using the model statement is preferred to a simple import since a more specific
world model for a particular simulator can then be selected at compile time.

import module

Import a Scenic or Python module. This statement behaves as in Python, but when importing a Scenic module it also
imports any objects created and requirements imposed in that module. Scenic also supports the form from module
import identifier, ... , which as in Python imports the module plus one or more identifiers from its namespace.

64 Chapter 1. Table of Contents

https://docs.python.org/3/reference/compound_stmts.html#except

Scenic

param name = value, . . .

Defines one or more global parameters of the scenario. These have no semantics in Scenic, simply having their values
included as part of the generated Scene, but provide a general-purpose way to encode arbitrary global information.

If multiple param statements define parameters with the same name, the last statement takes precedence, except that
Scenic world models imported using the model statement do not override existing values for global parameters. This
allows models to define default values for parameters which can be overridden by particular scenarios. Global parame-
ters can also be overridden at the command line using the --param option, or from the top-level API using the params
argument to scenic.scenarioFromFile.

To access global parameters within the scenario itself, you can read the corresponding attribute of the
globalParameters object. For example, if you declare param weather = 'SUNNY', you could then access this
parameter later in the program via globalParameters.weather. If the parameter was not overridden, this would
evaluate to 'SUNNY'; if Scenic was run with the command-line option --param weather SNOW, it would evaluate to
'SNOW' instead.

Some simulators provide global parameters whose names are not valid identifiers in Scenic. To support giving values
to such parameters without renaming them, Scenic allows the names of global parameters to be quoted strings, as in
this example taken from an X-Plane scenario:

param simulation_length = 30
param 'sim/weather/cloud_type[0]' = DiscreteRange(0, 5)
param 'sim/weather/rain_percent' = 0

require boolean

Defines a hard requirement, requiring that the given condition hold in all instantiations of the scenario. This is equiv-
alent to an “observe” statement in other probabilistic programming languages.

require[number] boolean

Defines a soft requirement; like require above but enforced only with the given probability, thereby requiring that the
given condition hold with at least that probability (which must be a literal number, not an expression). For example,
require[0.75] ego in parking_lot would require that the ego be in the parking lot at least 75% percent of the
time.

require LTL formula

Defines a temporal requirement, requiring that the given Linear Temporal Logic formula hold in a dynamic scenario.
See Temporal Operators for the list of supported LTL operators.

Note that an expression that does not use any temporal operators is evaluated only in the current time step. So for
example:

• require A and always B will only require that A hold at time step zero, while B must hold at every time step
(note that this is the same behavior you would get if you wrote require A and require always B separately);

• require (always A) implies B requires that if A is true at every time step, then B must be true at time step
zero;

• require always A implies B requires that in every time step when A is true, B must also be true (since B is
within the scope of the always operator).

1.8. Language Reference 65

Scenic

require monitor monitor

Require a condition encoded by a monitor hold during the scenario. See Monitor Definition for how to define types of
monitors.

It is legal to create multiple instances of a monitor with varying parameters. For example:

monitor ReachesBefore(obj1, region, obj2):
reached = False
while not reached:

if obj1 in region:
reached = True

else:
require obj2 not in region
wait

require monitor ReachesBefore(ego, goal, racecar2)
require monitor ReachesBefore(ego, goal, racecar3)

terminate when boolean

Terminates the scenario when the provided condition becomes true. If this statement is used in a modular scenario
which was invoked from another scenario, only the current scenario will end, not the entire simulation.

terminate simulation when boolean

The same as terminate when, except terminates the entire simulation even when used inside a sub-scenario (so there
is no difference between the two statements when used at the top level).

terminate after scalar (seconds | steps)

Like terminate when above, but terminates the scenario after the given amount of time. The time limit can be an
expression, but must be a non-random value.

mutate identifier, . . . [by scalar]

Enables mutation of the given list of objects (any Point, OrientedPoint, or Object), with an optional scale factor (default
1). If no objects are specified, mutation applies to every Object already created.

The default mutation system adds Gaussian noise to the position and heading properties, with standard deviations
equal to the scale factor times the positionStdDev and headingStdDev properties.

Note: User-defined classes may specify custom mutators to allow mutation to apply to properties other than position
and heading. This is done by providing a value for the mutator property, which should be an instance of Mutator.
Mutators inherited from superclasses (such as the default position and heading mutators from Point and Oriented-
Point) will still be applied unless the new mutator disables them; see Mutator for details.

66 Chapter 1. Table of Contents

Scenic

record [initial | final] value [as name]

Record the value of an expression during each simulation. The value can be recorded at the start of the simulation
(initial), at the end of the simulation (final), or at every time step (if neither initial nor final is specified).
The recorded values are available in the records dictionary of SimulationResult: its keys are the given names of
the records (or synthesized names if not provided), and the corresponding values are either the value of the recorded
expression or a tuple giving its value at each time step as appropriate. For debugging, the records can also be printed
out using the --show-records command-line option.

Dynamic Statements

The following statements are valid only in dynamic behaviors, monitors, and compose blocks.

take action, . . .

Takes the action(s) specified and pass control to the simulator until the next time step. Unlike wait, this statement may
not be used in monitors or modular scenarios, since these do not take actions.

wait

Take no actions this time step.

terminate

Immediately end the scenario. As for terminate when, if this statement is used in a modular scenario which was
invoked from another scenario, only the current scenario will end, not the entire simulation. Inside a behavior being
run by an agent, the “current scenario” for this purpose is the scenario which created the agent.

terminate simulation

Immediately end the entire simulation.

do behavior/scenario, . . .

Run one or more sub-behaviors or sub-scenarios in parallel. This statement does not return until all invoked sub-
behaviors/scenarios have completed.

do behavior/scenario, . . . until boolean

As above, except the sub-behaviors/scenarios will terminate when the condition is met.

1.8. Language Reference 67

Scenic

do behavior/scenario for scalar (seconds | steps)

Run sub-behaviors/scenarios for a set number of simulation seconds/time steps. This statement can return before that
time if all the given sub-behaviors/scenarios complete.

do choose behavior/scenario, . . .

Randomly pick one of the given behaviors/scenarios whose preconditions are satisfied, and run it. If no choices are
available, the simulation is rejected.

This statement also allows the more general form do choose { behaviorOrScenario: weight, ... }, giving
weights for each choice (which need not add up to 1). Among all choices whose preconditions are satisfied, this picks
a choice with probability proportional to its weight.

do shuffle behavior/scenario, . . .

Like do choose above, except that when the chosen sub-behavior/scenario completes, a different one whose precon-
ditions are satisfied is chosen to run next, and this repeats until all the sub-behaviors/scenarios have run once. If at any
point there is no available choice to run (i.e. we have a deadlock), the simulation is rejected.

This statement also allows the more general form do shuffle { behaviorOrScenario: weight, ... }, giving
weights for each choice (which need not add up to 1). Each time a new sub-behavior/scenario needs to be selected, this
statement finds all choices whose preconditions are satisfied and picks one with probability proportional to its weight.

abort

Used in an interrupt handler to terminate the current try-interrupt statement.

override object specifier, . . .

Override one or more properties of an object, e.g. its behavior, for the duration of the current scenario. The properties
will revert to their previous values when the current scenario terminates. It is illegal to override dynamic properties,
since they are set by the simulator each time step and cannot be mutated manually.

1.8.6 Objects and Classes Reference

This page describes the classes built into Scenic, representing points, oriented points, and physical objects, and how
they are instantiated to create objects.

Note: The documentation given here describes only the public properties and methods provided by the built-in
classes. If you are working on Scenic’s internals, you can find more complete documentation in the scenic.core.
object_types module.

68 Chapter 1. Table of Contents

Scenic

Instance Creation

new <class> [<specifier> [, <specifier>]*]

Instantiates a Scenic object from a Scenic class. The properties of the object are determined by the given set of zero or
more specifiers. For details on the available specifiers and how they interact, see the Specifiers Reference.

Instantiating an instance of Object has a side effect: the object is added to the scenario being defined.

Changed in version 3.0: Instance creation now requires the new keyword. As a result, Scenic classes can be referred to
without creating an instance.

Built-in Classes

Point

Locations in space. This class provides the fundamental property position and several associated properties.

class Point <specifiers>
The Scenic base class Point.

The default mutator for Point adds Gaussian noise to position with a standard deviation given by the
positionStdDev property.

Properties

• position (Vector; dynamic) – Position of the point. Default value is the origin (0,0,0).

• width (float) – Default value 0 (only provided for compatibility with operators that expect
an Object).

• length (float) – Default value 0.

• height (float) – Default value 0.

• baseOffset (Vector) – Only provided for compatibility with the on region specifier. Default
value is (0,0,0).

• contactTolerance (float) – Only provided for compatibility with the specifiers that expect
an Object. Default value 0.

• onDirection (Vector) – The direction used to determine where to place this Point on a region,
when using the modifying on specifier. See the on region page for more details. Default
value is None, indicating the direction will be inferred from the region this object is being
placed on.

• visibleDistance (float) – Distance used to determine the visible range of this object. Default
value 50.

• viewRayDensity (float) – By default determines the number of rays used during visibility
checks. This value is the density of rays per degree of visible range in one dimension. The
total number of rays sent will be this value squared per square degree of this object’s view
angles. This value determines the default value for viewRayCount, so if viewRayCount is
overwritten this value is ignored. Default value 5.

• viewRayCount (None | tuple[float, float]) – The total number of horizontal and vertical
view angles to be sent, or None if this value should be computed automatically. Default
value None.

1.8. Language Reference 69

Scenic

• viewRayDistanceScaling (bool) – Whether or not the number of rays should scale with the
distance to the object. Ignored if viewRayCount is passed. Default value False.

• mutationScale (float) – Overall scale of mutations, as set by the mutate statement. Default
value 0 (mutations disabled).

• positionStdDev (tuple[float, float, float]) – Standard deviation of Gaussian noise for each
dimension (x,y,z) to be added to this object’s position when mutation is enabled with scale
1. Default value (1,1,0), mutating only the x,y values of the point.

property visibleRegion

The visible region of this object.

The visible region of a Point is a sphere centered at its position with radius visibleDistance.

OrientedPoint

A location along with an orientation, defining a local coordinate system. This class subclasses Point, adding the
fundamental property orientation and several associated properties.

class OrientedPoint <specifiers>
The Scenic class OrientedPoint.

The default mutator for OrientedPoint adds Gaussian noise to yaw while leaving pitch and roll unchanged,
using the three standard deviations (for yaw/pitch/roll respectively) given by the orientationStdDev property.
It then also applies the mutator for Point.

The default mutator for OrientedPoint adds Gaussian noise to yaw, pitch and roll according to
orientationStdDev. By default the standard deviations for pitch and roll are zero so that, by default,
only yaw is mutated.

Properties

• yaw (float; dynamic) – Yaw of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

• pitch (float; dynamic) – Pitch of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

• roll (float; dynamic) – Roll of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

• parentOrientation (Orientation) – The local coordinate system that the OrientedPoint’s
yaw, pitch, and roll are interpreted in. Default value is the global coordinate system,
where an object is flat in the XY plane, facing North.

• orientation (Orientation; dynamic; final) – The orientation of the OrientedPoint rel-
ative to the global coordinate system. Derived from the yaw, pitch, roll, and
parentOrientation of this OrientedPoint and non-overridable.

• heading (float; dynamic; final) – Yaw value of this OrientedPoint in the global coordinate
system. Derived from orientation and non-overridable.

• viewAngles (tuple[float,float]) – Horizontal and vertical view angles of this OrientedPoint
in radians. Horizontal view angle can be up to 2 and vertical view angle can be up to . Values
greater than these will be truncated. Default value is (2,)

• orientationStdDev (tuple[float,float,float]) – Standard deviation of Gaussian noise to add
to this object’s Euler angles (yaw, pitch, roll) when mutation is enabled with scale 1. Default
value (5°, 0, 0), mutating only the yaw of this OrientedPoint.

70 Chapter 1. Table of Contents

Scenic

property visibleRegion

The visible region of this object.

The visible region of an OrientedPoint restricts that of Point (a sphere with radius visibleDistance)
based on the value of viewAngles. In general, it is a capped rectangular pyramid subtending an angle
of viewAngles[0] horizontally and viewAngles[1] vertically, as long as those angles are less than /2;
larger angles yield various kinds of wrap-around regions. See ViewRegion for details.

Object

A physical object. This class subclasses OrientedPoint, adding a variety of properties including:

• width, length, and height to define the dimensions of the object;

• shape to define the Shape of the object;

• allowCollisions, requireVisible, and regionContainedIn to control the built-in requirements that ap-
ply to the object;

• behavior, specifying the object’s dynamic behavior if any;

• speed, velocity, and other properties capturing the dynamic state of the object during simulations.

The built-in requirements applying to each object are:

• The object must be completely contained within its container, the region specified as its regionContainedIn
property (by default the entire workspace).

• The object must be visible from the ego object if the requireVisible property is set to True (default value
False).

• The object must not intersect another object (i.e., their bounding boxes must not overlap), unless either of the
two objects has their allowCollisions property set to True.

Changed in version 3.0: requireVisible is now False by default.

class Object <specifiers>
The Scenic class Object.

This is the default base class for Scenic classes.

Properties

• width (float) – Width of the object, i.e. extent along its X axis. Default value of 1 inherited
from the object’s shape.

• length (float) – Length of the object, i.e. extent along its Y axis. Default value of 1 inherited
from the object’s shape.

• height (float) – Height of the object, i.e. extent along its Z axis. Default value of 1 inherited
from the object’s shape.

• shape (Shape) – The shape of the object, which must be an instance of Shape. The default
shape is a box, with default unit dimensions.

• allowCollisions (bool) – Whether the object is allowed to intersect other objects. Default
value False.

• regionContainedIn (Region or None) – A Region the object is required to be contained in.
If None, the object need only be contained in the scenario’s workspace.

1.8. Language Reference 71

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Scenic

• baseOffset (Vector) – An offset from the position of the Object to the base of the object,
used by the on region specifier. Default value is (0, 0, -self.height/2), placing the
base of the Object at the bottom center of the Object’s bounding box.

• contactTolerance (float) – The maximum distance this object can be away from a surface
to be considered on the surface. Objects are placed at half this distance away from a point
when the on region specifier or a directional specifier like (left | right) of Object [by scalar]
is used. Default value 1e-4.

• sideComponentThresholds (DimensionLimits) – Used to determine the various sides
of an object (when using the default implementation). The three interior 2-tuples rep-
resent the maximum and minimum bounds for each dimension’s (x,y,z) surface. See
defaultSideSurface for details. Default value ((-0.5, 0.5), (-0.5, 0.5), (-0.
5, 0.5)).

• cameraOffset (Vector) – Position of the camera for the can see operator, relative to the
object’s position. Default (0, 0, 0).

• requireVisible (bool) – Whether the object is required to be visible from the ego object.
Default value False.

• occluding (bool) – Whether or not this object can occlude other objects. Default value True.

• showVisibleRegion (bool) – Whether or not to display the visible region in the Scenic in-
ternal visualizer.

• color (tuple[float, float, float, float] or tuple[float, float, float] or None) – An optional color
(with optional alpha) property that is used by the internal visualizer, or possibly simulators.
All values should be between 0 and 1. Default value None

• velocity (Vector; dynamic) – Velocity in dynamic simulations. Default value is the velocity
determined by speed and orientation.

• speed (float; dynamic) – Speed in dynamic simulations. Default value 0.

• angularVelocity (Vector; dynamic)

• angularSpeed (float; dynamic) – Angular speed in dynamic simulations. Default value 0.

• behavior – Behavior for dynamic agents, if any (see Dynamic Scenarios). Default value
None.

• lastActions – Tuple of actions taken by this agent in the last time step (or None if the object
is not an agent or this is the first time step).

startDynamicSimulation()

Hook called when the object is created in a dynamic simulation.

Does nothing by default; provided for objects to do simulator-specific initialization as needed.

Changed in version 3.0: This method is called on objects created in the middle of dynamic simulations, not
only objects present in the initial scene.

property visibleRegion

The visible region of this object.

The visible region of an Object is the same as that of an OrientedPoint (see OrientedPoint.
visibleRegion) except that it is offset by the value of cameraOffset (which is the zero vector by default).

72 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Scenic

1.8.7 Specifiers Reference

Specifiers are used to define the properties of an object when a Scenic class is instantiated. This page describes all
the specifiers built into Scenic, and the procedure used to resolve a set of specifiers into an assignment of values to
properties.

Each specifier assigns values to one or more properties of an object, as a function of the arguments of the specifier
and possibly other properties of the object assigned by other specifiers. For example, the left of X by Y specifier
assigns the position property of the object being defined so that the object is a distance Y to the left of X : this requires
knowing the width of the object first, so we say the left of specifier specifies the position property and depends
on the width property.

In fact, the left of specifier also specifies the parentOrientation property (to be the orientation of X), but it
does this with a lower priority. Multiple specifiers can specify the same property, but only the specifier that specifies
the property with the highest priority is used. If a property is specified multiple times with the same priority, an
ambiguity error is raised. We represent priorities as integers, with priority 1 being the highest and larger integers
having progressively lower priorities (e.g. priority 2 supersedes priority 3). When a specifier specifies a property with
a priority lower than 1, we say it optionally specifies the property, since it can be overridden (for example using the
with specifier), whereas a specifier specifying the property with priority 1 cannot be overridden.

Certain specifiers can also modify already-specified values. These modifying specifiers do not cause an ambiguity
error as above if another specifier specifies the same property with the same priority: they take the already-specified
value and manipulate it in some way (potentially also specifying other properties as usual). Note that no property can
be modified twice. The only modifying specifier currently in Scenic is on region, which can be used either as a
standard specifier or a modifying specifier (the modifying version projects the already-specified position onto the given
region – see below).

The Specifier Resolution process works out which specifier determines each property of an object, as well as an appro-
priate order in which to evaluate the specifiers so that dependencies have already been computed when needed.

General Specifiers

with property value

Specifies:

• the given property, with priority 1

Dependencies: None

Assigns the given property to the given value. This is currently the only specifier available for properties other than
position and orientation.

Position Specifiers

at vector

Specifies:

• position with priority 1

Dependencies: None

Positions the object at the given global coordinates.

1.8. Language Reference 73

Scenic

Fig. 6: Illustration of the beyond, behind, and offset by specifiers. Each OrientedPoint (e.g. P) is shown as a
bold arrow.

in region

Specifies:

• position with priority 1

• parentOrientation with priority 3 (if the region has a preferred orientation)

Dependencies: None

Positions the object uniformly at random in the given Region. If the Region has a preferred orientation (a vector field),
also specifies parentOrientation to be equal to that orientation at the object’s position.

contained in region

Specifies:

• position with priority 1

• regionContainedIn with priority 1

• parentOrientation with priority 3 (if the region has a preferred orientation)

Dependencies: None

Like in region, but also enforces that the object be entirely contained in the given Region.

74 Chapter 1. Table of Contents

Scenic

on region

Specifies:

• position with priority 1; modifies existing value, if any

• parentOrientation with priority 2 (if the region has a preferred orientation)

Dependencies: baseOffset • contactTolerance • onDirection

If position is not already specified with priority 1, positions the base of the object uniformly at random in the given
Region, offset by contactTolerance (to avoid a collision). The base of the object is determined by adding the object’s
baseOffset to its position.

Note that while on can be used with Region, Object and Vector, it cannot be used with a distribution containing
anything other than Region. When used with an object the base of the object being placed is placed on the target
object’s onSurface and when used with a vector the base of the object being placed is set to that position.

If instead position has already been specified with priority 1, then its value is modified by projecting it onto the given
region. More precisely, we find the closest point in the region along onDirection (or its negation1), and place the
base of the object at that point. If onDirection is not specified, a default value is inferred from the region. A region
can either specify a default value to be used, or for volumes straight up is used and for surfaces the mean of the face
normal values is used (weighted by the area of the faces).

If the region has a preferred orientation (a vector field), parentOrientation is specified to be equal to that orientation
at the object’s position (whether or not this specifier is being used as a modifying specifier). Note that this is done with
higher priority than all other specifiers which optionally specify parentOrientation, and in particular the ahead
of specifier and its variants: therefore the code new Object ahead of taxi by 100, on road aligns the new
object with the road at the point 100 m ahead of the taxi rather than with the taxi itself (while also using projection to
ensure the new object is on the surface of the road rather than under or over it if the road isn’t flat).

offset by vector

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: None

Positions the object at the given coordinates in the local coordinate system of ego (which must already be defined).
Also specifies parentOrientation to be equal to the ego’s orientation.

New in version 3.0: offset by now specifies parentOrientation, whereas previously it did not optionally specify
heading.

1 This allows for natural projection even when an object is below the desired surface, such as placing a car, ahead of another car, on an uphill
road.

1.8. Language Reference 75

Scenic

offset along direction by vector

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: None

Positions the object at the given coordinates in a local coordinate system centered at ego and oriented along the given
direction (which can be a Heading, an Orientation, or a Vector Field). Also specifies parentOrientation to be equal
to the ego’s orientation.

beyond vector by (vector | scalar) [from (vector | OrientedPoint)]

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: None

Positions the object at coordinates given by the second vector, in a local coordinate system centered at the first vector
and oriented along the line of sight from the third vector (i.e. an orientation of (0,0,0) in the local coordinate system
faces directly away from the third vector). If the second argument is a scalar D instead of a vector, it is interpreted
as the vector (0, D, 0): thus beyond X by D from Y places the new object a distance of D behind X from the
perspective of Y . If no third argument is provided, it is assumed to be the ego.

The value of parentOrientation is specified to be the orientation of the third argument if it is an OrientedPoint
(including Object such as ego); otherwise the global coordinate system is used. For example, beyond taxi by (1,
3, 0) means 3 meters behind the taxi and one meter to the right as viewed by the ego.

visible [from (Point | OrientedPoint)]

Specifies:

• position with priority 3

• also adds a requirement (see below)

Dependencies: None

Requires that this object is visible from the ego or the given Point/OrientedPoint. See the Visibility System reference
for a discussion of the visibility model.

Also optionally specifies position to be a uniformly random point in the visible region of the ego, or of the given
Point/OrientedPoint if given. Note that the position set by this specifier is slightly stricter than simply adding a require-
ment that the ego can see the object: the specifier makes the center of the object (its position) visible, while the
can see condition will be satisfied even if the center is not visible as long as some other part of the object is visible.

76 Chapter 1. Table of Contents

Scenic

not visible [from (Point | OrientedPoint)]

Specifies:

• position with priority 3

• also adds a requirement (see below)

Dependencies: regionContainedIn

Requires that this object is not visible from the ego or the given Point/OrientedPoint.

Similarly to visible [from (Point | OrientedPoint)], this specifier can position the object uniformly at ran-
dom in the non-visible region of the ego. However, it depends on regionContainedIn, in order to restrict the non-
visible region to the container of the object being created, which is hopefully a bounded region (if the non-visible
region is unbounded, it cannot be uniformly sampled from and an error will be raised).

(left | right) of (vector) [by scalar]

Specifies:

• position with priority 1

Dependencies: width • orientation

Without the optional by scalar, positions the object immediately to the left/right of the given position; i.e., so that
the midpoint of the right/left side of the object’s bounding box is at that position. If by scalar is used, the object is
placed further to the left/right by the given distance.

(left | right) of OrientedPoint [by scalar]

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: width

Positions the object to the left/right of the given OrientedPoint. Also inherits parentOrientation from the given
OrientedPoint.

(left | right) of Object [by scalar]

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: width • contactTolerance

Positions the object to the left/right of the given Object. This accounts for both objects’ dimensions, placing them
so that the distance between their bounding boxes is exactly the desired scalar distance (or contactTolerance if by
scalar is not used). Also inherits parentOrientation from the given OrientedPoint.

1.8. Language Reference 77

Scenic

(ahead of | behind) vector [by scalar]

Specifies:

• position with priority 1

Dependencies: length • orientation

Without the optional by scalar, positions the object immediately ahead of/behind the given position; i.e., so that the
midpoint of the front/back side of the object’s bounding box is at that position. If by scalar is used, the object is
placed further ahead/behind by the given distance.

(ahead of | behind) OrientedPoint [by scalar]

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: length

Positions the object ahead of/behind the given OrientedPoint. Also inherits parentOrientation from the given
OrientedPoint.

(ahead of | behind) Object [by scalar]

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: length • contactTolerance

Positions the object ahead of/behind the given Object. This accounts for both objects’ dimensions, placing them so that
the distance between their bounding boxes is exactly the desired scalar distance (or contactTolerance if by scalar
is not used). Also inherits parentOrientation from the given OrientedPoint.

(above | below) vector [by scalar]

Specifies:

• position with priority 1

Dependencies: height • orientation

Without the optional by scalar, positions the object immediately above/below the given position; i.e., so that the
midpoint of the top/bottom side of the object’s bounding box is at that position. If by scalar is used, the object is
placed further above/below by the given distance.

78 Chapter 1. Table of Contents

Scenic

(above | below) OrientedPoint [by scalar]

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: height

Positions the object above/below the given OrientedPoint. Also inherits parentOrientation from the given Orient-
edPoint.

(above | below) Object [by scalar]

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: height • contactTolerance

Positions the object above/below the given Object. This accounts for both objects’ dimensions, placing them so that the
distance between their bounding boxes is exactly the desired scalar distance (or contactTolerance if by scalar is
not used). Also inherits parentOrientation from the given OrientedPoint.

following vectorField [from vector] for scalar

Specifies:

• position with priority 1

• parentOrientation with priority 3

Dependencies: None

Positions the object at a point obtained by following the given Vector Field for the given distance starting from ego
(or the position optionally provided with from vector). Specifies parentOrientation to be the orientation of the
vector field at the resulting point.

Note: This specifier uses a forward Euler approximation of the continuous vector field. The choice of step size can be
customized for individual fields: see the documentation of Vector Field. If necessary, you can also call the underlying
method VectorField.followFrom directly.

Orientation Specifiers

facing orientation

Specifies:

• yaw with priority 1

• pitch with priority 1

• roll with priority 1

1.8. Language Reference 79

Scenic

Dependencies: parentOrientation

Sets the object’s yaw, pitch, and roll so that its orientation in global coordinates is equal to the given orientation. If a
single scalar is given, it is interpreted as a Heading: so for example facing 45 deg orients the object in the XY plane,
facing northwest. If a triple of scalars is given, it is interpreted as a triple of global Euler angles: so for example facing
(45 deg, 90 deg, 0) would orient the object to face northwest as above but then apply a 90° pitch upwards.

facing vectorField

Specifies:

• yaw with priority 1

• pitch with priority 1

• roll with priority 1

Dependencies: position • parentOrientation

Sets the object’s yaw, pitch, and roll so that its orientation in global coordinates is equal to the orientation provided
by the given Vector Field at the object’s position.

facing (toward | away from) vector

Specifies:

• yaw with priority 1

Dependencies: position • parentOrientation

Sets the object’s yaw so that it faces toward/away from the given position (thereby depending on the object’s position).

facing directly (toward | away from) vector

Specifies:

• yaw with priority 1

• pitch with priority 1

Dependencies: position • parentOrientation

Sets the object’s yaw and pitch so that it faces directly toward/away from the given position (thereby depending on
the object’s position).

apparently facing heading [from vector]

Specifies:

• yaw with priority 1

Dependencies: position • parentOrientation

Sets the yaw of the object so that it has the given heading with respect to the line of sight from ego (or the from vector).
For example, if the ego is in the XY plane, then apparently facing 90 deg orients the new object so that the ego’s
camera views its left side head-on.

80 Chapter 1. Table of Contents

Scenic

Specifier Resolution

Specifier resolution is the process of determining, given the set of specifiers used to define an object, which properties
each specifier should determine and what order to evaluate the specifiers in. As each specifier can specify multiple
properties with various priorities, and can depend on the results of other specifiers, this process is somewhat non-trivial.
Assuming there are no cyclic dependencies or conflicts, the process will conclude with each property being determined
by its unique highest-priority specifier if one exists (possibly modified by a modifying specifier), and otherwise by its
default value, with default values from subclasses overriding those in superclasses.

The full procedure, given a set of specifiers S used to define an instance of class C, works as follows:

1. If a property is specified at the same priority level by multiple specifiers in S, an ambiguity error is raised.

2. The set of properties P for the new object is found by combining the properties specified by all members of S
with the properties inherited from the class C.

3. Default value specifiers from C (or if not overridden, from its superclasses) are added to S as needed so that
each property in P is paired with a unique non-modifying specifier in S specifying it (taking the highest-priority
specifier, if there are multiple), plus up to one modifying specifier modifying it.

4. The dependency graph of the specifiers S is constructed (with edges from each specifier to the others which
depend on its results). If it is cyclic, an error is raised.

5. The graph is topologically sorted and the specifiers are evaluated in this order to determine the values of all
properties P of the new object.

1.8.8 Operators Reference

Fig. 7: Illustration of several operators. Each OrientedPoint (e.g. P) is shown as a bold arrow.

1.8. Language Reference 81

Scenic

Scalar Operators

relative heading of heading [from heading]

The relative heading of the given heading with respect to ego (or the heading provided with the optional from heading)

apparent heading of OrientedPoint [from vector]

The apparent heading of the OrientedPoint, with respect to the line of sight from ego (or the position provided with the
optional from vector)

distance [from vector] to vector

The distance to the given position from ego (or the position provided with the optional from vector)

angle [from vector] to vector

The heading (azimuth) to the given position from ego (or the position provided with the optional from vector). For
example, if angle to taxi is zero, then taxi is due North of ego

altitude [from vector] to vector

The altitude to the given position from ego (or the position provided with the optional from vector). For example, if
altitude to plane is , then plane is directly above ego.

Boolean Operators

(Point | OrientedPoint) can see (vector | Object)

Whether or not a position or Object is visible from a Point or OrientedPoint, accounting for occlusion.

See the Visibility System reference for a discussion of the visibility model.

(vector | Object) in region

Whether a position or Object lies in the Region; for the latter, the object must be completely contained in the region.

Orientation Operators

scalar deg

The given angle, interpreted as being in degrees. For example 90 deg evaluates to /2

82 Chapter 1. Table of Contents

Scenic

vectorField at vector

The orientation specified by the vector field at the given position

(heading | vectorField) relative to (heading | vectorField)

The first heading/vector field, interpreted as an offset relative to the second heading/vector field. For example, -5 deg
relative to 90 deg is simply 85 degrees. If either direction is a vector field, then this operator yields an expression
depending on the position property of the object being specified.

Vector Operators

vector (relative to | offset by) vector

The first vector, interpreted as an offset relative to the second vector (or vice versa). For example, (5, 5, 5)
relative to (100, 200, 300) is (105, 205, 305). Note that this polymorphic operator has a specialized ver-
sion for instances of OrientedPoint, defined below: so for example (-3, 0, 0) relative to taxi will not use the
version of this operator for vectors (even though the Object taxi can be coerced to a vector).

vector offset along direction by vector

The second vector, interpreted in a local coordinate system centered at the first vector and oriented along the given
direction (which, if a vector field, is evaluated at the first vector to obtain an orientation)

Region Operators

visible region

The part of the given region which is visible from the ego object (i.e. the intersection of the given region with the
visible region of the ego).

not visible region

The part of the given region which is not visible from the ego object (as above, based on the ego’s visible region).

region visible from (Point | OrientedPoint)

The part of the given region visible from the given Point or OrientedPoint (like visible region but from an arbitrary
Point/OrientedPoint).

1.8. Language Reference 83

Scenic

region not visible from (Point | OrientedPoint)

The part of the given region not visible from the given Point or OrientedPoint (like not visible region but from
an arbitrary Point/OrientedPoint).

OrientedPoint Operators

vector relative to OrientedPoint

The given vector, interpreted in the local coordinate system of the OrientedPoint. So for example (1, 2, 0)
relative to ego is 1 meter to the right and 2 meters ahead of ego.

OrientedPoint offset by vector

Equivalent to vector relative to OrientedPoint above

(front | back | left | right | top | bottom) of Object

The midpoint of the corresponding side of the bounding box of the Object, inheriting the Object’s orientation.

(front | back) (left | right) of Object

The midpoint of the corresponding edge of the Object’s bounding box, inheriting the Object’s orientation.

(top | bottom) (front | back) (left | right) of Object

The corresponding corner of the Object’s bounding box, inheriting the Object’s orientation.

Temporal Operators

Temporal operators can be used inside require statements to constrain how a dynamic scenario evolves over time.
The semantics of these operators are taken from Linear Temporal Logic (specifically, we use RV-LTL [B10] to properly
model the finite length of Scenic simulations).

always condition

Require the given condition to hold throughout the execution of the dynamic scenario.

84 Chapter 1. Table of Contents

Scenic

eventually condition

Require the given condition to hold at some point during the execution of the dynamic scenario.

next condition

Require the given condition to hold at the next time step of the dynamic scenario.

For example, while require X requires that X hold at time step 0 (the start of the simulation), require next X
requires that X hold at time step 1. The requirement require always (X implies next X) says that for every
time step 𝑁 , if X is true at that time step then it is also true at step 𝑁 + 1; equivalently, if X ever becomes true, it must
remain true for the rest of the simulation.

condition until condition

Require the second condition to hold at some point, and the first condition to hold at every time step before then (after
which it is unconstrained).

Note that this is the so-called strong until, since it requires the second condition to eventually become true. For the
weak until, which allows the second condition to never hold (in which case the first condition must always hold), you
can write require (X until Y) or (always X and not Y).

hypothesis implies conclusion

Require the conclusion to hold if the hypothesis holds.

This is syntactic sugar for not hypothesis or conclusion. It is mainly useful in making requirements that con-
strain multiple time steps easier to read: for example, require always X implies Y requires that at every time step
when X holds, Y must also hold.

References

1.8.9 Built-in Functions Reference

These functions are built into Scenic and may be used without needing to import any modules.

Miscellaneous Python Functions

The following functions work in the same way as their Python counterparts except that they accept random values:

• sin, cos, hypot (from the Python math module)

• len, max, min, round

• float, int, str

The other Python built-in functions (e.g. enumerate, range, open) are available but do not accept random arguments.

Note: If in the definition of a scene you would like to pass random values into some other function from the Python
standard library (or any other Python package), you will need to wrap the function with the distributionFunction
decorator. This is not necessary when calling external functions inside requirements or dynamic behaviors.

1.8. Language Reference 85

https://docs.python.org/3/library/math.html#math.sin
https://docs.python.org/3/library/math.html#math.cos
https://docs.python.org/3/library/math.html#math.hypot
https://docs.python.org/3/library/math.html#module-math
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://www.sphinx-doc.org/en/master/usage/quickstart.html#enumerate
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/functions.html#open

Scenic

filter

The filter function works as in Python except it is now able to operate over random lists. This feature can be used
to work around Scenic’s lack of support for randomized control flow in certain cases. In particular, Scenic does not
allow iterating over a random list, but it is still possible to select a random element satisfying a desired criterion using
filter:

mylist = Uniform([-1, 1, 2], [-3, 4]) # pick one of these lists 50/50
filtered = filter(lambda e: e > 0, y) # extract only the positive elements
x = Uniform(*filtered) # pick one of them at random

In the last line, we use Python’s unpacking operator * to use the elements of the chosen list which pass the filter as
arguments to Uniform; thus x is sampled as a uniformly-random choice among such elements.1

For an example of this idiom in a realistic scenario, see examples/driving/OAS_scenarios/oas_scenario_28.
scenic.

resample

The resample function takes a distribution and samples a new value from it, conditioned on the values of its parameters,
if any. This is useful in cases where you have a complicated distribution that you want multiple samples from.

For example, in the program

x = Uniform(0, 5)
y = Range(x, x+1)
z = resample(y)

with probability 1/2 both y and z are independent uniform samples from the interval (0, 1), and with probability 1/2
they are independent uniform samples from (5, 6). It is never the case that 𝑦 ∈ (0, 1) and 𝑧 ∈ (5, 6) or vice versa,
which would require inconsistent assignments to x.

Note: This function can only be applied to the basic built-in distributions (see the Distributions Reference). Resam-
pling a more complex expression like x + y where x and y are distributions would be ambiguous (what if x and y are
used elsewhere?) and so is not allowed.

localPath

The localPath function takes a relative path with respect to the directory containing the .scenic file where it is
used, and converts it to an absolute path. Note that the path is returned as a pathlib.Path object.

1 If there are no such elements, i.e., the filtered list is empty, then Scenic will reject the scenario and try sampling again.

86 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3.6/reference/expressions.html#expression-lists
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Scenic

verbosePrint

The verbosePrint function operates like print except that it you can specify at what verbosity level (see
--verbosity) it should actually print. If no level is specified, it prints at all levels except verbosity 0.

Scenic libraries intended for general use should use this function instead of print so that all non-error messages from
Scenic can be silenced by setting verbosity 0.

simulation

The simulation function, available for use in dynamic behaviors and scenarios, returns the currently-running
Simulation. This allows access to global information about the simulation, e.g. simulation().currentTime
to find the current time step; however, it is provided primarily so that scenarios written for a specific simulator may use
simulator-specific functionality (by calling custom methods provided by that simulator’s subclass of Simulation).

1.8.10 Visibility System

The Scenic visibility system is composed of two main parts: visible regions and visibility checks, which are described
in detail below. An object is defined to be visible (modulo occlusion) if it lies within the horizontal and vertical
viewAngles of the object and is within it’s visibleDistance, i.e. if it lies in the visible region of the object. This
is not how Scenic actually checks visibility though, instead relying on visibility checks which internally use ray tracing
and can account for occlusion.

Visible Regions

All Scenic objects define a visible region, a Region that is “visible” from a given Object. This region is defined by two
groups of properties: spatial ones like position and orientation, and visibility specific ones:

• viewAngles : The horizontal and vertical angles (in radians) of the object’s field of view. The horizontal view
angle must be between 0 and 2 and the vertical view angle must be between 0 and .

• visibleDistance: Distance used to determine the visible range of the object.

• cameraOffset: Position of the camera relative to the object’s position.

While visible regions do in fact define what an object can see, Scenic does not directly use them to determine if some-
thing is visible from an object: instead they serve an accessory role (e.g. making sampling more efficient). The visible
region of a Point is a sphere, while that of an OrientedPoint or Object can be a variety of shapes (see ViewRegion
for details). An object’s visible region is used by various specifiers and operators, such as the visible {region}
operator, the visible specifier, etc. Note that an object’s visible region is represented by a mesh and so is not exact,
and that while Scenic takes occlusion by other objects into account when testing visibility, the visible region itself
ignores occlusion.

Visibility Checks

It is often useful to determine whether something is actually visible from another object, i.e. a visibility check. Scenic
performs such checks using ray tracing, allowing it to account for other objects occluding visibility. Something is
considered visible if any ray (within viewAngles) collides with it (within visibleDistance), without colliding with
an occluding object first. Since Scenic sends a finite number of rays, it is possible for false negatives to occur, though
this can be tuned using the properties below. Visibility checks are used by various specifiers and operators, such as the
can see operator, the visible specifier, etc.

Various object properties directly affect how Scenic performs visibility checks (including those listed above for visible
regions):

1.8. Language Reference 87

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print

Scenic

• viewRayDensity: By default determines the number of rays used during visibility checks. This value is the den-
sity of rays per degree of visible range in one dimension. The total number of rays sent will be this value squared
per square degree of this object’s view angles. This value determines the default value for viewRayCount, so if
viewRayCount is overwritten this value is ignored.

• viewRayCount: The total number of horizontal and vertical view angles to be sent, or None if this value should
be computed automatically.

• viewRayDistanceScaling: Whether or not the number of rays should scale with the distance to the object.
Ignored if viewRayCount is passed.

• occluding: Whether or not this object occludes visibility.

Scenic uses several internal heuristics to speed up visibility checks, such as only sending rays where an object might
actually be visible. Even with these heuristics, certain types of checks, such as those where an object is fully occluded
but would otherwise be visible, can be very expensive. We recommend tuning viewRayDensity if runtimes are
problematic, though note this may increase the risk of false negatives. Setting viewRayDistanceScaling to True
can also help, especially in situations where objects can be very far away or very close, but one wishes to avoid setting
viewRayDensity to a higher value. If one is seeking to emulate a specific camera resolution, one might instead wish
to directly set viewRayCount (e.g. setting it to (1920, 1080) to emulate a full HD camera).

Semantics and Scenario Generation

The pages above describe the semantics of each of Scenic’s constructs individually; the following pages cover the
semantics of entire Scenic programs, and how scenes and simulations are generated from them.

1.8.11 Scene Generation

The “output” of a Scenic program has two parts: a scene describing a configuration of physical objects, and a policy
defining how those objects behave over time. The latter is relevant only for running dynamic simulations from a Scenic
program, and is discussed in our page on Execution of Dynamic Scenarios. In this page, we describe how scenes are
generated from a Scenic program.

In Scenic, a scene consists of the following data:

• a set of objects present in the scene (one of which may be designated the ego object);

• concrete values for all of the properties of these objects, such as position, heading, etc.;

• concrete values for each global parameter.

A Scenic program defines a probability distribution over such scenes in the usual way for imperative probabilistic
programming languages with constraints (often called observations). Running the program ignoring any require
statements and making random choices whenever a distribution is evaluated yields a distribution over possible execu-
tions of the program and therefore over generated scenes. Then any executions which violate a require condition are
discarded, normalizing the probabilities of the remaining executions.

The Scenic tool samples from this distribution using rejection sampling: repeatedly sampling scenes until one is found
which satisfies the requirements. This approach has the advantage of allowing arbitrarily-complex requirements and
sampling from the exact distribution we want. However, if the requirements have a low probability of being satisfied, it
may take many iterations to find a valid scene: in the worst case, if the requirements cannot be satisfied, rejection sam-
pling will run forever (although the Scenario.generate function imposes a finite limit on the number of iterations
by default). To reduce the number of iterations required in some common cases, Scenic applies several “pruning” tech-
niques to exclude parts of the scene space which violate the requirements ahead of time (this is done during compilation;
see our paper for details). The scene generation procedure then works as follows:

1. Decide which user-defined requirements will be enforced for this sample (soft requirements have only some
probability of being required).

88 Chapter 1. Table of Contents

Scenic

2. Invoke the external sampler to sample any external parameters.

3. Sample values for all distributions defined in the scene (all expressions which have random values, represented
internally as Distribution objects).

4. Check if the sampled values satisfy the built-in and user-defined requirements: if not, reject the sample and repeat
from step (2).

1.8.12 Execution of Dynamic Scenarios

As described in our tutorial on Dynamic Scenarios, Scenic scenarios can specify the behavior of agents over time,
defining a policy which chooses actions for each agent at each time step. Having sampled an initial scene from a
Scenic program (see Scene Generation), we can run a dynamic simulation by setting up the scene in a simulator and
running the policy in parallel to control the agents. The API for running dynamic simulations is described in Using
Scenic Programmatically (mainly the Simulator.simulate method); this page details how Scenic executes such
simulations.

The policy for each agent is given by its dynamic behavior, which is a coroutine that usually executes like an ordinary
function, but is suspended when it takes an action (using take or wait) and resumed after the simulation has advanced
by one time step. As a result, behaviors effectively run in parallel with the simulation. Behaviors are also suspended
when they invoke a sub-behavior using do, and are not resumed until the sub-behavior terminates.

When a behavior is first invoked, its preconditions are checked, and if any are not satisfied, the simulation is rejected,
requiring a new simulation to be sampled.1 The behavior’s invariants are handled similarly, except that they are also
checked whenever the behavior is resumed (i.e. after taking an action and after a sub-behavior terminates).

Monitors and compose blocks of modular scenarios execute in the same way as behaviors, with compose blocks
also including additional checks to see if any of their terminate when conditions have been met or their temporal
requirements violated.

In detail, a single time step of a dynamic simulation is executed according to the following procedure:

1. Execute all currently-running modular scenarios for one time step. Specifically, for each such scenario:

a. Check if any of its temporal requirements have already been violated2; if so, reject the simulation.

b. Check if the scenario’s time limit (if terminate after has been used) has been reached; if so, go to step
(e) below to stop the scenario.

c. If the scenario is not currently running a sub-scenario (with do), check its invariants; if any are violated,
reject the simulation.Page 89, 1

d. If the scenario has a compose block, run it for one time step (i.e. resume it until it or a subscenario it is
currently running using do executes wait). If the block executes a require statement with a false condi-
tion, reject the simulation. If it executes terminate or terminate simulation, or finishes executing,
go to step (e) below to stop the scenario.

e. If the scenario is stopping for one of the reasons above, first recursively stop any sub-scenarios it is running,
then revert the effects of any override statements it executed. Next, check if any of its temporal require-
ments were not satisfied: if so, reject the simulation. Otherwise, the scenario returns to its parent scenario
if it was invoked using do; if it was the top-level scenario, or if it executed terminate simulation, we
set a flag indicating the top-level scenario has terminated. (We do not terminate immediately since we still
need to check monitors in the next step.)

1 By default, violations of preconditions and invariants cause the simulation to be rejected; however, Simulator.simulate has an option to
treat them as fatal errors instead.

2 More precisely, whether it is impossible for the requirement to be satisfied no matter how the simulation continues. For example, given the
requirement require always X, if X is false in the current time step then the whole simulation will certainly violate the requirement and we can
reject. On the other hand, given the requirement require eventually X, the fact that X is currently false does not mean the requirement will
necessarily be violated, since X could become true later. For such requirements Scenic will not reject until the simulation has completed, at which
point we can tell with certainty whether or not the requirement was satisfied.

1.8. Language Reference 89

Scenic

2. Save the values of all record statements, as well as record initial statements if it is time step 0.

3. Run each monitor instantiated in the currently-running scenarios for one time step (i.e. resume it until it executes
wait). If it executes a require statement with a false condition, reject the simulation. If it executes terminate,
stop the scenario which instantiated it as in step (1e) above. If it executes terminate simulation, set the
termination flag (and continue running any other monitors).

4. If the termination flag is set, any of the terminate simulation when conditions are satisfied, or a time limit
passed to Simulator.simulate has been reached, go to step (10) to terminate the simulation.

5. Execute the dynamic behavior of each agent to select its action(s) for the time step. Specifically, for each agent’s
behavior:

a. If the behavior is not currently running a sub-behavior (with do), check its invariants; if any are violated,
reject the simulation.1

b. Resume the behavior until it (or a subbehavior it is currently running using do) executes take or wait.
If the behavior executes a require statement with a false condition, reject the simulation. If it executes
terminate, stop the scenario which defined the agent as in step (1e) above. If it executes terminate
simulation, go to step (10) to terminate the simulation. Otherwise, save the (possibly empty) set of
actions specified for the agent to take.

6. For each agent, execute the actions (if any) its behavior chose in the previous step.

7. Run the simulator for one time step.

8. Increment the simulation clock (the currentTime attribute of Simulation).

9. Update every dynamic property of every object to its current value in the simulator.

10. If the simulation is stopping for one of the reasons above, first check if any of the temporal requirements of any
remaining scenarios were not satisfied: if so, reject the simulation. Otherwise, save the values of any record
final statements.

1.9 Command-Line Options

The scenic command supports a variety of options. Run scenic -h for a full list with short descriptions; we elaborate
on some of the most important options below.

Options may be given before and after the path to the Scenic file to run, so the syntax of the command is:

$ scenic [options] FILE [options]

1.9.1 General Scenario Control

-m <model>, --model <model>

Specify the world model to use for the scenario, overriding any model statement in the scenario. The argument
must be the fully qualified name of a Scenic module found on your PYTHONPATH (it does not necessarily need
to be built into Scenic). This allows scenarios written using a generic model, like that provided by the Driving
Domain, to be executed in a particular simulator (see the dynamic scenarios tutorial for examples).

The equivalent of this option for the Python API is the model argument to scenic.scenarioFromFile.

-p <param> <value>, --param <param> <value>

Specify the value of a global parameter. This assignment overrides any param statements in the scenario. If the
given value can be interpreted as an int or float, it is; otherwise it is kept as a string.

90 Chapter 1. Table of Contents

https://docs.python.org/3/glossary.html#term-qualified-name
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Scenic

The equivalent of this option for the Python API is the params argument to scenic.scenarioFromFile
(which, however, does not attempt to convert strings to numbers).

-s <seed>, --seed <seed>

Specify the random seed used by Scenic, to make sampling deterministic.

This option sets the seed for the Python random number generator random and the numpy random number gener-
ator numpy.random, so external Python code called from within Scenic can also be made deterministic (although
random and numpy.random should not be used in place of Scenic’s own sampling constructs in Scenic code).

--scenario <scenario>

If the given Scenic file defines multiple scenarios, select which one to run. The named modular scenario must
not require any arguments.

The equivalent of this option for the Python API is the scenario argument to scenic.scenarioFromFile.

--2d

Compile the scenario in 2D compatibility mode.

The equivalent of this option for the Python API is the mode2D argument to scenic.scenarioFromFile.

1.9.2 Dynamic Simulations

-S, --simulate

Run dynamic simulations from scenes instead of plotting scene diagrams. This option will only work for sce-
narios which specify a simulator, which is done automatically by the world models for the simulator interfaces
that support dynamic scenarios, e.g. scenic.simulators.carla.model and scenic.simulators.lgsvl.
model. If your scenario is written for an abstract domain, like scenic.domains.driving, you will need to use
the --model option to specify the specific model for the simulator you want to use.

--time <steps>

Maximum number of time steps to run each simulation (the default is infinity). Simulations may end earlier if
termination criteria defined in the scenario are met (see terminate when and terminate).

--count <number>

Number of successful simulations to run (i.e., not counting rejected simulations). The default is to run forever.

1.9.3 Debugging

--version

Show which version of Scenic is being used.

-v <verbosity>, --verbosity <verbosity>

Set the verbosity level, from 0 to 3 (default 1):

0
Nothing is printed except error messages and warnings (to stderr). Warnings can be suppressed
using the PYTHONWARNINGS environment variable.

1
The main steps of compilation and scene generation are indicated, with timing statistics.

2
Additionally, details on which modules are being compiled and the reasons for any
scene/simulation rejections are printed.

1.9. Command-Line Options 91

https://docs.python.org/3/library/random.html#module-random
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random
https://docs.python.org/3/library/random.html#module-random
https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random
https://docs.python.org/3/library/warnings.html
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONWARNINGS

Scenic

3
Additionally, the actions taken by each agent at each time step of a dynamic simulation are printed.

This option can be configured from the Python API using scenic.setDebuggingOptions.

--show-params

Show values of global parameters for each generated scene.

--show-records

Show recorded values (see record) for each dynamic simulation.

-b, --full-backtrace

Include Scenic’s internals in backtraces printed for uncaught exceptions. This information will probably only be
useful if you are developing Scenic.

This option can be enabled from the Python API using scenic.setDebuggingOptions.

--pdb

If an error occurs, enter the Python interactive debugger pdb. Implies the -b option.

This option can be enabled from the Python API using scenic.setDebuggingOptions.

--pdb-on-reject

If a scene/simulation is rejected (so that another must be sampled), enter pdb. Implies the -b option.

This option can be enabled from the Python API using scenic.setDebuggingOptions.

1.10 Using Scenic Programmatically

While Scenic is most easily invoked as a command-line tool, it also provides a Python API for compiling Scenic
programs, sampling scenes from them, and running dynamic simulations.

1.10.1 Compiling Scenarios and Generating Scenes

The top-level interface to Scenic is provided by two functions in the scenic module which compile a Scenic program:

scenarioFromFile(path, params={}, model=None, scenario=None, *, mode2D=False, **kwargs)
Compile a Scenic file into a Scenario.

Parameters

• path (str) – Path to a Scenic file.

• params (dict) – Global parameters to override, as a dictionary mapping parameter names
to their desired values.

• model (str) – Scenic module to use as world model.

• scenario (str) – If there are multiple modular scenarios in the file, which one to compile;
if not specified, a scenario called ‘Main’ is used if it exists.

• mode2D (bool) – Whether to compile this scenario in 2D compatibility mode.

Returns
A Scenario object representing the Scenic scenario.

Note for Scenic developers: this function accepts additional keyword arguments which are intended for internal
use and debugging only. See _scenarioFromStream for details.

92 Chapter 1. Table of Contents

https://docs.python.org/3/library/pdb.html#module-pdb
https://docs.python.org/3/library/pdb.html#module-pdb
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Scenic

scenarioFromString(string, params={}, model=None, scenario=None, *, filename='<string>', mode2D=False,
**kwargs)

Compile a string of Scenic code into a Scenario.

The optional filename is used for error messages. Other arguments are as in scenarioFromFile.

The resulting Scenario object represents the abstract scenario defined by the Scenic program. To sample concrete
scenes from this object, you can call the Scenario.generate method, which returns a Scene. If you are only using
static scenarios, you can extract the sampled values for all the global parameters and objects in the scene from the
Scene object. For example:

import random, scenic
random.seed(12345)
scenario = scenic.scenarioFromString('ego = new Object with foo Range(0, 5)')
scene, numIterations = scenario.generate()
print(f'ego has foo = {scene.egoObject.foo}')

ego has foo = 2.083099362726706

1.10.2 Running Dynamic Simulations

To run dynamic scenarios, you must instantiate an instance of the Simulator class for the particular simulator you
want to use. Each simulator interface that supports dynamic simulations defines a subclass of Simulator; for example,
NewtonianSimulator for the simple Newtonian simulator built into Scenic. These subclasses provide simulator-
specific functionality, and have different requirements for their use: see the specific documentation of each interface
under scenic.simulators for details.

Once you have an instance of Simulator, you can ask it to run a simulation from a Scene by calling the Simulator.
simulatemethod. If Scenic is able to run a simulation that satisfies all the requirements in the Scenic program (poten-
tially after multiple attempts – Scenic uses rejection sampling), this method will return a Simulation object. Results
of the simulation can then be obtained by inspecting its result attribute, which is an instance of SimulationResult
(simulator-specific subclasses of Simulation may also provide additional information). For example:

import scenic
from scenic.simulators.newtonian import NewtonianSimulator
scenario = scenic.scenarioFromFile('examples/driving/badlyParkedCarPullingIn.scenic',

model='scenic.simulators.newtonian.driving_model',
mode2D=True)

scene, _ = scenario.generate()
simulator = NewtonianSimulator()
simulation = simulator.simulate(scene, maxSteps=10)
if simulation: # `simulate` can return None if simulation fails

result = simulation.result
for i, state in enumerate(result.trajectory):

egoPos, parkedCarPos = state
print(f'Time step {i}: ego at {egoPos}; parked car at {parkedCarPos}')

If you want to monitor data from simulations to see if the system you are testing violates its specfications, you may
want to use VerifAI instead of implementing your own code along the lines above. VerifAI supports running tests from
Scenic programs, specifying system specifications using temporal logic or arbitrary Python monitor functions, actively
searching the space of parameters in a Scenic program to find concrete scenarios where the system violates its specs1,
and more. See the VerifAI documentation for details.

1 VerifAI’s active samplers can be used directly from Scenic when VerifAI is installed. See scenic.core.external_params.

1.10. Using Scenic Programmatically 93

https://verifai.readthedocs.io/

Scenic

1.10.3 Storing Scenes/Simulations for Later Use

Scene and Simulation objects are heavyweight and not themselves suitable for bulk storage or transmission over a net-
work2. However, Scenic provides serialization routines which can encode such objects into relatively short sequences
of bytes. Compact encodings are achieved by storing only the sampled values of the primitive random variables in the
scenario: all non-random information is obtained from the original Scenic file.

Having compiled a Scenic scenario into a Scenario object, any scenes you generate from the scenario can be encoded
as bytes using the Scenario.sceneToBytes method. For example, to save a scene to a file one could use code like
the following:

import scenic, tempfile, pathlib
scenario = scenic.scenarioFromFile('examples/gta/parkedCar.scenic', mode2D=True)
scene, _ = scenario.generate()
data = scenario.sceneToBytes(scene)
with open(pathlib.Path(tempfile.gettempdir()) / 'test.scene', 'wb') as f:

f.write(data)
print(f'ego car position = {scene.egoObject.position}')

Then you could restore the scene in another process, obtaining the same position for the ego car:

import scenic, tempfile, pathlib
scenario = scenic.scenarioFromFile('examples/gta/parkedCar.scenic', mode2D=True)
with open(pathlib.Path(tempfile.gettempdir()) / 'test.scene', 'rb') as f:

data = f.read()
scene = scenario.sceneFromBytes(data)
print(f'ego car position = {scene.egoObject.position}')

Notice how we need to compile the scenario a second time in order to decode the scene, if the original Scenario object
is not available. If you need to send a large number of scenes from one computer to another, for example, it suffices to
send the Scenic file for the underlying scenario, plus the encodings of each of the scenes.

You can encode and decode simulations run from a Scenario in a similar way, using the Scenario.
simulationToBytes and Scenario.simulationFromBytes methods. One additional concern when replaying a
serialized simulation is that if your simulator is not deterministic (or you change the simulator configuration), the orig-
inal simulation and its replay can diverge, leading to unexpected behavior or exceptions. Scenic can attempt to detect
such divergences by saving the exact history of the simulation and comparing it to the replay, but this greatly increases
the size of the encoded simulation. See Simulator.simulate for the available options.

Note: The serialization format used for scenes and simulations is suitable for long-term storage (for instance if you
want to save all the simulations you’ve run so that you can return to one later for further analysis), but it is not guaranteed
to be compatible across major versions of Scenic.

See also:

If you get exceptions or unexpected behavior when using the API, Scenic provides various debugging features: see
Debugging.

2 If you really do need to store/transmit such objects, you may be able to do so using dill, a drop-in replacement for Python’s standard pickle
library. Be aware that pickling will produce much larger encodings than Scenic’s own APIs, as they need to include all the information present in the
original Scenic file and its associated resources (e.g. for driving scenarios, the entire road map). Unpickling malicious files can also trigger arbitrary
code execution, while Scenic’s deserialization APIs can be used with untrusted data (as long as you trust the Scenic program you’re running, of
course).

94 Chapter 1. Table of Contents

https://pypi.org/project/dill/
https://docs.python.org/3/library/pickle.html#module-pickle

Scenic

1.11 Developing Scenic

This page covers information useful if you will be developing Scenic, either changing the language itself or adding new
built-in libraries or simulator interfaces.

To find documentation (and code) for specific parts of Scenic’s implementation, see our page on Scenic Internals.

1.11.1 Getting Started

Start by cloning our repository on GitHub and setting up your virtual environment. Then to install Scenic and its
development dependencies in your virtual environment run:

$ python -m pip install -e ".[dev]"

This will perform an “editable” install, so that any changes you make to Scenic’s code will take effect immediately
when running Scenic in your virtual environment.

Scenic uses the isort and black tools to automatically sort import statements and enforce a consistent code style. Run
the command pre-commit install to set up hooks which will run every time you commit and correct any formatting
problems (you can then inspect the files and try committing again). You can also manually run the formatters on the
files changed since the last commit with pre-commit run.1

1.11.2 Running the Test Suite

Scenic has an extensive test suite exercising most of the features of the language. We use the pytest Python testing
tool. To run the entire test suite, run the command pytest inside the virtual environment from the root directory of
the repository.

Some of the tests are quite slow, e.g. those which test the parsing and construction of road networks. We add a --fast
option to pytest which skips such tests, while still covering all of the core features of the language. So it is convenient
to often run pytest --fast as a quick check, remembering to run the full pytest before making any final commits.
You can also run specific parts of the test suite with a command like pytest tests/syntax/test_specifiers.py,
or use pytest’s -k option to filter by test name, e.g. pytest -k specifiers.

Note that many of Scenic’s tests are probabilistic, so in order to reproduce a test failure you may need to set the random
seed. We use the pytest-randomly plugin to help with this: at the beginning of each run of pytest, it prints out a line
like:

Using --randomly-seed=344295085

Adding this as an option, i.e. running pytest --randomly-seed=344295085, will reproduce the same sequence of
tests with the same Python/Scenic random seed. As a shortcut, you can use --randomly-seed=last to use the seed
from the previous testing run.

If you’re running the test suite on a headless server or just want to stop windows from popping up during testing, use
the --no-graphics option to skip graphical tests.

1 To run the formatters on all files, changed or otherwise, use make format in the root directory of the repository. But this should not be
necessary if you installed the pre-commit hooks and so all files already committed are clean.

1.11. Developing Scenic 95

https://pycqa.github.io/isort/
https://black.readthedocs.io/en/stable/index.html
https://docs.pytest.org/en/latest/index.html
https://github.com/pytest-dev/pytest-randomly

Scenic

1.11.3 Debugging

You can use Python’s built-in debugger pdb to debug the parsing, compilation, sampling, and simulation of Scenic
programs. The Scenic command-line option -b will cause the backtraces printed from uncaught exceptions to include
Scenic’s internals; you can also use the --pdb option to automatically enter the debugger on such exceptions. If you’re
trying to figure out why a scenario is taking many iterations of rejection sampling, first use the --verbosity option to
print out the reason for each rejection. If the problem doesn’t become clear, you can use the --pdb-on-reject option
to automatically enter the debugger when a scene or simulation is rejected.

If you’re using the Python API instead of invoking Scenic from the command line, these debugging features can be
enabled using the following function from the scenic module:

setDebuggingOptions(*, verbosity=0, fullBacktrace=False, debugExceptions=False, debugRejections=False)
Configure Scenic’s debugging options.

Parameters

• verbosity (int) – Verbosity level. Zero by default, although the command-line interface
uses 1 by default. See the --verbosity option for the allowed values.

• fullBacktrace (bool) – Whether to include Scenic’s innards in backtraces (like the -b
command-line option).

• debugExceptions (bool) – Whether to use pdb for post-mortem debugging of uncaught
exceptions (like the --pdb option).

• debugRejections (bool) – Whether to enter pdb when a scene or simulation is rejected
(like the --pdb-on-reject option).

It is possible to put breakpoints into a Scenic program using the Python built-in function breakpoint. Note however
that since code in a Scenic program is not always executed the way you might expect (e.g. top-level code is only run
once, whereas code in requirements can run every time we generate a sample: see How Scenic is Compiled), some
care is needed when interpreting what you see in the debugger. The same consideration applies when adding print
statements to a Scenic program. For example, a top-level print(x) will not print out the actual value of x every
time a sample is generated: instead, you will get a single print at compile time, showing the Distribution object
which represents the distribution of x (and which is bound to x in the Python namespace used internally for the Scenic
module).

1.11.4 Building the Documentation

Scenic’s documentation is built using Sphinx. The freestanding documentation pages (like this one) are found under the
docs folder, written in the reStructuredText format. The detailed documentation of Scenic’s internal classes, functions,
etc. is largely auto-generated from their docstrings, which are written in a variant of Google’s style understood by the
Napoleon Sphinx extension (see the docstring of Scenario.generate for a simple example: click the [source]
link to the right of the function signature to see the code).

If you modify the documentation, you should build a copy of it locally to make sure everything looks good before
you push your changes to GitHub (where they will be picked up automatically by ReadTheDocs). To compile the
documentation, enter the docs folder and run make html. The output will be placed in the docs/_build/html
folder, so the root page will be at docs/_build/html/index.html. If your changes do not appear, it’s possible that
Sphinx has not detected them; you can run make clean to delete all the files from the last compilation and start from
a clean slate.

Scenic extends Sphinx in a number of ways to improve the presentation of Scenic code and add various useful features:
see docs/conf.py for full details. Some of the most commonly-used features are:

• a scenic role which extends the standard Sphinx samp role with Scenic syntax highlighting;

• a sampref role which makes a cross-reference like keyword but allows emphasizing variables like samp;

96 Chapter 1. Table of Contents

https://docs.python.org/3/library/pdb.html#module-pdb
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pdb.html#module-pdb
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pdb.html#module-pdb
https://docs.python.org/3/library/functions.html#breakpoint
https://docs.python.org/3/library/functions.html#print
https://www.sphinx-doc.org/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#rst-primer
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#module-sphinx.ext.napoleon
https://readthedocs.org/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-samp
https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-keyword
https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-samp

Scenic

• the term role for glossary terms is extended so that the cross-reference will work even if the link is plural but the
glossary entry is singular or vice versa.

1.12 Scenic Internals

This section of the documentation describes the implementation of Scenic. Much of this information will probably
only be useful for people who need to make some change to the language (e.g. adding a new type of distribution).
However, the detailed documentation on Scenic’s abstract application domains (in scenic.domains) and simulator
interfaces (in scenic.simulators) may be of interest to people using those features.

1.12.1 How Scenic is Compiled

The process of compiling a Scenic program into a Scenario object can be split into several phases. Understanding
what each phase does is useful if you plan to modify the Scenic language.

For more details on Phases 1 and 2 (parsing Scenic and converting it into Python), see the Guide to the Scenic Parser
& Compiler.

Phase 1: Scenic Parser

In this phase the program is parsed using the Scenic parser. The parser is generated from a PEG grammar (scenic.
gram) using the Pegen parser generator. The parser generates an abstract syntax tree (Scenic AST) for the program.
Scenic AST is a superset of Python AST defined in ast.py and has additional nodes for representing Scenic-specific
constructs.

Phase 2: Scenic Compiler

In this phase, the Scenic AST is transformed into a Python AST. The Scenic Compiler walks the Scenic AST and
replaces Scenic-specific nodes with corresponding Python AST nodes.

Phase 3: AST Compilation

Compile the Python AST down to a Python code object.

Phase 4: Python Execution

In this phase the Python code object compiled in Phase 3 is executed. When run, the definitions of objects, global
parameters, requirements, behaviors, etc. produce Python data structures used internally by Scenic to keep track of
the distributions, functions, coroutines, etc. used in their definitions. For example, a random value will evaluate
to a Distribution object storing information about which distribution it is drawn from; actually sampling from
that distribution will not occur until after the compilation process (when calling Scenario.generate). A require
statement will likewise produce a closure which can be used at sampling time to check whether its condition is satisfied
or not.

Note that since this phase only happens once, at compile time and not sampling time, top-level code in a Scenic program1

is only executed once even when sampling many scenes from it. This is done deliberately, in order to generate a static
representation of the semantics of the Scenic program which can be used for sampling without needing to re-run the
entire program.

1 As compared to code inside a require statement or a dynamic behavior, which will execute every time a scene is sampled or a simulation is
run respectively.

1.12. Scenic Internals 97

https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-term
https://we-like-parsers.github.io/pegen/index.html
https://docs.python.org/3/library/stdtypes.html#bltin-code-objects

Scenic

Phase 5: Scenario Construction

In this phase the various pieces of the internal representation of the program resulting from Phase 4 are bundled into
a Scenario object and returned to the user. This phase is also where the program is analyzed and pruning techniques
applied to optimize the scenario for later sampling.

Sampling and Executing Scenarios

Sampling scenes and executing dynamic simulations from them are not part of the compilation process2. For docu-
mentation on how those are done, see Scenario.generate and scenic.core.simulators respectively.

1.12.2 Guide to the Scenic Parser & Compiler

This page describes the process of parsing Scenic code and compiling it into equivalent Python. We also include a
tutorial illustrating how to add a new syntax construct to Scenic.

Architecture & Terminology

Scenic AST

A Scenic AST is an abstract syntax tree for representing Scenic programs. It is a superset of Python AST and includes
nodes for Scenic-specific language constructs.

The scenic.syntax.ast module defines all Scenic-specific AST nodes, which are instances of the AST class defined
in the same file.

AST nodes should include fields to store objects. To add fields, add a parameter to the initializer and define fields by
assigning values to self.

When adding fields, be sure to update the _fields and __match_args__ fields. _fields lists the names of the
fields in the AST node and is used by the AST module to traverse the tree, fill in the missing information, etc.
__match_args__ is used by the test suite to assert the structure of the AST node using Python’s structural pattern
matching.

2 Although there are some syntax errors which are currently not detected until those stages.

98 Chapter 1. Table of Contents

https://docs.python.org/3/reference/datamodel.html#object.__match_args__

Scenic

Scenic Grammar

The Scenic Grammar (syntax/scenic.gram) is a formal grammar that defines the syntax of the Scenic language. It
is written as a Parsing Expression Grammar (PEG) using the Pegen parser generator.

Please refer to Pegen’s documentation on how to write a grammar.

Scenic Parser

The Scenic Parser takes Scenic source code and outputs the corresponding abstract syntax tree. It is generated from
the grammar file using Pegen.

When you modify scenic.gram, you need to regenerate the parser by calling make or running

$ python -m pegen ./src/scenic/syntax/scenic.gram -o ./src/scenic/syntax/parser.py

at the project root. When running the test suite with pytest, the parser is automatically updated before test execution.

tests/syntax/test_parser.py includes parser tests and ensures that the parser generates the desired AST.

Scenic Compiler

The Scenic Compiler is a Scenic AST-to-Python AST compiler. The generated Python AST can be passed to the Python
interpreter for execution.

Internally, the compiler is a subclass of ast.NodeTransformer. It must define visitors for each Scenic AST node
which return corresponding Python AST nodes.

Tutorial: Adding New Syntax

In order to add new syntax, you’ll want to do the following:

1. add AST nodes to ast.py

2. add grammar to scenic.gram

3. write parser tests

4. add visitor to compiler.py

5. write compiler tests

The rest of this section will demonstrate how we can add the implies operator using the new parser architecture.

Step 1: Add AST Nodes

First, we define AST nodes that represent the syntax. Since the implies operator is a binary operator, the AST node
will have two fields for each operand.

1 class ImpliesOp(AST):
2 __match_args__ = ("hypothesis", "conclusion")
3

4 def __init__(
5 self, hypothesis: ast.AST, conclusion: ast.AST, *args: Any, **kwargs: Any

(continues on next page)

1.12. Scenic Internals 99

https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://we-like-parsers.github.io/pegen/index.html
https://we-like-parsers.github.io/pegen/grammar.html
https://docs.python.org/3/library/ast.html#ast.NodeTransformer

Scenic

(continued from previous page)

6) -> None:
7 super().__init__(*args, **kwargs)
8 self.hypothesis = hypothesis
9 self.conclusion = conclusion

10 self._fields = ["hypothesis", "conclusion"]

• On line 1, AST (scenic.syntax.ast.AST, not ast.AST) is the base class that all Scenic AST nodes extend.

• On line 2, __match_args__ is a syntax for using structural pattern matching on argument positions. This is to
make it easier to write parser tests.

• On line 5, the initializer takes two required arguments corresponding to the operator’s operands (hypothesis
and conclusion). Note that their types are ast.AST, which is the base class for all AST nodes, including both
Scenic AST nodes and Python AST nodes. The additional arguments *args and **kwargs should be passed to
the base class’ initializer to store extra information such as line number, offset, etc.

• On line 10, _fields is a special field that specifies the child nodes. This is used by the library functions such
as generic_visit to traverse the syntax tree.

Step 2: Add Grammar

Note: The grammar described here is slightly simplified for the sake of brevity. For the actual grammar used by the
parser, see the Scenic Grammar.

The next step is to update the scenic.gram file with a rule that matches our new construct. We’ll add a rule called
scenic_implication: all Scenic grammar rules should be prefixed with scenic_ so that we can easily distinguish
Scenic-specific rules from those in the original Python grammar.

scenic_implication (memo):
| invalid_scenic_implication # special rule to explain invalid uses of "implies"
| a=disjunction "implies" b=disjunction { s.ImpliesOp(a, b, LOCATIONS) }
| disjunction

Our rule has three alternatives, which the parser considers in order. For the moment, let’s consider the second alter-
native, which is the one defining the actual syntax of implies: it matches any text matching the disjunction rule,
followed by the word implies, followed by any text matching the disjunction rule. In the grammar, precedence
and associativity of operators are defined by using separate rules for each precedence level. The disjunction rule
matches any expression defined using or or an operator with higher precedence than or. Since implication should
bind less tightly than or, we use disjunction for its operands in our rule. To allow scenic_implication to match
higher-precedence operators as well as just implies, we add the third alternative, which matches any disjunction.

Returning to the second alternative, we define its outcome, i.e., the AST node which it generates if it matches, using
the ordinary Python code inside the curly brackets. Here s refers to the Scenic AST module, so s.ImpliesOp(a,
b, LOCATIONS) creates an instance of the ImpliesOp class we defined above with a the hypothesis and b the
conclusion. The special term LOCATIONS will be replaced with a set of named arguments to express source code
locations.

The implies operator is unique in that it takes exactly two operands: we disallow A implies B implies C as being
ambiguous, rather than parsing it as (A implies B) implies C (left-associatively) or A implies (B implies
C) (right-associatively). In order to block the ambiguous case and force the developer to make the meaning clear
by wrapping one of the operands in parentheses, our rule says that the right-hand side of the implication must be a
disjunction rather than an arbitrary expression. This will cause the code A implies B implies C to result in a
syntax error, because no rules will match.

100 Chapter 1. Table of Contents

https://docs.python.org/3/library/ast.html#ast.AST
https://peps.python.org/pep-0636/#matching-positional-attributes
https://docs.python.org/3/library/ast.html#ast.AST

Scenic

In order to replace the generic syntax error with a more informative one, we add the invalid_scenic_implication
rule as the first alternative. Rules with the invalid_ prefix are special rules for generating custom error messages.
Pegen first tries to parse the input without using invalid_ rules. If that fails, it tries parsing again, this time allowing
invalid_ rules: those rules can then generate errors when they match.

invalid_scenic_implication[NoReturn]:
| a=disjunction "implies" disjunction "implies" b=disjunction {

self.raise_syntax_error_known_range(
f"`implies` must take exactly two operands", a, b

)
}

The invalid_scenic_implication rule looks for an implication with more than two arguments (e.g. A implies
B implies C) and raises a syntax error with a detailed error message.

Once we are done with the grammar, run make to generate the parser from the grammar. If there is no error, the file
src/scenic/syntax/parser.py will be created.

Step 3: Write Parser Tests

Now that we have the parser, we need to add test cases to check that it works as we expect.

The number of test cases depends on the complexity of the grammar rule. Here, I decided to add the following three
cases:

class TestOperator: # 1
def test_implies_basic(self): # 2

mod = parse_string_helper("x implies y") # 3
stmt = mod.body[0]
match stmt:

case Expr(ImpliesOp(Name("x"), Name("y"))): # 4
assert True

case _:
assert False # 5

def test_implies_precedence(self):
mod = parse_string_helper("x implies y or z")
stmt = mod.body[0]
match stmt:

case Expr(ImpliesOp(Name("x"), BoolOp(Or(), [Name("y"), Name("z")]))):
assert True

case _:
assert False

def test_implies_three_operands(self):
with pytest.raises(SyntaxError) as e: # 6

parse_string_helper("x implies y implies z")
assert "must take exactly two operands" in e.value.msg

1. TestOperator is a test class that has all tests related to Scenic operators, so it is natural for us to add test cases
here.

2. The test case name should contain the names of the grammar we’re testing (implies in this case)

1.12. Scenic Internals 101

Scenic

3. parse_string_helper is a thin wrapper around the parser. The return value would be a module, but we’re
only concerned about the first statement of the body, so we extract that to the stmt variable.

4. We use structural pattern matching to match the result with the expected AST structure. In this case, the statement
is expected to be an Expr whose value is an ImpliesOp that takes Names, x and y.

5. Be sure to add an otherwise case (with _) and assert false. Otherwise, no error will be caught even if the returned
node does not match the expected structure.

6. Errors can be tested using pytest.raises.

Step 4: Add Visitor to Compiler

The next step is to add a visitor method to the compiler so it knows how to compile the ImpliesOp AST node to the
corresponding Python AST. In this case, we want to compile A implies B to a Python function call Implies(A, B).

The visitor class used in the compiler, ScenicToPythonTransformer, is a subclass of ast.NodeTransformer,
which transforms an AST node of class C by calling a method called visit_C if one exists, otherwise just recur-
sively transforming its child nodes. So to add the ability to compile ImpliesOp nodes, we’ll add a method named
visit_ImpliesOp:

class ScenicToPythonTransformer(ast.NodeTransformer):
def visit_ImpliesOp(self, node: s.ImpliesOp):

return ast.Call(
func=ast.Name(id="Implies", ctx=loadCtx),
args=[self.visit(node.hypothesis), self.visit(node.conclusion)],
keywords=[],

)

Inside the visitor, we construct a Call to a name Implies with node.hypothesis and node.conclusion as its
arguments. Note that the arguments need to be recursively visited using self.visit; otherwise Scenic AST nodes
inside them won’t be compiled.

Step 5: Write Compiler Tests

Similarly to step 3, we add tests for the compiler.

def test_implies_op(self):
node, _ = compileScenicAST(ImpliesOp(Name("x"), Name("y")))
match node:

case Call(Name("Implies"), [Name("x"), Name("y")]):
assert True

case _:
assert False

compileScenicAST is a function that invokes the node transformer. We match the compiled node against the desired
structure, which in this case is a call to a function with two arguments.

This completes adding the implies operator.

102 Chapter 1. Table of Contents

https://docs.pytest.org/en/stable/reference/reference.html#pytest.raises
https://docs.python.org/3/library/ast.html#ast.NodeTransformer

Scenic

1.12.3 Scenic Grammar

This page gives the formal Parsing Expression Grammar (PEG) used to parse the Scenic language. It is in the format
of the Pegen parser generator, and is based on the Python grammar from CPython (see Grammar/python.gram in the
CPython repository). In the source code, the grammar can be found at src/scenic/syntax/scenic.gram.

PEG grammar for Scenic
Based on the Python grammar at https://github.com/we-like-parsers/pegen/blob/main/data/
→˓python.gram

@class ScenicParser

@subheader'''
import enum
import io
import itertools
import os
import sys
import token
from typing import (

Any, Callable, Iterator, List, Literal, Tuple, TypeVar, Union, NoReturn
)

from pegen.tokenizer import Tokenizer

import scenic.syntax.ast as s
from scenic.core.errors import ScenicParseError

Singleton ast nodes, created once for efficiency
Load = ast.Load()
Store = ast.Store()
Del = ast.Del()

Node = TypeVar("Node")
FC = TypeVar("FC", ast.FunctionDef, ast.AsyncFunctionDef, ast.ClassDef)

EXPR_NAME_MAPPING = {
ast.Attribute: "attribute",
ast.Subscript: "subscript",
ast.Starred: "starred",
ast.Name: "name",
ast.List: "list",
ast.Tuple: "tuple",
ast.Lambda: "lambda",
ast.Call: "function call",
ast.BoolOp: "expression",
ast.BinOp: "expression",
ast.UnaryOp: "expression",
ast.GeneratorExp: "generator expression",
ast.Yield: "yield expression",
ast.YieldFrom: "yield expression",
ast.Await: "await expression",
ast.ListComp: "list comprehension",

(continues on next page)

1.12. Scenic Internals 103

https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://we-like-parsers.github.io/pegen/index.html
https://github.com/python/cpython

Scenic

(continued from previous page)

ast.SetComp: "set comprehension",
ast.DictComp: "dict comprehension",
ast.Dict: "dict literal",
ast.Set: "set display",
ast.JoinedStr: "f-string expression",
ast.FormattedValue: "f-string expression",
ast.Compare: "comparison",
ast.IfExp: "conditional expression",
ast.NamedExpr: "named expression",

}

def parse_file(
path: str,
py_version: Optional[tuple]=None,
token_stream_factory: Optional[

Callable[[Callable[[], str]], Iterator[tokenize.TokenInfo]]
] = None,
verbose:bool = False,

) -> ast.Module:
"""Parse a file."""
with open(path) as f:

tok_stream = (
token_stream_factory(f.readline)
if token_stream_factory else
tokenize.generate_tokens(f.readline)

)
tokenizer = Tokenizer(tok_stream, verbose=verbose, path=path)
parser = ScenicParser(

tokenizer,
verbose=verbose,
filename=os.path.basename(path),
py_version=py_version

)
return parser.parse("file")

def parse_string(
source: str,
mode: Union[Literal["eval"], Literal["exec"]],
py_version: Optional[tuple]=None,
token_stream_factory: Optional[

Callable[[Callable[[], str]], Iterator[tokenize.TokenInfo]]
] = None,
verbose: bool = False,
filename: str = "<unknown>",

) -> Any:
"""Parse a string."""
tok_stream = (

token_stream_factory(io.StringIO(source).readline)
if token_stream_factory else
tokenize.generate_tokens(io.StringIO(source).readline)

(continues on next page)

104 Chapter 1. Table of Contents

Scenic

(continued from previous page)

)
tokenizer = Tokenizer(tok_stream, verbose=verbose)
parser = ScenicParser(tokenizer, verbose=verbose, py_version=py_version,␣

→˓filename=filename)
return parser.parse(mode if mode == "eval" else "file")

class Target(enum.Enum):
FOR_TARGETS = enum.auto()
STAR_TARGETS = enum.auto()
DEL_TARGETS = enum.auto()

class Parser(Parser):

#: Name of the source file, used in error reports
filename : str

def __init__(self,
tokenizer: Tokenizer, *,
verbose: bool = False,
filename: str = "<unknown>",
py_version: Optional[tuple] = None,

) -> None:
super().__init__(tokenizer, verbose=verbose)
self.filename = filename
self.py_version = min(py_version, sys.version_info) if py_version else sys.

→˓version_info

def parse(self, rule: str, call_invalid_rules: bool = False) -> Optional[ast.AST]:
self.call_invalid_rules = call_invalid_rules
res = getattr(self, rule)()

if res is None:

Grab the last token that was parsed in the first run to avoid
polluting a generic error reports with progress made by invalid rules.
last_token = self._tokenizer.diagnose()

if not call_invalid_rules:
self.call_invalid_rules = True

Reset the parser cache to be able to restart parsing from the
beginning.
self._reset(0) # type: ignore
self._cache.clear()

res = getattr(self, rule)()

self.raise_raw_syntax_error("invalid syntax", last_token.start, last_token.
→˓end)

(continues on next page)

1.12. Scenic Internals 105

Scenic

(continued from previous page)

return res

def check_version(self, min_version: Tuple[int, ...], error_msg: str, node: Node) ->␣
→˓Node:

"""Check that the python version is high enough for a rule to apply.

"""
if self.py_version >= min_version:

return node
else:

raise ScenicParseError(SyntaxError(
f"{error_msg} is only supported in Python {min_version} and above."

))

def raise_indentation_error(self, msg: str) -> None:
"""Raise an indentation error."""
last_token = self._tokenizer.diagnose()
args = (self.filename, last_token.start[0], last_token.start[1] + 1, last_token.

→˓line)
if sys.version_info >= (3, 10):

args += (last_token.end[0], last_token.end[1] + 1)
raise ScenicParseError(IndentationError(msg, args))

def get_expr_name(self, node) -> str:
"""Get a descriptive name for an expression."""
See https://github.com/python/cpython/blob/master/Parser/pegen.c#L161
assert node is not None
node_t = type(node)
if node_t is ast.Constant:

v = node.value
if v is Ellipsis:

return "ellipsis"
elif v is None:

return str(v)
Avoid treating 1 as True through == comparison
elif v is True:

return str(v)
elif v is False:

return str(v)
else:

return "literal"

try:
return EXPR_NAME_MAPPING[node_t]

except KeyError:
raise ValueError(

f"unexpected expression in assignment {type(node).__name__} "
f"(line {node.lineno})."

)

def get_invalid_target(self, target: Target, node: Optional[ast.AST]) ->␣
→˓Optional[ast.AST]:

(continues on next page)

106 Chapter 1. Table of Contents

Scenic

(continued from previous page)

"""Get the meaningful invalid target for different assignment type."""
if node is None:

return None

We only need to visit List and Tuple nodes recursively as those
are the only ones that can contain valid names in targets when
they are parsed as expressions. Any other kind of expression
that is a container (like Sets or Dicts) is directly invalid and
we do not need to visit it recursively.
if isinstance(node, (ast.List, ast.Tuple)):

for e in node.elts:
if (inv := self.get_invalid_target(target, e)) is not None:

return inv
elif isinstance(node, ast.Starred):

if target is Target.DEL_TARGETS:
return node

return self.get_invalid_target(target, node.value)
elif isinstance(node, ast.Compare):

This is needed, because the `a in b` in `for a in b` gets parsed
as a comparison, and so we need to search the left side of the comparison
for invalid targets.
if target is Target.FOR_TARGETS:

if isinstance(node.ops[0], ast.In):
return self.get_invalid_target(target, node.left)

return None

return node
elif isinstance(node, (ast.Name, ast.Subscript, ast.Attribute)):

return None
else:

return node

def set_expr_context(self, node, context):
"""Set the context (Load, Store, Del) of an ast node."""
node.ctx = context
return node

def ensure_real(self, number: ast.Constant):
value = ast.literal_eval(number.string)
if type(value) is complex:

self.raise_syntax_error_known_location("real number required in complex␣
→˓literal", number)

return value

def ensure_imaginary(self, number: ast.Constant):
value = ast.literal_eval(number.string)
if type(value) is not complex:

self.raise_syntax_error_known_location("imaginary number required in complex␣
→˓literal", number)

return value

def generate_ast_for_string(self, tokens):

(continues on next page)

1.12. Scenic Internals 107

Scenic

(continued from previous page)

"""Generate AST nodes for strings."""
err_args = None
line_offset = tokens[0].start[0]
line = line_offset
col_offset = 0
source = "(\\n"
for t in tokens:

n_line = t.start[0] - line
if n_line:

col_offset = 0
source += """\\n""" * n_line + ' ' * (t.start[1] - col_offset) + t.string
line, col_offset = t.end

source += "\\n)"
try:

m = ast.parse(source)
except SyntaxError as err:

args = (err.filename, err.lineno + line_offset - 2, err.offset, err.text)
if sys.version_info >= (3, 10):

args += (err.end_lineno + line_offset - 2, err.end_offset)
err_args = (err.msg, args)
Ensure we do not keep the frame alive longer than necessary
by explicitely deleting the error once we got what we needed out
of it
del err

Avoid getting a triple nesting in the error report that does not
bring anything relevant to the traceback.
if err_args is not None:

raise ScenicParseError(SyntaxError(*err_args))

node = m.body[0].value
Since we asked Python to parse an alterred source starting at line 2
we alter the lineno of the returned AST to recover the right line.
If the string start at line 1, tha AST says 2 so we need to decrement by 1
hence the -2.
ast.increment_lineno(node, line_offset - 2)
return node

def extract_import_level(self, tokens: List[tokenize.TokenInfo]) -> int:
"""Extract the relative import level from the tokens preceding the module name.

'.' count for one and '...' for 3.

"""
level = 0
for t in tokens:

if t.string == ".":
level += 1

else:
level += 3

return level

(continues on next page)

108 Chapter 1. Table of Contents

Scenic

(continued from previous page)

def set_decorators(self,
target: FC,
decorators: list

) -> FC:
"""Set the decorators on a function or class definition."""
target.decorator_list = decorators
return target

def get_comparison_ops(self, pairs):
return [op for op, _ in pairs]

def get_comparators(self, pairs):
return [comp for _, comp in pairs]

def set_arg_type_comment(self, arg, type_comment):
if type_comment or sys.version_info < (3, 9):

arg.type_comment = type_comment
return arg

def make_arguments(self,
pos_only: Optional[List[Tuple[ast.arg, None]]],
pos_only_with_default: List[Tuple[ast.arg, Any]],
param_no_default: Optional[List[Tuple[ast.arg, None]]],
param_default: Optional[List[Tuple[ast.arg, Any]]],
after_star: Optional[Tuple[Optional[ast.arg], List[Tuple[ast.arg, Any]],␣

→˓Optional[ast.arg]]]
) -> ast.arguments:

"""Build a function definition arguments."""
defaults = (

[d for _, d in pos_only_with_default if d is not None]
if pos_only_with_default else
[]

)
defaults += (

[d for _, d in param_default if d is not None]
if param_default else
[]

)

pos_only = pos_only or pos_only_with_default

Because we need to combine pos only with and without default even
the version with no default is a tuple
pos_only = [p for p, _ in pos_only]
params = (param_no_default or []) + ([p for p, _ in param_default] if param_

→˓default else [])

If after_star is None, make a default tuple
after_star = after_star or (None, [], None)

return ast.arguments(
posonlyargs=pos_only,

(continues on next page)

1.12. Scenic Internals 109

Scenic

(continued from previous page)

args=params,
defaults=defaults,
vararg=after_star[0],
kwonlyargs=[p for p, _ in after_star[1]],
kw_defaults=[d for _, d in after_star[1]],
kwarg=after_star[2]

)

def _build_syntax_error(
self,
message: str,
start: Optional[Tuple[int, int]] = None,
end: Optional[Tuple[int, int]] = None

) -> None:
line_from_token = start is None and end is None
if start is None or end is None:

tok = self._tokenizer.diagnose()
start = start or tok.start
end = end or tok.end

if line_from_token:
line = tok.line

else:
End is used only to get the proper text
line = "\\n".join(

self._tokenizer.get_lines(list(range(start[0], end[0] + 1)))
)

tokenize.py index column offset from 0 while Cpython index column
offset at 1 when reporting SyntaxError, so we need to increment
the column offset when reporting the error.
args = (self.filename, start[0], start[1] + 1, line)
if sys.version_info >= (3, 10):

args += (end[0], end[1] + 1)

return ScenicParseError(SyntaxError(message, args))

def raise_raw_syntax_error(
self,
message: str,
start: Optional[Tuple[int, int]] = None,
end: Optional[Tuple[int, int]] = None

) -> NoReturn:
raise self._build_syntax_error(message, start, end)

def make_syntax_error(self, message: str) -> None:
return self._build_syntax_error(message)

def expect_forced(self, res: Any, expectation: str) -> Optional[tokenize.TokenInfo]:
if res is None:

last_token = self._tokenizer.diagnose()
self.raise_raw_syntax_error(

(continues on next page)

110 Chapter 1. Table of Contents

Scenic

(continued from previous page)

f"expected {expectation}", last_token.start, last_token.start
)

return res

def raise_syntax_error(self, message: str) -> NoReturn:
"""Raise a syntax error."""
tok = self._tokenizer.diagnose()
raise self._build_syntax_error(message, tok.start, tok.end if tok.type != 4 else␣

→˓tok.start)

def raise_syntax_error_known_location(
self, message: str, node: Union[ast.AST, tokenize.TokenInfo]

) -> NoReturn:
"""Raise a syntax error that occured at a given AST node."""
if isinstance(node, tokenize.TokenInfo):

start = node.start
end = node.end

else:
start = node.lineno, node.col_offset
end = node.end_lineno, node.end_col_offset

raise self._build_syntax_error(message, start, end)

def raise_syntax_error_known_range(
self,
message: str,
start_node: Union[ast.AST, tokenize.TokenInfo],
end_node: Union[ast.AST, tokenize.TokenInfo]

) -> NoReturn:
if isinstance(start_node, tokenize.TokenInfo):

start = start_node.start
else:

start = start_node.lineno, start_node.col_offset

if isinstance(end_node, tokenize.TokenInfo):
end = end_node.end

else:
end = end_node.end_lineno, end_node.end_col_offset

raise self._build_syntax_error(message, start, end)

def raise_syntax_error_starting_from(
self,
message: str,
start_node: Union[ast.AST, tokenize.TokenInfo]

) -> NoReturn:
if isinstance(start_node, tokenize.TokenInfo):

start = start_node.start
else:

start = start_node.lineno, start_node.col_offset

last_token = self._tokenizer.diagnose()

(continues on next page)

1.12. Scenic Internals 111

Scenic

(continued from previous page)

raise self._build_syntax_error(message, start, last_token.start)

def raise_syntax_error_invalid_target(
self, target: Target, node: Optional[ast.AST]

) -> NoReturn:
invalid_target = self.get_invalid_target(target, node)

if invalid_target is None:
return None

if target in (Target.STAR_TARGETS, Target.FOR_TARGETS):
msg = f"cannot assign to {self.get_expr_name(invalid_target)}"

else:
msg = f"cannot delete {self.get_expr_name(invalid_target)}"

self.raise_syntax_error_known_location(msg, invalid_target)

scenic helpers
def extend_new_specifiers(self, node: s.New, specifiers: List[ast.AST]) -> s.New:

node.specifiers.extend(specifiers)
return node

'''

rule for adding hard keywords
scenic_hard_keyword:

STARTING RULES
==============

start: file

file[ast.Module]: a=[statements] ENDMARKER { ast.Module(body=a or [], type_ignores=[]) }
interactive[ast.Interactive]: a=statement_newline { ast.Interactive(body=a) }
eval[ast.Expression]: a=expressions NEWLINE* ENDMARKER { ast.Expression(body=a) }
func_type[ast.FunctionType]: '(' a=[type_expressions] ')' '->' b=expression NEWLINE*␣
→˓ENDMARKER { ast.FunctionType(argtypes=a, returns=b) }
fstring[ast.Expr]: star_expressions

GENERAL STATEMENTS
==================

statements[list]: a=statement+ { list(itertools.chain.from_iterable(a)) }

statement[list]: a=scenic_compound_stmt { [a] } | a=compound_stmt { [a] } | a=scenic_
→˓stmts { a } | a=simple_stmts { a }

statement_newline[list]:
| a=compound_stmt NEWLINE { [a] }
| simple_stmts

(continues on next page)

112 Chapter 1. Table of Contents

Scenic

(continued from previous page)

| NEWLINE { [ast.Pass(LOCATIONS)] }
| ENDMARKER { None }

simple_stmts[list]:
| a=simple_stmt !';' NEWLINE { [a] } # Not needed, there for speedup
| a=';'.simple_stmt+ [';'] NEWLINE { a }

scenic_stmts[list]:
| a=scenic_stmt !';' NEWLINE { [a] } # Not needed, there for speedup
| a=';'.scenic_stmt+ [';'] NEWLINE { a }

NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.
simple_stmt (memo):

| assignment
| e=star_expressions { ast.Expr(value=e, LOCATIONS) }
| &'return' return_stmt
| &('import' | 'from') import_stmt
| &'raise' raise_stmt
| 'pass' { ast.Pass(LOCATIONS) }
| &'del' del_stmt
| &'yield' yield_stmt
| &'assert' assert_stmt
| 'break' { ast.Break(LOCATIONS) }
| 'continue' { ast.Continue(LOCATIONS) }
| &'global' global_stmt
| &'nonlocal' nonlocal_stmt

compound_stmt:
| &('def' | '@' | 'async') function_def
| &'if' if_stmt
| &('class' | '@') class_def
| &('with' | 'async') with_stmt
| &('for' | 'async') for_stmt
| &'try' try_stmt
| &'while' while_stmt
| match_stmt

scenic_stmt:
| scenic_model_stmt
| scenic_tracked_assignment
| scenic_param_stmt
| scenic_require_stmt
| scenic_record_initial_stmt
| scenic_record_final_stmt
| scenic_record_stmt
| scenic_mutate_stmt
| scenic_terminate_simulation_when_stmt
| scenic_terminate_when_stmt
| scenic_terminate_after_stmt
| scenic_take_stmt
| scenic_wait_stmt

(continues on next page)

1.12. Scenic Internals 113

Scenic

(continued from previous page)

| scenic_terminate_simulation_stmt
| scenic_terminate_stmt
| scenic_do_choose_stmt
| scenic_do_shuffle_stmt
| scenic_do_for_stmt
| scenic_do_until_stmt
| scenic_do_stmt
| scenic_abort_stmt
| scenic_simulator_stmt

scenic_compound_stmt:
| scenic_tracked_assign_new_stmt
| scenic_assign_new_stmt
| scenic_expr_new_stmt
| scenic_behavior_def
| scenic_monitor_def
| scenic_scenario_def
| scenic_try_interrupt_stmt
| scenic_override_stmt

SIMPLE STATEMENTS
=================

NOTE: annotated_rhs may start with 'yield'; yield_expr must start with 'yield'
assignment:

| a=NAME ':' b=expression c=['=' d=annotated_rhs { d }] {
self.check_version(

(3, 6),
"Variable annotation syntax is",
ast.AnnAssign(

target=ast.Name(
id=a.string,
ctx=Store,
lineno=a.start[0],
col_offset=a.start[1],
end_lineno=a.end[0],
end_col_offset=a.end[1],

),
annotation=b,
value=c,
simple=1,
LOCATIONS,

)
) }

| a=('(' b=single_target ')' { b }
| single_subscript_attribute_target) ':' b=expression c=['=' d=annotated_rhs {␣

→˓d }] {
self.check_version(

(3, 6),
"Variable annotation syntax is",
ast.AnnAssign(

target=a,

(continues on next page)

114 Chapter 1. Table of Contents

Scenic

(continued from previous page)

annotation=b,
value=c,
simple=0,
LOCATIONS,

)
)

}
| a=(z=star_targets '=' { z })+ b=(yield_expr | star_expressions) !'=' tc=[TYPE_

→˓COMMENT] {
ast.Assign(targets=a, value=b, type_comment=tc, LOCATIONS)

}
| a=single_target b=augassign ~ c=(yield_expr | star_expressions) {

ast.AugAssign(target = a, op=b, value=c, LOCATIONS)
}

| invalid_assignment

annotated_rhs: yield_expr | star_expressions

augassign:
| '+=' { ast.Add() }
| '-=' { ast.Sub() }
| '*=' { ast.Mult() }
| '@=' { self.check_version((3, 5), "The '@' operator is", ast.MatMult()) }
| '/=' { ast.Div() }
| '%=' { ast.Mod() }
| '&=' { ast.BitAnd() }
| '|=' { ast.BitOr() }
| '^=' { ast.BitXor() }
| '<<=' { ast.LShift() }
| '>>=' { ast.RShift() }
| '**=' { ast.Pow() }
| '//=' { ast.FloorDiv() }

return_stmt[ast.Return]:
| 'return' a=[star_expressions] { ast.Return(value=a, LOCATIONS) }

raise_stmt[ast.Raise]:
| 'raise' a=expression b=['from' z=expression { z }] { ast.Raise(exc=a, cause=b,␣

→˓LOCATIONS) }
| 'raise' { ast.Raise(exc=None, cause=None, LOCATIONS) }

global_stmt[ast.Global]: 'global' a=','.NAME+ {
ast.Global(names=[n.string for n in a], LOCATIONS)

}

nonlocal_stmt[ast.Nonlocal]: 'nonlocal' a=','.NAME+ {
ast.Nonlocal(names=[n.string for n in a], LOCATIONS)

}

del_stmt[ast.Delete]:
| 'del' a=del_targets &(';' | NEWLINE) { ast.Delete(targets=a, LOCATIONS) }
| invalid_del_stmt

(continues on next page)

1.12. Scenic Internals 115

Scenic

(continued from previous page)

yield_stmt[ast.Expr]: y=yield_expr { ast.Expr(value=y, LOCATIONS) }

assert_stmt[ast.Assert]: 'assert' a=expression b=[',' z=expression { z }] {
ast.Assert(test=a, msg=b, LOCATIONS)

}

import_stmt[ast.Import]: import_name | import_from

Import statements

import_name[ast.Import]: 'import' a=dotted_as_names { ast.Import(names=a, LOCATIONS) }

note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from[ast.ImportFrom]:

| 'from' a=('.' | '...')* b=dotted_name 'import' c=import_from_targets {
ast.ImportFrom(module=b, names=c, level=self.extract_import_level(a), LOCATIONS)

}
| 'from' a=('.' | '...')+ 'import' b=import_from_targets {

ast.ImportFrom(names=b, level=self.extract_import_level(a), LOCATIONS)
if sys.version_info >= (3, 9) else
ast.ImportFrom(module=None, names=b, level=self.extract_import_level(a),␣

→˓LOCATIONS)
}

import_from_targets[List[ast.alias]]:
| '(' a=import_from_as_names [','] ')' { a }
| import_from_as_names !','
| '*' { [ast.alias(name="*", asname=None, LOCATIONS)] }
| invalid_import_from_targets

import_from_as_names[List[ast.alias]]:
| a=','.import_from_as_name+ { a }

import_from_as_name[ast.alias]:
| a=NAME b=['as' z=NAME { z.string }] { ast.alias(name=a.string, asname=b,␣

→˓LOCATIONS) }
dotted_as_names[List[ast.alias]]:

| a=','.dotted_as_name+ { a }
dotted_as_name[ast.alias]:

| a=dotted_name b=['as' z=NAME { z.string }] { ast.alias(name=a, asname=b,␣
→˓LOCATIONS) }
dotted_name[str]:

| a=dotted_name '.' b=NAME { a + "." + b.string }
| a=NAME { a.string }

COMPOUND STATEMENTS
===================

Common elements

block[list] (memo):
| NEWLINE INDENT a=statements DEDENT { a }

(continues on next page)

116 Chapter 1. Table of Contents

Scenic

(continued from previous page)

| simple_stmts
| invalid_block

decorators: decorator+
decorator:

| a=('@' f=dec_maybe_call NEWLINE { f }) { a }
| a=('@' f=named_expression NEWLINE { f }) {

self.check_version((3, 9), "Generic decorator are", a)
}

dec_maybe_call:
| dn=dec_primary '(' z=[arguments] ')' {

ast.Call(func=dn, args=z[0] if z else [], keywords=z[1] if z else [], LOCATIONS)
}
| dec_primary

dec_primary:
| a=dec_primary '.' b=NAME { ast.Attribute(value=a, attr=b.string, ctx=Load,␣

→˓LOCATIONS) }
| a=NAME { ast.Name(id=a.string, ctx=Load, LOCATIONS) }

Class definitions

class_def[ast.ClassDef]:
| a=decorators b=class_def_raw { self.set_decorators(b, a) }
| class_def_raw

class_def_raw[ast.ClassDef]:
| invalid_class_def_raw
| 'class' a=NAME b=['(' z=[arguments] ')' { z }] &&':' c=scenic_class_def_block {

ast.ClassDef(
a.string,
bases=b[0] if b else [],
keywords=b[1] if b else [],
body=c,
decorator_list=[],
LOCATIONS,

)
}

scenic_class_def_block:
| NEWLINE INDENT a=scenic_class_statements DEDENT { a }
| simple_stmts
| invalid_block

scenic_class_statements[list]: a=scenic_class_statement+ { list(itertools.chain.from_
→˓iterable(a)) }

scenic_class_statement[list]:
| a=scenic_class_property_stmt { [a] }
| a=compound_stmt { [a] }
| a=scenic_stmts { a }
| a=simple_stmts { a }

(continues on next page)

1.12. Scenic Internals 117

Scenic

(continued from previous page)

scenic_class_property_stmt:
not a simple statement; reads NEWLINE
| a=NAME b=['[' attrs=','.scenic_class_property_attribute+ ']' { attrs }] ':'␣

→˓c=expression NEWLINE {
s.PropertyDef(

property=a.string,
attributes=b if b is not None else [],
value=c,
LOCATIONS,

)
}

fail if `NAME [<expr>]` pattern is found at top level of class definition and
<expr> is neither `additive` nor `dynamic`
scenic_class_property_attribute: &&(

"additive" { s.Additive(LOCATIONS) }
| "dynamic" { s.Dynamic(LOCATIONS) }
| "final" { s.Final(LOCATIONS) }

)

Multiline Specifiers

scenic_assign_new_stmt:

| a=(z=star_targets '=' { z })+ b=(scenic_new_block) !'=' tc=[TYPE_COMMENT] {
ast.Assign(targets=a, value=b, type_comment=tc, LOCATIONS)

}

scenic_tracked_assign_new_stmt:
| a=scenic_tracked_name '=' b=scenic_new_block { s.TrackedAssign(target=a, value=b,␣

→˓LOCATIONS) }

scenic_expr_new_stmt: a=scenic_new_block { ast.Expr(value=a, LOCATIONS) }

scenic_new_block:
| a=scenic_new_expr ',' NEWLINE INDENT b=scenic_new_block_body DEDENT {

self.extend_new_specifiers(a, b)
}

scenic_new_block_body:
without trailing comma
| b=(x=scenic_specifiers ',' NEWLINE { x })* c=scenic_specifiers NEWLINE {

list(itertools.chain.from_iterable(b)) + c
}
with trailing comma
| b=(x=scenic_specifiers ',' NEWLINE { x })+ {

list(itertools.chain.from_iterable(b))
}

Behavior

(continues on next page)

118 Chapter 1. Table of Contents

Scenic

(continued from previous page)

scenic_behavior_def:
| "behavior" a=NAME '(' b=[params] ')' &&':' c=scenic_behavior_def_block {

s.BehaviorDef(
a.string,
args=b or self.make_arguments(None, [], None, [], None),
docstring=c[0],
header=c[1],
body=c[2],
LOCATIONS,

)
}

scenic_behavior_def_block:
behavior definition must have at least one statement that is not a precondition/

→˓invariant definition
| NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=[scenic_behavior_header]␣

→˓c=scenic_behavior_statements DEDENT { (a, b or [], c) }
| invalid_block

scenic_behavior_statements[list]: a=scenic_behavior_statement+ { list(itertools.chain.
→˓from_iterable(a)) }

statements available inside behavior (normal statements + dynamic statements -␣
→˓precondition/invariant)
scenic_behavior_statement[list]:

| scenic_invalid_behavior_statement
| a=statement { a }

scenic_invalid_behavior_statement:
| a="invariant" ':' a=expression {

self.raise_syntax_error_known_location("invariant can only be set at the␣
→˓beginning of behavior definitions", a)

}
| a="precondition" ':' a=expression {

self.raise_syntax_error_known_location("precondition can only be set at the␣
→˓beginning of behavior definitions", a)

}

scenic_behavior_header: a=(x=(scenic_precondition_stmt | scenic_invariant_stmt) NEWLINE
→˓{ x })+ { a }

scenic_precondition_stmt:
| "precondition" ':' a=expression { s.Precondition(value=a, LOCATIONS) }

scenic_invariant_stmt:
| "invariant" ':' a=expression { s.Invariant(value=a, LOCATIONS) }

Monitor

(continues on next page)

1.12. Scenic Internals 119

Scenic

(continued from previous page)

scenic_monitor_def:
| invalid_monitor
| "monitor" a=NAME '(' b=[params] ')' &&':' c=scenic_monitor_def_block {

s.MonitorDef(
a.string,
args=b or self.make_arguments(None, [], None, [], None),
docstring=c[0],
body=c[1],
LOCATIONS

)
}

invalid_monitor[NoReturn]:
| "monitor" NAME a=':' {

self.raise_syntax_error_known_location("2.0-style monitor must be converted␣
→˓to use parentheses and explicit require", a)

}

scenic_monitor_def_block:
| NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=scenic_monitor_statements␣

→˓DEDENT { (a, b) }

scenic_monitor_statements[list]: a=statement+ { list(itertools.chain.from_iterable(a)) }

Modular Scenario

scenic_scenario_def:
| "scenario" a=NAME b=['(' z=[params] ')' { z }] &&':' c=scenic_scenario_def_block {

s.ScenarioDef(
a.string,
args=b or self.make_arguments(None, [], None, [], None),
docstring=c[0],
header=c[1],
setup=c[2],
compose=c[3],
LOCATIONS,

)
}

returns a four-tuple (docstring, header, setup block, compose block)
scenic_scenario_def_block:

| NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=[scenic_behavior_header]␣
→˓c=[scenic_scenario_setup_block] d=[scenic_scenario_compose_block] DEDENT { (a, b or [],
→˓ c or [], d or []) }

| NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=statements DEDENT { (a, [], b,␣
→˓[]) }

scenic_scenario_setup_block:
| "setup" &&':' b=block { b }

scenic_scenario_compose_block:
(continues on next page)

120 Chapter 1. Table of Contents

Scenic

(continued from previous page)

| "compose" &&':' b=block { b }

Override

scenic_override_stmt:
restricting `e` to `primary` rather than `expression` to disambiguate keywords that␣

→˓are both specifiers and operators (e.g. `at`, `offset by`)
| "override" e=primary ss=scenic_specifiers NEWLINE { s.Override(target=e,␣

→˓specifiers=ss) }
| "override" e=primary ss=scenic_specifiers ',' NEWLINE INDENT t=scenic_new_block_

→˓body DEDENT {
s.Override(target=e, specifiers=ss + t)

}

Function definitions

function_def[Union[ast.FunctionDef, ast.AsyncFunctionDef]]:
| d=decorators f=function_def_raw { self.set_decorators(f, d) }
| f=function_def_raw {self.set_decorators(f, [])}

function_def_raw[Union[ast.FunctionDef, ast.AsyncFunctionDef]]:
| invalid_def_raw
| 'def' n=NAME &&'(' params=[params] ')' a=['->' z=expression { z }] &&':' tc=[func_

→˓type_comment] b=block {
ast.FunctionDef(

name=n.string,
args=params or self.make_arguments(None, [], None, [], None),
returns=a,
body=b,
type_comment=tc,
LOCATIONS,

)
}
| 'async' 'def' n=NAME &&'(' params=[params] ')' a=['->' z=expression { z }] &&':'␣

→˓tc=[func_type_comment] b=block {
self.check_version(

(3, 5),
"Async functions are",
ast.AsyncFunctionDef(

name=n.string,
args=params or self.make_arguments(None, [], None, [], None),
returns=a,
body=b,
type_comment=tc,
LOCATIONS,

)
)

}

Function parameters

(continues on next page)

1.12. Scenic Internals 121

Scenic

(continued from previous page)

params:
| invalid_parameters
| parameters

parameters[ast.arguments]:
| a=slash_no_default b=param_no_default* c=param_with_default* d=[star_etc] {

self.check_version(
(3, 8), "Positional only arguments are", self.make_arguments(a, [], b, c, d)

)
}

| a=slash_with_default b=param_with_default* c=[star_etc] {
self.check_version(

(3, 8),
"Positional only arguments are",
self.make_arguments(None, a, None, b, c),

)
}

| a=param_no_default+ b=param_with_default* c=[star_etc] {
self.make_arguments(None, [], a, b, c)

}
| a=param_with_default+ b=[star_etc] {

self.make_arguments(None, [], None, a, b)
}

| a=star_etc { self.make_arguments(None, [], None, None, a) }

Some duplication here because we can't write (',' | &')'),
which is because we don't support empty alternatives (yet).
#

slash_no_default[List[Tuple[ast.arg, None]]]:
| a=param_no_default+ '/' ',' { [(p, None) for p in a] }
| a=param_no_default+ '/' &')' { [(p, None) for p in a] }

slash_with_default[List[Tuple[ast.arg, Any]]]:
| a=param_no_default* b=param_with_default+ '/' ',' { ([(p, None) for p in a] if a␣

→˓else []) + b }
| a=param_no_default* b=param_with_default+ '/' &')' { ([(p, None) for p in a] if a␣

→˓else []) + b }

star_etc[Tuple[Optional[ast.arg], List[Tuple[ast.arg, Any]], Optional[ast.arg]]]:
| invalid_star_etc
| '*' a=param_no_default b=param_maybe_default* c=[kwds] { (a, b, c) }
| '*' ',' b=param_maybe_default+ c=[kwds] { (None, b, c) }
| a=kwds { (None, [], a) }

kwds[ast.arg]:
| invalid_kwds
| '**' a=param_no_default { a }

One parameter. This *includes* a following comma and type comment.
#

(continues on next page)

122 Chapter 1. Table of Contents

Scenic

(continued from previous page)

There are three styles:
- No default
- With default
- Maybe with default
#
There are two alternative forms of each, to deal with type comments:
- Ends in a comma followed by an optional type comment
- No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#

param_no_default[ast.arg]:
| a=param ',' tc=TYPE_COMMENT? { self.set_arg_type_comment(a, tc) }
| a=param tc=TYPE_COMMENT? &')' { self.set_arg_type_comment(a, tc) }

param_with_default[Tuple[ast.arg, Any]]:
| a=param c=default ',' tc=TYPE_COMMENT? { (self.set_arg_type_comment(a, tc), c) }
| a=param c=default tc=TYPE_COMMENT? &')' { (self.set_arg_type_comment(a, tc), c) }

param_maybe_default[Tuple[ast.arg, Any]]:
| a=param c=default? ',' tc=TYPE_COMMENT? { (self.set_arg_type_comment(a, tc), c) }
| a=param c=default? tc=TYPE_COMMENT? &')' { (self.set_arg_type_comment(a, tc), c) }

param: a=NAME b=annotation? { ast.arg(arg=a.string, annotation=b, LOCATIONS) }
annotation: ':' a=expression { a }
default: '=' a=expression { a } | invalid_default

If statement

if_stmt[ast.If]:
| invalid_if_stmt
| 'if' a=named_expression ':' b=block c=elif_stmt { ast.If(test=a, body=b, orelse=c␣

→˓or [], LOCATIONS) }
| 'if' a=named_expression ':' b=block c=[else_block] { ast.If(test=a, body=b,␣

→˓orelse=c or [], LOCATIONS) }
elif_stmt[List[ast.If]]:

| invalid_elif_stmt
| 'elif' a=named_expression ':' b=block c=elif_stmt { [ast.If(test=a, body=b,␣

→˓orelse=c, LOCATIONS)] }
| 'elif' a=named_expression ':' b=block c=[else_block] { [ast.If(test=a, body=b,␣

→˓orelse=c or [], LOCATIONS)] }
else_block[list]:

| invalid_else_stmt
| 'else' &&':' b=block { b }

While statement

while_stmt[ast.While]:
| invalid_while_stmt
| 'while' a=named_expression ':' b=block c=[else_block] {

ast.While(test=a, body=b, orelse=c or [], LOCATIONS)
}

(continues on next page)

1.12. Scenic Internals 123

Scenic

(continued from previous page)

For statement

for_stmt[Union[ast.For, ast.AsyncFor]]:
| invalid_for_stmt
| 'for' t=star_targets 'in' ~ ex=star_expressions &&':' tc=[TYPE_COMMENT] b=block␣

→˓el=[else_block] {
ast.For(target=t, iter=ex, body=b, orelse=el or [], type_comment=tc, LOCATIONS) }

| 'async' 'for' t=star_targets 'in' ~ ex=star_expressions ':' tc=[TYPE_COMMENT]␣
→˓b=block el=[else_block] {

self.check_version(
(3, 5),
"Async for loops are",
ast.AsyncFor(target=t, iter=ex, body=b, orelse=el or [], type_comment=tc,␣

→˓LOCATIONS)) }
| invalid_for_target

With statement

with_stmt[Union[ast.With, ast.AsyncWith]]:
| invalid_with_stmt_indent
| 'with' '(' a=','.with_item+ ','? ')' ':' b=block {

self.check_version(
(3, 9),
"Parenthesized with items",
ast.With(items=a, body=b, LOCATIONS)

)
}

| 'with' a=','.with_item+ ':' tc=[TYPE_COMMENT] b=block {
ast.With(items=a, body=b, type_comment=tc, LOCATIONS)

}
| 'async' 'with' '(' a=','.with_item+ ','? ')' ':' b=block {
self.check_version(

(3, 9),
"Parenthesized with items",
ast.AsyncWith(items=a, body=b, LOCATIONS)

)
}
| 'async' 'with' a=','.with_item+ ':' tc=[TYPE_COMMENT] b=block {
self.check_version(

(3, 5),
"Async with statements are",
ast.AsyncWith(items=a, body=b, type_comment=tc, LOCATIONS)

)
}
| invalid_with_stmt

with_item[ast.withitem]:
| e=expression 'as' t=star_target &(',' | ')' | ':') {

ast.withitem(context_expr=e, optional_vars=t)
}

(continues on next page)

124 Chapter 1. Table of Contents

Scenic

(continued from previous page)

| invalid_with_item
| e=expression { ast.withitem(context_expr=e, optional_vars=None) }

Try statement

try_stmt[ast.Try]:
| invalid_try_stmt
| 'try' &&':' b=block f=finally_block {

ast.Try(body=b, handlers=[], orelse=[], finalbody=f, LOCATIONS)
}
| 'try' &&':' b=block ex=except_block+ el=[else_block] f=[finally_block] {

ast.Try(body=b, handlers=ex, orelse=el or [], finalbody=f or [], LOCATIONS)
}

scenic_try_interrupt_stmt[s.TryInterrupt]:
| 'try' &&':' b=block iw=interrupt_when_block+ ex=except_block* el=[else_block]␣

→˓f=[finally_block] {
s.TryInterrupt(

body=b,
interrupt_when_handlers=iw,
except_handlers=ex,
orelse=el or [],
finalbody=f or [],
LOCATIONS,

)
}

Interrupt statement

interrupt_when_block:
| "interrupt" "when" e=expression &&':' b=block { s.InterruptWhenHandler(cond=e,␣

→˓body=b, LOCATIONS) }

Except statement

except_block[ast.ExceptHandler]:
| invalid_except_stmt_indent
| 'except' e=expression t=['as' z=NAME { z.string }] ':' b=block {

ast.ExceptHandler(type=e, name=t, body=b, LOCATIONS) }
| 'except' ':' b=block { ast.ExceptHandler(type=None, name=None, body=b, LOCATIONS) }
| invalid_except_stmt

finally_block[list]:
| invalid_finally_stmt
| 'finally' &&':' a=block { a }

Match statement

We cannot do version checks here since the production will occur after any other

(continues on next page)

1.12. Scenic Internals 125

Scenic

(continued from previous page)

production which will have failed since the ast module does not have the right nodes.
match_stmt["ast.Match"]:

| "match" subject=subject_expr ':' NEWLINE INDENT cases=case_block+ DEDENT {
ast.Match(subject=subject, cases=cases, LOCATIONS)

}
| invalid_match_stmt

Version checking here allows to avoid tracking down every single possible production
subject_expr:

| value=star_named_expression ',' values=star_named_expressions? {
self.check_version(

(3, 10),
"Pattern matching is",
ast.Tuple(elts=[value] + (values or []), ctx=Load, LOCATIONS)

)
}

| e=named_expression { self.check_version((3, 10), "Pattern matching is", e)}

case_block["ast.match_case"]:
| invalid_case_block
| "case" pattern=patterns guard=guard? ':' body=block {

ast.match_case(pattern=pattern, guard=guard, body=body)
}

guard: 'if' guard=named_expression { guard }

patterns:
| patterns=open_sequence_pattern {

ast.MatchSequence(patterns=patterns, LOCATIONS)
}
| pattern

pattern:
| as_pattern
| or_pattern

as_pattern["ast.MatchAs"]:
| pattern=or_pattern 'as' target=pattern_capture_target {

ast.MatchAs(pattern=pattern, name=target, LOCATIONS)
}
| invalid_as_pattern

or_pattern["ast.MatchOr"]:
| patterns='|'.closed_pattern+ {

ast.MatchOr(patterns=patterns, LOCATIONS) if len(patterns) > 1 else patterns[0]
}

closed_pattern:
| literal_pattern
| capture_pattern
| wildcard_pattern
| value_pattern

(continues on next page)

126 Chapter 1. Table of Contents

Scenic

(continued from previous page)

| group_pattern
| sequence_pattern
| mapping_pattern
| class_pattern

Literal patterns are used for equality and identity constraints
literal_pattern:

| value=signed_number !('+' | '-') { ast.MatchValue(value=value, LOCATIONS) }
| value=complex_number { ast.MatchValue(value=value, LOCATIONS) }
| value=strings { ast.MatchValue(value=value, LOCATIONS) }
| 'None' { ast.MatchSingleton(value=None, LOCATIONS) }
| 'True' { ast.MatchSingleton(value=True, LOCATIONS) }
| 'False' { ast.MatchSingleton(value=False, LOCATIONS) }

Literal expressions are used to restrict permitted mapping pattern keys
literal_expr:

| signed_number !('+' | '-')
| complex_number
| strings
| 'None' { ast.Constant(value=None, LOCATIONS) }
| 'True' { ast.Constant(value=True, LOCATIONS) }
| 'False' { ast.Constant(value=False, LOCATIONS) }

complex_number:
| real=signed_real_number '+' imag=imaginary_number {

ast.BinOp(left=real, op=ast.Add(), right=imag, LOCATIONS)
}
| real=signed_real_number '-' imag=imaginary_number {

ast.BinOp(left=real, op=ast.Sub(), right=imag, LOCATIONS)
}

signed_number:
| a=NUMBER { ast.Constant(value=ast.literal_eval(a.string), LOCATIONS) }
| '-' a=NUMBER {

ast.UnaryOp(
op=ast.USub(),
operand=ast.Constant(

value=ast.literal_eval(a.string),
lineno=a.start[0],
col_offset=a.start[1],
end_lineno=a.end[0],
end_col_offset=a.end[1]

),
LOCATIONS,

)
}

signed_real_number:
| real_number
| '-' real=real_number { ast.UnaryOp(op=ast.USub(), operand=real, LOCATIONS) }

real_number[ast.Constant]:
(continues on next page)

1.12. Scenic Internals 127

Scenic

(continued from previous page)

| real=NUMBER { ast.Constant(value=self.ensure_real(real), LOCATIONS) }

imaginary_number[ast.Constant]:
| imag=NUMBER { ast.Constant(value=self.ensure_imaginary(imag), LOCATIONS) }

capture_pattern:
| target=pattern_capture_target {

ast.MatchAs(pattern=None, name=target, LOCATIONS)
}

pattern_capture_target[str]:
| !"_" name=NAME !('.' | '(' | '=') { name.string }

wildcard_pattern["ast.MatchAs"]:
| "_" { ast.MatchAs(pattern=None, target=None, LOCATIONS) }

value_pattern["ast.MatchValue"]:
| attr=attr !('.' | '(' | '=') { ast.MatchValue(value=attr, LOCATIONS) }

attr[ast.Attribute]:
| value=name_or_attr '.' attr=NAME {

ast.Attribute(value=value, attr=attr.string, ctx=Load, LOCATIONS)
}

name_or_attr:
| attr
| name=NAME { ast.Name(id=name.string, ctx=Load, LOCATIONS) }

group_pattern:
| '(' pattern=pattern ')' { pattern }

sequence_pattern["ast.MatchSequence"]:
| '[' patterns=maybe_sequence_pattern? ']' { ast.MatchSequence(patterns=patterns or␣

→˓[], LOCATIONS) }
| '(' patterns=open_sequence_pattern? ')' { ast.MatchSequence(patterns=patterns or␣

→˓[], LOCATIONS) }

open_sequence_pattern:
| pattern=maybe_star_pattern ',' patterns=maybe_sequence_pattern? {

[pattern] + (patterns or [])
}

maybe_sequence_pattern:
| patterns=','.maybe_star_pattern+ ','? { patterns }

maybe_star_pattern:
| star_pattern
| pattern

star_pattern:
| '*' target=pattern_capture_target { ast.MatchStar(name=target, LOCATIONS) }
| '*' wildcard_pattern { ast.MatchStar(target=None, LOCATIONS) }

(continues on next page)

128 Chapter 1. Table of Contents

Scenic

(continued from previous page)

mapping_pattern:
| '{' '}' { ast.MatchMapping(keys=[], patterns=[], rest=None, LOCATIONS) }
| '{' rest=double_star_pattern ','? '}' {

ast.MatchMapping(keys=[], patterns=[], rest=rest, LOCATIONS) }
| '{' items=items_pattern ',' rest=double_star_pattern ','? '}' {

ast.MatchMapping(
keys=[k for k,_ in items],
patterns=[p for _, p in items],
rest=rest,
LOCATIONS,

)
}
| '{' items=items_pattern ','? '}' {

ast.MatchMapping(
keys=[k for k,_ in items],
patterns=[p for _, p in items],
rest=None,
LOCATIONS,

)
}

items_pattern:
| ','.key_value_pattern+

key_value_pattern:
| key=(literal_expr | attr) ':' pattern=pattern { (key, pattern) }

double_star_pattern:
| '**' target=pattern_capture_target { target }

class_pattern["ast.MatchClass"]:
| cls=name_or_attr '(' ')' {

ast.MatchClass(cls=cls, patterns=[], kwd_attrs=[], kwd_patterns=[], LOCATIONS)
}
| cls=name_or_attr '(' patterns=positional_patterns ','? ')' {

ast.MatchClass(cls=cls, patterns=patterns, kwd_attrs=[], kwd_patterns=[],␣
→˓LOCATIONS)

}
| cls=name_or_attr '(' keywords=keyword_patterns ','? ')' {

ast.MatchClass(
cls=cls,
patterns=[],
kwd_attrs=[k for k, _ in keywords],
kwd_patterns=[p for _, p in keywords],
LOCATIONS,

)
}
| cls=name_or_attr '(' patterns=positional_patterns ',' keywords=keyword_patterns ',

→˓'? ')' {
ast.MatchClass(

cls=cls,

(continues on next page)

1.12. Scenic Internals 129

Scenic

(continued from previous page)

patterns=patterns,
kwd_attrs=[k for k, _ in keywords],
kwd_patterns=[p for _, p in keywords],
LOCATIONS,

)
}

| invalid_class_pattern

positional_patterns:
| args=','.pattern+ { args }

keyword_patterns:
| ','.keyword_pattern+

keyword_pattern:
| arg=NAME '=' value=pattern { (arg.string, value) }

EXPRESSIONS

expressions:
| a=expression b=(',' c=expression { c })+ [','] {

ast.Tuple(elts=[a] + b, ctx=Load, LOCATIONS) }
| a=expression ',' { ast.Tuple(elts=[a], ctx=Load, LOCATIONS) }
| expression

expression (memo):
| invalid_scenic_instance_creation
| invalid_expression
| invalid_legacy_expression
| a=disjunction 'if' b=disjunction 'else' c=disjunction {

ast.IfExp(body=a, test=b, orelse=c, LOCATIONS)
}
| disjunction
| lambdef

scenic_temporal_expression (memo):
| invalid_expression
| invalid_legacy_expression
| a=scenic_until 'if' b=scenic_until 'else' c=scenic_until {

ast.IfExp(body=a, test=b, orelse=c, LOCATIONS)
}
| scenic_until
| lambdef

yield_expr:
| 'yield' 'from' a=expression { ast.YieldFrom(value=a, LOCATIONS) }
| 'yield' a=[star_expressions] { ast.Yield(value=a, LOCATIONS) }

star_expressions:
| a=star_expression b=(',' c=star_expression { c })+ [','] {

ast.Tuple(elts=[a] + b, ctx=Load, LOCATIONS) }
(continues on next page)

130 Chapter 1. Table of Contents

Scenic

(continued from previous page)

| a=star_expression ',' { ast.Tuple(elts=[a], ctx=Load, LOCATIONS) }
| star_expression

star_expression (memo):
| '*' a=bitwise_or { ast.Starred(value=a, ctx=Load, LOCATIONS) }
| expression

star_named_expressions: a=','.star_named_expression+ [','] { a }

star_named_expression:
| '*' a=bitwise_or { ast.Starred(value=a, ctx=Load, LOCATIONS) }
| named_expression

assignment_expression:
| a=NAME ':=' ~ b=expression {

self.check_version(
(3, 8),
"The ':=' operator is",
ast.NamedExpr(

target=ast.Name(
id=a.string,
ctx=Store,
lineno=a.start[0],
col_offset=a.start[1],
end_lineno=a.end[0],
end_col_offset=a.end[1]

),
value=b,
LOCATIONS,

)
)

}

named_expression:
| assignment_expression
| invalid_named_expression
| a=expression !':=' { a }

scenic_until (memo):
| invalid_scenic_until
| a=scenic_above_until 'until' b=scenic_above_until { s.UntilOp(a, b, LOCATIONS) }
| scenic_above_until

scenic_above_until (memo): # anything with precedence above "until"
| scenic_temporal_prefix
| scenic_implication

scenic_temporal_prefix (memo):
| "next" e=scenic_above_until { s.Next(e, LOCATIONS) }
| "eventually" e=scenic_above_until { s.Eventually(e, LOCATIONS) }
| "always" e=scenic_above_until { s.Always(e, LOCATIONS) }

(continues on next page)

1.12. Scenic Internals 131

Scenic

(continued from previous page)

scenic_implication (memo):
| invalid_scenic_implication
exclude implication on RHS to disallow "A implies B implies C"
| a=scenic_temporal_disjunction "implies" b=(scenic_temporal_prefix | scenic_

→˓temporal_disjunction) { s.ImpliesOp(a, b, LOCATIONS) }
| scenic_temporal_disjunction

disjunction (memo):
| a=conjunction b=('or' c=conjunction { c })+ { ast.BoolOp(op=ast.Or(), values=[a] +␣

→˓b, LOCATIONS) }
| conjunction

scenic_temporal_disjunction (memo):
| a=scenic_temporal_conjunction b=('or' c=(scenic_temporal_prefix | scenic_temporal_

→˓conjunction) { c })+ { ast.BoolOp(op=ast.Or(), values=[a] + b, LOCATIONS) }
| scenic_temporal_conjunction

conjunction (memo):
| a=inversion b=('and' c=inversion { c })+ { ast.BoolOp(op=ast.And(), values=[a] + b,

→˓ LOCATIONS) }
| inversion

scenic_temporal_conjunction (memo):
| a=scenic_temporal_inversion b=('and' c=(scenic_temporal_prefix | scenic_temporal_

→˓inversion) { c })+ { ast.BoolOp(op=ast.And(), values=[a] + b, LOCATIONS) }
| scenic_temporal_inversion

inversion (memo):
[SCENIC NOTE]: Fail `not visible <inversion>` to be handled later
| 'not' !("visible" inversion) a=inversion { ast.UnaryOp(op=ast.Not(), operand=a,␣

→˓LOCATIONS) }
| comparison

scenic_temporal_inversion (memo):
Fail `not visible <inversion>` to be handled later
| 'not' !("visible" scenic_temporal_inversion) a=(scenic_temporal_prefix | scenic_

→˓temporal_inversion) { ast.UnaryOp(op=ast.Not(), operand=a, LOCATIONS) }
| scenic_temporal_group
| comparison

Parsing temporal operators only inside "require" would require duplicating
the entire rule hierarchy for expressions, since for example "always(X)" is a
valid function call in ordinary Python but should be a temporal operator
inside require. Instead, we only duplicate the boolean operators (above) and
add the following rule which allows the introduction of parentheses without
traversing all the way down to `atom`; the rule looks ahead for a binary
temporal operator or the end of the parent expression in order to prevent
matching expressions like "(X) > 5", which should be parsed by `comparison`
instead. Invalid code like "(always(X)) > 5" is parsed as an ordinary
expression (with a call to the "always" function) and caught in the compiler.
scenic_temporal_group: '(' a=scenic_temporal_expression ')' &('until' | 'or' | 'and' | ')
→˓' | ';' | NEWLINE) { a }

(continues on next page)

132 Chapter 1. Table of Contents

Scenic

(continued from previous page)

Scenic instance creation

scenic_new_expr: 'new' n=NAME ss=[scenic_specifiers] { s.New(className=n.string,␣
→˓specifiers=ss, LOCATIONS) }
scenic_specifiers: ss=','.scenic_specifier+ { ss }
scenic_specifier:

| scenic_valid_specifier
| invalid_scenic_specifier

scenic_valid_specifier:
| 'with' p=NAME v=expression { s.WithSpecifier(prop=p.string, value=v, LOCATIONS) }
| 'at' position=expression { s.AtSpecifier(position=position, LOCATIONS) }
| "offset" 'by' o=expression { s.OffsetBySpecifier(offset=o, LOCATIONS) }
| "offset" "along" d=expression 'by' o=expression { s.

→˓OffsetAlongSpecifier(direction=d, offset=o, LOCATIONS) }
| direction=scenic_specifier_position_direction position=expression distance=['by'␣

→˓e=expression { e }] {
s.DirectionOfSpecifier(direction=direction, position=position, distance=distance,

→˓ LOCATIONS)
}
| "beyond" v=expression 'by' o=expression b=['from' a=expression {a}] { s.

→˓BeyondSpecifier(position=v, offset=o, base=b) }
| "visible" b=['from' r=expression { r }] { s.VisibleSpecifier(base=b, LOCATIONS) }
| 'not' "visible" b=['from' r=expression { r }] { s.NotVisibleSpecifier(base=b,␣

→˓LOCATIONS) }
| 'in' r=expression { s.InSpecifier(region=r, LOCATIONS) }
| 'on' r=expression { s.OnSpecifier(region=r, LOCATIONS) }
| "contained" 'in' r=expression { s.ContainedInSpecifier(region=r, LOCATIONS) }
| "following" f=expression b=['from' e=expression {e}] 'for' d=expression {

s.FollowingSpecifier(field=f, distance=d, base=b, LOCATIONS)
}
| "facing" "toward" p=expression { s.FacingTowardSpecifier(position=p, LOCATIONS) }
| "facing" "away" "from" p=expression { s.FacingAwayFromSpecifier(position=p,␣

→˓LOCATIONS) }
| "facing" "directly" "toward" p=expression { s.

→˓FacingDirectlyTowardSpecifier(position=p, LOCATIONS) }
| "facing" "directly" "away" "from" p=expression { s.

→˓FacingDirectlyAwayFromSpecifier(position=p, LOCATIONS) }
| "facing" h=expression { s.FacingSpecifier(heading=h, LOCATIONS) }
| "apparently" "facing" h=expression v=['from' a=expression { a }] {

s.ApparentlyFacingSpecifier(heading=h, base=v, LOCATIONS)
}

scenic_specifier_position_direction:
| "left" "of" { s.LeftOf(LOCATIONS) }
| "right" "of" { s.RightOf(LOCATIONS) }
| "ahead" "of" { s.AheadOf(LOCATIONS) }
| "behind" { s.Behind(LOCATIONS) }
| "above" {s.Above(LOCATIONS)}
| "below" {s.Below(LOCATIONS)}

Comparisons operators

(continues on next page)

1.12. Scenic Internals 133

Scenic

(continued from previous page)

comparison:
| a=bitwise_or b=compare_op_bitwise_or_pair+ {

ast.Compare(left=a, ops=self.get_comparison_ops(b), comparators=self.get_
→˓comparators(b), LOCATIONS)

}
| bitwise_or

Make a tuple of operator and comparator
compare_op_bitwise_or_pair:

| eq_bitwise_or
| noteq_bitwise_or
| lte_bitwise_or
| lt_bitwise_or
| gte_bitwise_or
| gt_bitwise_or
| notin_bitwise_or
| in_bitwise_or
| isnot_bitwise_or
| is_bitwise_or

eq_bitwise_or: '==' a=bitwise_or { (ast.Eq(), a) }
Do not support the Barry as BDFL <> for not eq
noteq_bitwise_or[tuple]:

| '!=' a=bitwise_or { (ast.NotEq(), a) }
lte_bitwise_or: '<=' a=bitwise_or { (ast.LtE(), a) }
lt_bitwise_or: '<' a=bitwise_or { (ast.Lt(), a) }
gte_bitwise_or: '>=' a=bitwise_or { (ast.GtE(), a) }
gt_bitwise_or: '>' a=bitwise_or { (ast.Gt(), a) }
notin_bitwise_or: 'not' 'in' a=bitwise_or { (ast.NotIn(), a) }
in_bitwise_or: 'in' a=bitwise_or { (ast.In(), a) }
isnot_bitwise_or: 'is' 'not' a=bitwise_or { (ast.IsNot(), a) }
is_bitwise_or: 'is' a=bitwise_or { (ast.Is(), a) }

Logical operators

bitwise_or:
| scenic_visible_from
| scenic_not_visible_from
| scenic_can_see
| a=bitwise_or '|' b=bitwise_xor { ast.BinOp(left=a, op=ast.BitOr(), right=b,␣

→˓LOCATIONS) }
| bitwise_xor

scenic_visible_from: a=bitwise_or "visible" 'from' b=bitwise_xor { s.
→˓VisibleFromOp(region=a, base=b, LOCATIONS) }

scenic_not_visible_from: a=bitwise_or "not" "visible" 'from' b=bitwise_xor { s.
→˓NotVisibleFromOp(region=a, base=b, LOCATIONS) }

(continues on next page)

134 Chapter 1. Table of Contents

Scenic

(continued from previous page)

scenic_can_see: a=bitwise_or "can" "see" b=bitwise_xor { s.CanSeeOp(left=a, right=b,␣
→˓LOCATIONS) }

bitwise_xor:
| scenic_offset_along
| a=bitwise_xor '^' b=bitwise_and { ast.BinOp(left=a, op=ast.BitXor(), right=b,␣

→˓LOCATIONS) }
| bitwise_and

scenic_offset_along: a=bitwise_xor "offset" "along" b=bitwise_xor 'by' c=bitwise_and { s.
→˓OffsetAlongOp(base=a, direction=b, offset=c, LOCATIONS) }

bitwise_and:
| scenic_relative_to
| a=bitwise_and '&' b=shift_expr { ast.BinOp(left=a, op=ast.BitAnd(), right=b,␣

→˓LOCATIONS) }
| shift_expr

scenic_relative_to: a=bitwise_and ("relative" 'to' | "offset" 'by') b=shift_expr { s.
→˓RelativeToOp(left=a, right=b, LOCATIONS) }

shift_expr:
| scenic_at
| a=shift_expr '<<' b=sum { ast.BinOp(left=a, op=ast.LShift(), right=b, LOCATIONS) }
| a=shift_expr '>>' b=sum { ast.BinOp(left=a, op=ast.RShift(), right=b, LOCATIONS) }
| scenic_prefix_operators

scenic_at: a=shift_expr 'at' b=sum { s.FieldAtOp(left=a, right=b, LOCATIONS) }

Scenic prefix operators

scenic_prefix_operators:

relative position of
| "relative" "position" "of" e1=expression 'from' e2=scenic_prefix_operators { s.

→˓RelativePositionOp(target=e1, base=e2, LOCATIONS) }
| "relative" "position" "of" e1=scenic_prefix_operators { s.

→˓RelativePositionOp(target=e1, LOCATIONS) }
relative heading of
| "relative" "heading" "of" e1=expression 'from' e2=scenic_prefix_operators { s.

→˓RelativeHeadingOp(target=e1, base=e2, LOCATIONS) }
| "relative" "heading" "of" e1=scenic_prefix_operators { s.

→˓RelativeHeadingOp(target=e1, LOCATIONS) }
apparent heading of
| "apparent" "heading" "of" e1=expression 'from' e2=scenic_prefix_operators { s.

→˓ApparentHeadingOp(target=e1, base=e2, LOCATIONS) }
| "apparent" "heading" "of" e1=scenic_prefix_operators { s.

→˓ApparentHeadingOp(target=e1, LOCATIONS) }
distance from/to
| &"distance" scenic_distance_from_op
distance past
| "distance" "past" e1=expression 'of' e2=scenic_prefix_operators { s.

→˓DistancePastOp(target=e1, base=e2, LOCATIONS) }
(continues on next page)

1.12. Scenic Internals 135

Scenic

(continued from previous page)

| "distance" "past" e1=scenic_prefix_operators { s.DistancePastOp(target=e1,␣
→˓LOCATIONS) }
angle from/to
| &"angle" scenic_angle_from_op
altitude from/to
| &"altitude" scenic_altitude_from_op
| "follow" e1=expression 'from' e2=expression 'for' e3=scenic_prefix_operators { s.

→˓FollowOp(target=e1, base=e2, distance=e3, LOCATIONS) }
| "visible" e=scenic_prefix_operators { s.VisibleOp(region=e, LOCATIONS) }
| 'not' "visible" e=scenic_prefix_operators { s.NotVisibleOp(region=e, LOCATIONS) }
| p=scenic_position_of_op_position 'of' e=scenic_prefix_operators { s.

→˓PositionOfOp(position=p, target=e, LOCATIONS) }
| sum

scenic_distance_from_op:
| "distance" 'from' e1=expression 'to' e2=scenic_prefix_operators { s.

→˓DistanceFromOp(target=e1, base=e2, LOCATIONS) }
| "distance" 'to' e1=expression 'from' e2=scenic_prefix_operators { s.

→˓DistanceFromOp(target=e1, base=e2, LOCATIONS) }
| "distance" ('to'|'from') e1=scenic_prefix_operators { s.DistanceFromOp(target=e1,␣

→˓LOCATIONS) }

scenic_angle_from_op:
| "angle" 'from' e1=expression 'to' e2=scenic_prefix_operators { s.

→˓AngleFromOp(base=e1, target=e2, LOCATIONS) }
| "angle" 'to' e1=expression 'from' e2=scenic_prefix_operators { s.

→˓AngleFromOp(target=e1, base=e2, LOCATIONS) }
| "angle" 'to' e1=scenic_prefix_operators { s.AngleFromOp(target=e1, LOCATIONS) }
| "angle" 'from' e1=scenic_prefix_operators { s.AngleFromOp(base=e1, LOCATIONS) }

scenic_altitude_from_op:
| "altitude" 'from' e1=expression 'to' e2=scenic_prefix_operators { s.

→˓AltitudeFromOp(base=e1, target=e2, LOCATIONS) }
| "altitude" 'to' e1=expression 'from' e2=scenic_prefix_operators { s.

→˓AltitudeFromOp(target=e1, base=e2, LOCATIONS) }
| "altitude" 'to' e1=scenic_prefix_operators { s.AltitudeFromOp(target=e1,␣

→˓LOCATIONS) }
| "altitude" 'from' e1=scenic_prefix_operators { s.AltitudeFromOp(base=e1,␣

→˓LOCATIONS) }

scenic_position_of_op_position:
| "top" "front" "left" { s.TopFrontLeft(LOCATIONS) }
| "top" "front" "right" { s.TopFrontRight(LOCATIONS) }
| "top" "back" "left" { s.TopBackLeft(LOCATIONS) }
| "top" "back" "right" { s.TopBackRight(LOCATIONS) }
| "bottom" "front" "left" { s.BottomFrontLeft(LOCATIONS) }
| "bottom" "front" "right" { s.BottomFrontRight(LOCATIONS) }
| "bottom" "back" "left" { s.BottomBackLeft(LOCATIONS) }
| "bottom" "back" "right" { s.BottomBackRight(LOCATIONS) }
| "front" "left" { s.FrontLeft(LOCATIONS) }
| "front" "right" { s.FrontRight(LOCATIONS) }
| "back" "left" { s.BackLeft(LOCATIONS) }

(continues on next page)

136 Chapter 1. Table of Contents

Scenic

(continued from previous page)

| "back" "right" { s.BackRight(LOCATIONS) }
| "front" { s.Front(LOCATIONS) }
| "back" { s.Back(LOCATIONS) }
| "left" { s.Left(LOCATIONS) }
| "right" { s.Right(LOCATIONS) }
| "top" { s.Top(LOCATIONS) }
| "bottom" { s.Bottom(LOCATIONS) }

Arithmetic operators

sum:
| a=sum '+' b=term { ast.BinOp(left=a, op=ast.Add(), right=b, LOCATIONS) }
| a=sum '-' b=term { ast.BinOp(left=a, op=ast.Sub(), right=b, LOCATIONS) }
| term

term:
| scenic_vector
| scenic_deg
| a=term '*' b=factor { ast.BinOp(left=a, op=ast.Mult(), right=b, LOCATIONS) }
| a=term '/' b=factor { ast.BinOp(left=a, op=ast.Div(), right=b, LOCATIONS) }
| a=term '//' b=factor { ast.BinOp(left=a, op=ast.FloorDiv(), right=b, LOCATIONS) }
| a=term '%' b=factor { ast.BinOp(left=a, op=ast.Mod(), right=b, LOCATIONS) }
| a=term '@' b=factor {

self.check_version((3, 5), "The '@' operator is", ast.BinOp(left=a, op=ast.
→˓MatMult(), right=b, LOCATIONS))

}
| factor

scenic_vector: a=term '@' b=factor { s.VectorOp(left=a, right=b, LOCATIONS) }
scenic_deg: a=term "deg" { s.DegOp(operand=a, LOCATIONS) }

factor (memo):
| '+' a=factor { ast.UnaryOp(op=ast.UAdd(), operand=a, LOCATIONS) }
| '-' a=factor { ast.UnaryOp(op=ast.USub(), operand=a, LOCATIONS) }
| '~' a=factor { ast.UnaryOp(op=ast.Invert(), operand=a, LOCATIONS) }
| power

power:
| a=await_primary '**' b=factor { ast.BinOp(left=a, op=ast.Pow(), right=b,␣

→˓LOCATIONS) }
| scenic_new

scenic_new:
| scenic_new_expr
| await_primary

Primary elements

Primary elements are things like "obj.something.something", "obj[something]",
→˓"obj(something)", "obj" ...

(continues on next page)

1.12. Scenic Internals 137

Scenic

(continued from previous page)

await_primary (memo):
| 'await' a=primary { self.check_version((3, 5), "Await expressions are", ast.

→˓Await(a, LOCATIONS)) }
| primary

primary:
| a=primary '.' b=NAME { ast.Attribute(value=a, attr=b.string, ctx=Load, LOCATIONS) }
| a=primary b=genexp { ast.Call(func=a, args=[b], keywords=[], LOCATIONS) }
| a=primary '(' b=[arguments] ')' {

ast.Call(
func=a,
args=b[0] if b else [],
keywords=b[1] if b else [],
LOCATIONS,

)
}

| a=primary '[' b=slices ']' { ast.Subscript(value=a, slice=b, ctx=Load, LOCATIONS) }
| atom

slices:
| a=slice !',' { a }
| a=','.slice+ [','] {

ast.Tuple(elts=a, ctx=Load, LOCATIONS)
if sys.version_info >= (3, 9) else
(

ast.ExtSlice(dims=a, LOCATIONS)
if any(isinstance(e, ast.Slice) for e in a) else
ast.Index(value=ast.Tuple(elts=[e.value for e in a], ctx=Load, LOCATIONS),␣

→˓LOCATIONS)
)

}

slice:
| a=[expression] ':' b=[expression] c=[':' d=[expression] { d }] {

ast.Slice(lower=a, upper=b, step=c, LOCATIONS)
}
| a=named_expression {

a
if sys.version_info >= (3, 9) or isinstance(a, ast.Slice) else
ast.Index(

value=a,
lineno=a.lineno,
col_offset=a.col_offset,
end_lineno=a.end_lineno,
end_col_offset=a.end_col_offset

)
}

atom:
| "initial" "scenario" { s.InitialScenario(LOCATIONS) }
| a=NAME { ast.Name(id=a.string, ctx=Load, LOCATIONS) }

(continues on next page)

138 Chapter 1. Table of Contents

Scenic

(continued from previous page)

| 'True' {
ast.Constant(value=True, LOCATIONS)
if sys.version_info >= (3, 9) else
ast.Constant(value=True, kind=None, LOCATIONS)

}
| 'False' {

ast.Constant(value=False, LOCATIONS)
if sys.version_info >= (3, 9) else
ast.Constant(value=False, kind=None, LOCATIONS)

}
| 'None' {

ast.Constant(value=None, LOCATIONS)
if sys.version_info >= (3, 9) else
ast.Constant(value=None, kind=None, LOCATIONS)

}
| &STRING strings
| a=NUMBER {

ast.Constant(value=ast.literal_eval(a.string), LOCATIONS)
if sys.version_info >= (3, 9) else
ast.Constant(value=ast.literal_eval(a.string), kind=None, LOCATIONS)

}
| &'(' (tuple | group | genexp)
| &'[' (list | listcomp)
| &'{' (dict | set | dictcomp | setcomp)
| '...' {

ast.Constant(value=Ellipsis, LOCATIONS)
if sys.version_info >= (3, 9) else
ast.Constant(value=Ellipsis, kind=None, LOCATIONS)

}

group:
| '(' a=(yield_expr | named_expression) ')' { a }
| invalid_group

Lambda functions

lambdef:
| 'lambda' a=[lambda_params] ':' b=expression {

ast.Lambda(args=a or self.make_arguments(None, [], None, [], (None, [], None)),␣
→˓body=b, LOCATIONS)

}

lambda_params:
| invalid_lambda_parameters
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#

(continues on next page)

1.12. Scenic Internals 139

Scenic

(continued from previous page)

lambda_parameters[ast.arguments]:
| a=lambda_slash_no_default b=lambda_param_no_default* c=lambda_param_with_default*␣

→˓d=[lambda_star_etc] {
self.make_arguments(a, [], b, c, d)

}
| a=lambda_slash_with_default b=lambda_param_with_default* c=[lambda_star_etc] {

self.make_arguments(None, a, None, b, c)
}

| a=lambda_param_no_default+ b=lambda_param_with_default* c=[lambda_star_etc] {
self.make_arguments(None, [], a, b, c)

}
| a=lambda_param_with_default+ b=[lambda_star_etc] {

self.make_arguments(None, [], None, a, b)
}

| a=lambda_star_etc { self.make_arguments(None, [], None, [], a) }

lambda_slash_no_default[List[Tuple[ast.arg, None]]]:
| a=lambda_param_no_default+ '/' ',' { [(p, None) for p in a] }
| a=lambda_param_no_default+ '/' &':' { [(p, None) for p in a] }

lambda_slash_with_default[List[Tuple[ast.arg, Any]]]:
| a=lambda_param_no_default* b=lambda_param_with_default+ '/' ',' { ([(p, None) for␣

→˓p in a] if a else []) + b }
| a=lambda_param_no_default* b=lambda_param_with_default+ '/' &':' { ([(p, None) for␣

→˓p in a] if a else []) + b }

lambda_star_etc[Tuple[Optional[ast.arg], List[Tuple[ast.arg, Any]], Optional[ast.arg]]]:
| invalid_lambda_star_etc
| '*' a=lambda_param_no_default b=lambda_param_maybe_default* c=[lambda_kwds] {

(a, b, c) }
| '*' ',' b=lambda_param_maybe_default+ c=[lambda_kwds] {

(None, b, c) }
| a=lambda_kwds { (None, [], a) }

lambda_kwds[ast.arg]:
| invalid_lambda_kwds
| '**' a=lambda_param_no_default { a }

lambda_param_no_default[ast.arg]:
| a=lambda_param ',' { a }
| a=lambda_param &':' { a }

lambda_param_with_default[Tuple[ast.arg, Any]]:
| a=lambda_param c=default ',' { (a, c) }
| a=lambda_param c=default &':' { (a, c) }

lambda_param_maybe_default[Tuple[ast.arg, Any]]:
| a=lambda_param c=default? ',' { (a, c) }
| a=lambda_param c=default? &':' { (a, c) }

lambda_param[ast.arg]: a=NAME {
ast.arg(arg=a.string, annotation=None, LOCATIONS)
if sys.version_info >= (3, 9) else
ast.arg(arg=a.string, annotation=None, type_comment=None, LOCATIONS)

(continues on next page)

140 Chapter 1. Table of Contents

Scenic

(continued from previous page)

}

SCENIC STATEMENTS
=================

scenic_model_stmt:
| "model" a=dotted_name { s.Model(name=a, LOCATIONS) }

scenic_tracked_assignment:
| a=scenic_tracked_name '=' b=expression { s.TrackedAssign(target=a, value=b,␣

→˓LOCATIONS) }
scenic_tracked_name:

| "ego" { s.Ego(LOCATIONS) }
| "workspace" { s.Workspace(LOCATIONS) }

scenic_param_stmt:
| "param" elts=(','.scenic_param_stmt_param+) { s.Param(elts=elts, LOCATIONS) }

scenic_param_stmt_param: name=scenic_param_stmt_id '=' e=expression { s.parameter(name,␣
→˓e, LOCATIONS) }
scenic_param_stmt_id:

| a=NAME { a.string }
| a=STRING { a.string[1:-1] } # strip quotes

scenic_require_stmt:
| 'require' "monitor" e=expression n=['as' scenic_require_stmt_name] {

s.RequireMonitor(monitor=e, name=n, LOCATIONS)
}

| invalid_scenic_require_prob
| 'require' p=['[' a=NUMBER ']' { float(a.string) }] e=scenic_temporal_expression n=[

→˓'as' a=scenic_require_stmt_name { a }] {
s.Require(cond=e, prob=p, name=n, LOCATIONS)

}
scenic_require_stmt_name:

| a=(NAME | NUMBER) { a.string }
| a=STRING { a.string[1:-1] }

scenic_record_stmt:
| "record" e=expression n=['as' a=scenic_require_stmt_name { a }] {

s.Record(value=e, name=n, LOCATIONS)
}

scenic_record_initial_stmt:
| "record" "initial" e=expression n=['as' a=scenic_require_stmt_name { a }] {

s.RecordInitial(value=e, name=n, LOCATIONS)
}

scenic_record_final_stmt:
| "record" "final" e=expression n=['as' a=scenic_require_stmt_name { a }] {

s.RecordFinal(value=e, name=n, LOCATIONS)
}

scenic_mutate_stmt:
(continues on next page)

1.12. Scenic Internals 141

Scenic

(continued from previous page)

| "mutate" elts=[(','.scenic_mutate_stmt_id+)] scale=['by' x=expression {x}] {
s.Mutate(elts=elts if elts is not None else [], scale=scale, LOCATIONS)

}
scenic_mutate_stmt_id: a=NAME { ast.Name(id=a.string, ctx=Load, LOCATIONS) }

scenic_abort_stmt: "abort" { s.Abort(LOCATIONS) }

scenic_take_stmt: "take" elts=(','.expression+) { s.Take(elts=elts, LOCATIONS) }

scenic_wait_stmt: "wait" { s.Wait(LOCATIONS) }

scenic_terminate_simulation_when_stmt: "terminate" "simulation" "when" v=expression n=[
→˓'as' a=scenic_require_stmt_name { a }] { s.TerminateSimulationWhen(v, name=n,␣
→˓LOCATIONS) }

scenic_terminate_when_stmt: "terminate" "when" v=expression n=['as' a=scenic_require_
→˓stmt_name { a }] { s.TerminateWhen(v, name=n, LOCATIONS) }

scenic_terminate_after_stmt: "terminate" "after" v=scenic_dynamic_duration { s.
→˓TerminateAfter(v, LOCATIONS) }

scenic_terminate_simulation_stmt: "terminate" "simulation" { s.
→˓TerminateSimulation(LOCATIONS) }

scenic_terminate_stmt: "terminate" { s.Terminate(LOCATIONS) }

scenic_do_choose_stmt: 'do' "choose" e=(','.expression+) { s.DoChoose(e, LOCATIONS) }

scenic_do_shuffle_stmt: 'do' "shuffle" e=(','.expression+) { s.DoShuffle(e, LOCATIONS) }

scenic_do_for_stmt: 'do' e=(','.expression+) 'for' u=scenic_dynamic_duration { s.
→˓DoFor(elts=e, duration=u, LOCATIONS) }
scenic_dynamic_duration:

| v=expression "seconds" { s.Seconds(v, LOCATIONS) }
| v=expression "steps" { s.Steps(v, LOCATIONS) }
| invalid_scenic_dynamic_duration

FIXME: Is this the right way to resolve ambiguity in `do A until B until X`?
scenic_do_until_stmt: 'do' e=(','.disjunction+) 'until' cond=expression { s.
→˓DoUntil(elts=e, cond=cond, LOCATIONS) }

scenic_do_stmt: 'do' e=(','.expression+) { s.Do(elts=e, LOCATIONS) }

scenic_simulator_stmt: "simulator" e=expression { s.Simulator(value=e, LOCATIONS) }

LITERALS
========

strings[ast.Str] (memo): a=STRING+ { self.generate_ast_for_string(a) }

list[ast.List]:
| '[' a=[star_named_expressions] ']' { ast.List(elts=a or [], ctx=Load, LOCATIONS) }

(continues on next page)

142 Chapter 1. Table of Contents

Scenic

(continued from previous page)

tuple[ast.Tuple]:
| '(' a=[y=star_named_expression ',' z=[star_named_expressions] { [y] + (z or []) }␣

→˓] ')' {
ast.Tuple(elts=a or [], ctx=Load, LOCATIONS)

}

set[ast.Set]: '{' a=star_named_expressions '}' { ast.Set(elts=a, LOCATIONS) }

Dicts

dict[ast.Dict]:
| '{' a=[double_starred_kvpairs] '}' {

ast.Dict(keys=[kv[0] for kv in (a or [])], values=[kv[1] for kv in (a or [])],␣
→˓LOCATIONS)

}
| '{' invalid_double_starred_kvpairs '}'

double_starred_kvpairs[list]: a=','.double_starred_kvpair+ [','] { a }

double_starred_kvpair:
| '**' a=bitwise_or { (None, a) }
| kvpair

kvpair[tuple]: a=expression ':' b=expression { (a, b) }

Comprehensions & Generators

for_if_clauses[List[ast.comprehension]]:
| a=for_if_clause+ { a }

for_if_clause[ast.comprehension]:
| 'async' 'for' a=star_targets 'in' ~ b=disjunction c=('if' z=disjunction { z })* {

self.check_version(
(3, 6),
"Async comprehensions are",
ast.comprehension(target=a, iter=b, ifs=c, is_async=1)

)
}
| 'for' a=star_targets 'in' ~ b=disjunction c=('if' z=disjunction { z })* {

ast.comprehension(target=a, iter=b, ifs=c, is_async=0) }
| invalid_for_target

listcomp[ast.ListComp]:
| '[' a=named_expression b=for_if_clauses ']' { ast.ListComp(elt=a, generators=b,␣

→˓LOCATIONS) }
| invalid_comprehension

setcomp[ast.SetComp]:
| '{' a=named_expression b=for_if_clauses '}' { ast.SetComp(elt=a, generators=b,␣

(continues on next page)

1.12. Scenic Internals 143

Scenic

(continued from previous page)

→˓LOCATIONS) }
| invalid_comprehension

genexp[ast.GeneratorExp]:
| '(' a=(assignment_expression | expression !':=') b=for_if_clauses ')' {

ast.GeneratorExp(elt=a, generators=b, LOCATIONS)
}
| invalid_comprehension

dictcomp[ast.DictComp]:
| '{' a=kvpair b=for_if_clauses '}' { ast.DictComp(key=a[0], value=a[1],␣

→˓generators=b, LOCATIONS) }
| invalid_dict_comprehension

FUNCTION CALL ARGUMENTS
=======================

arguments[Tuple[list, list]] (memo):
| a=args [','] &')' { a }
| invalid_arguments

args[Tuple[list, list]]:
| a=','.(starred_expression | (assignment_expression | expression !':=') !'=')+ b=[

→˓',' k=kwargs {k}] {
(a + ([e for e in b if isinstance(e, ast.Starred)] if b else []),
([e for e in b if not isinstance(e, ast.Starred)] if b else [])
)

}
| a=kwargs {

([e for e in a if isinstance(e, ast.Starred)],
[e for e in a if not isinstance(e, ast.Starred)])

}

kwargs[list]:
| a=','.kwarg_or_starred+ ',' b=','.kwarg_or_double_starred+ { a + b }
| ','.kwarg_or_starred+
| ','.kwarg_or_double_starred+

starred_expression:
| '*' a=expression { ast.Starred(value=a, ctx=Load, LOCATIONS) }

kwarg_or_starred:
| invalid_kwarg
| a=NAME '=' b=expression { ast.keyword(arg=a.string, value=b, LOCATIONS) }
| a=starred_expression { a }

kwarg_or_double_starred:
| invalid_kwarg
| a=NAME '=' b=expression { ast.keyword(arg=a.string, value=b, LOCATIONS) } # XXX␣

→˓Unreachable
| '**' a=expression { ast.keyword(arg=None, value=a, LOCATIONS) }

(continues on next page)

144 Chapter 1. Table of Contents

Scenic

(continued from previous page)

ASSIGNMENT TARGETS
==================

Generic targets

NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:

| a=star_target !',' { a }
| a=star_target b=(',' c=star_target { c })* [','] {

ast.Tuple(elts=[a] + b, ctx=Store, LOCATIONS)
}

star_targets_list_seq[list]: a=','.star_target+ [','] { a }

star_targets_tuple_seq[list]:
| a=star_target b=(',' c=star_target { c })+ [','] { [a] + b }
| a=star_target ',' { [a] }

star_target (memo):
| '*' a=(!'*' star_target) {

ast.Starred(value=self.set_expr_context(a, Store), ctx=Store, LOCATIONS)
}
| target_with_star_atom

target_with_star_atom (memo):
| a=t_primary '.' b=NAME !t_lookahead { ast.Attribute(value=a, attr=b.string,␣

→˓ctx=Store, LOCATIONS) }
| a=t_primary '[' b=slices ']' !t_lookahead { ast.Subscript(value=a, slice=b,␣

→˓ctx=Store, LOCATIONS) }
| star_atom

star_atom:
| a=NAME { ast.Name(id=a.string, ctx=Store, LOCATIONS) }
| '(' a=target_with_star_atom ')' { self.set_expr_context(a, Store) }
| '(' a=[star_targets_tuple_seq] ')' { ast.Tuple(elts=a, ctx=Store, LOCATIONS) }
| '[' a=[star_targets_list_seq] ']' { ast.List(elts=a, ctx=Store, LOCATIONS) }

single_target:
| single_subscript_attribute_target
| a=NAME { ast.Name(id=a.string, ctx=Store, LOCATIONS) }
| '(' a=single_target ')' { a }

single_subscript_attribute_target:
| a=t_primary '.' b=NAME !t_lookahead { ast.Attribute(value=a, attr=b.string,␣

→˓ctx=Store, LOCATIONS) }
| a=t_primary '[' b=slices ']' !t_lookahead { ast.Subscript(value=a, slice=b,␣

→˓ctx=Store, LOCATIONS) }

t_primary:
| a=t_primary '.' b=NAME &t_lookahead { ast.Attribute(value=a, attr=b.string,␣

(continues on next page)

1.12. Scenic Internals 145

Scenic

(continued from previous page)

→˓ctx=Load, LOCATIONS) }
| a=t_primary '[' b=slices ']' &t_lookahead { ast.Subscript(value=a, slice=b,␣

→˓ctx=Load, LOCATIONS) }
| a=t_primary b=genexp &t_lookahead { ast.Call(func=a, args=[b], keywords=[],␣

→˓LOCATIONS) }
| a=t_primary '(' b=[arguments] ')' &t_lookahead {

ast.Call(
func=a,
args=b[0] if b else [],
keywords=b[1] if b else [],
LOCATIONS,

)
}
| a=atom &t_lookahead { a }

t_lookahead: '(' | '[' | '.'

Targets for del statements

del_targets: a=','.del_target+ [','] { a }

del_target (memo):
| a=t_primary '.' b=NAME !t_lookahead { ast.Attribute(value=a, attr=b.string,␣

→˓ctx=Del, LOCATIONS) }
| a=t_primary '[' b=slices ']' !t_lookahead { ast.Subscript(value=a, slice=b,␣

→˓ctx=Del, LOCATIONS) }
| del_t_atom

del_t_atom:
| a=NAME { ast.Name(id=a.string, ctx=Del, LOCATIONS) }
| '(' a=del_target ')' { self.set_expr_context(a, Del) }
| '(' a=[del_targets] ')' { ast.Tuple(elts=a, ctx=Del, LOCATIONS) }
| '[' a=[del_targets] ']' { ast.List(elts=a, ctx=Del, LOCATIONS) }

TYPING ELEMENTS

type_expressions allow */** but ignore them
type_expressions[list]:

| a=','.expression+ ',' '*' b=expression ',' '**' c=expression { a + [b, c] }
| a=','.expression+ ',' '*' b=expression { a + [b] }
| a=','.expression+ ',' '**' b=expression { a + [b] }
| '*' a=expression ',' '**' b=expression { [a, b] }
| '*' a=expression { [a] }
| '**' a=expression { [a] }
| a=','.expression+ {a}

func_type_comment:
| NEWLINE t=TYPE_COMMENT &(NEWLINE INDENT) { t.string } # Must be followed by␣

→˓indented block

(continues on next page)

146 Chapter 1. Table of Contents

Scenic

(continued from previous page)

| invalid_double_type_comments
| TYPE_COMMENT

========================= END OF THE GRAMMAR ===========================

========================= START OF INVALID RULES =======================

From here on, there are rules for invalid syntax with specialised error messages
invalid_arguments[NoReturn]:

| a=args ',' '*' {
self.raise_syntax_error_known_location(

"iterable argument unpacking follows keyword argument unpacking",
a[1][-1] if a[1] else a[0][-1],

)
}
| a=expression b=for_if_clauses ',' [args | expression for_if_clauses] {

self.raise_syntax_error_known_range(
"Generator expression must be parenthesized",
a,
(b[-1].ifs[-1] if b[-1].ifs else b[-1].iter)

)
}
| a=NAME b='=' expression for_if_clauses {

self.raise_syntax_error_known_range(
"invalid syntax. Maybe you meant '==' or ':=' instead of '='?", a, b

)
}
| a=args b=for_if_clauses {

self.raise_syntax_error_known_range(
"Generator expression must be parenthesized",
a[0][-1],
(b[-1].ifs[-1] if b[-1].ifs else b[-1].iter),

) if len(a[0]) > 1 else None
}
| args ',' a=expression b=for_if_clauses {

self.raise_syntax_error_known_range(
"Generator expression must be parenthesized",
a,
(b[-1].ifs[-1] if b[-1].ifs else b[-1].iter),

)
}
| a=args ',' args {

self.raise_syntax_error(
"positional argument follows keyword argument unpacking"
if a[1][-1].arg is None else
"positional argument follows keyword argument",

)
}

invalid_kwarg[NoReturn]:
| a=('True'|'False'|'None') b='=' {

(continues on next page)

1.12. Scenic Internals 147

Scenic

(continued from previous page)

self.raise_syntax_error_known_range(f"cannot assign to {a.string}", a, b)
}

| a=NAME b='=' expression for_if_clauses {
self.raise_syntax_error_known_range(

"invalid syntax. Maybe you meant '==' or ':=' instead of '='?", a, b
)

}
| !(NAME '=') a=expression b='=' {

self.raise_syntax_error_known_range(
"expression cannot contain assignment, perhaps you meant \"==\"?", a, b,

)
}

invalid_scenic_instance_creation[NoReturn]:
| n=NAME s=scenic_valid_specifier {

self.raise_syntax_error_known_range("invalid syntax. Perhaps you forgot 'new'?",␣
→˓n, s)
}

invalid_scenic_specifier[NoReturn]:
| n=NAME {

self.raise_syntax_error_known_location("invalid specifier.", n)
}

expression_without_invalid[ast.AST]:
| a=disjunction 'if' b=disjunction 'else' c=expression { ast.IfExp(body=b, test=a,␣

→˓orelse=c, LOCATIONS) }
| disjunction
| lambdef

invalid_legacy_expression:
| a=NAME !'(' b=expression_without_invalid {

self.raise_syntax_error_known_range(
f"Missing parentheses in call to '{a.string}' . Did you mean {a.string}(...)?

→˓", a, b,
) if a.string in ("exec", "print") else
None

}
invalid_expression[NoReturn]:

!(NAME STRING) is not matched so we don't show this error with some invalid string␣
→˓prefixes like: kf"dsfsdf"
Soft keywords need to also be ignored because they can be parsed as NAME NAME
Soft keywords can follow a disjunction to support expressions like `3 steps`
| !(NAME STRING | SOFT_KEYWORD) a=disjunction !SOFT_KEYWORD b=expression_without_

→˓invalid {
(

self.raise_syntax_error_known_range("invalid syntax. Perhaps you forgot a␣
→˓comma?", a, b)

if not isinstance(a, ast.Name) or a.id not in ("print", "exec")
else None

)
}
| a=disjunction 'if' b=disjunction !('else'|':') {

self.raise_syntax_error_known_range("expected 'else' after 'if' expression", a,␣

(continues on next page)

148 Chapter 1. Table of Contents

Scenic

(continued from previous page)

→˓b)
}

invalid_named_expression[NoReturn]:
| a=expression ':=' expression {

self.raise_syntax_error_known_location(
f"cannot use assignment expressions with {self.get_expr_name(a)}", a

)
}
Use in_raw_rule
| a=NAME '=' b=bitwise_or !('='|':=') {

(
None
if self.in_recursive_rule else
self.raise_syntax_error_known_range(

"invalid syntax. Maybe you meant '==' or ':=' instead of '='?", a, b
)

)
}

| !(list|tuple|genexp|'True'|'None'|'False') a=bitwise_or b='=' bitwise_or !('='|':=
→˓') {

(
None
if self.in_recursive_rule else
self.raise_syntax_error_known_location(

f"cannot assign to {self.get_expr_name(a)} here. Maybe you meant '=='␣
→˓instead of '='?", a

)
)

}

invalid_scenic_until[NoReturn]:
| a=scenic_temporal_disjunction 'until' scenic_implication {

self.raise_syntax_error_known_location(
f"`until` must take exactly two operands", a

)
}

invalid_scenic_implication[NoReturn]:
| a=scenic_until "implies" scenic_implication {

self.raise_syntax_error_known_location(
f"`implies` must take exactly two operands", a

)
}

invalid_scenic_require_prob[NoReturn]:
| 'require' '[' !(NUMBER ']') p=expression ']' scenic_temporal_expression ['as'␣

→˓scenic_require_stmt_name] {
self.raise_syntax_error_known_location(

f"'require' probability must be a constant", p
)

}

(continues on next page)

1.12. Scenic Internals 149

Scenic

(continued from previous page)

invalid_scenic_dynamic_duration[NoReturn]: e=expression {
self.raise_syntax_error_known_location(

"duration must specify a unit (seconds or steps)", e
)

}

invalid_assignment[NoReturn]:
| a=invalid_ann_assign_target ':' expression {

self.raise_syntax_error_known_location(
f"only single target (not {self.get_expr_name(a)}) can be annotated", a

)
}

| a=star_named_expression ',' star_named_expressions* ':' expression {
self.raise_syntax_error_known_location("only single target (not tuple) can be␣

→˓annotated", a) }
| a=expression ':' expression {

self.raise_syntax_error_known_location("illegal target for annotation", a) }
| (star_targets '=')* a=star_expressions '=' {

self.raise_syntax_error_invalid_target(Target.STAR_TARGETS, a)
}
| (star_targets '=')* a=yield_expr '=' {

self.raise_syntax_error_known_location("assignment to yield expression not␣
→˓possible", a)

}
| a=star_expressions augassign (yield_expr | star_expressions) {

self.raise_syntax_error_known_location(
f"'{self.get_expr_name(a)}' is an illegal expression for augmented assignment

→˓", a
)

}
invalid_ann_assign_target[ast.AST]:

| a=list { a }
| a=tuple { a }
| '(' a=invalid_ann_assign_target ')' { a }

invalid_del_stmt[NoReturn]:
| 'del' a=star_expressions {

self.raise_syntax_error_invalid_target(Target.DEL_TARGETS, a)
}

invalid_block[NoReturn]:
| NEWLINE !INDENT { self.raise_indentation_error("expected an indented block") }

invalid_comprehension[NoReturn]:
| ('[' | '(' | '{') a=starred_expression for_if_clauses {

self.raise_syntax_error_known_location("iterable unpacking cannot be used in␣
→˓comprehension", a)

}
| ('[' | '{') a=star_named_expression ',' b=star_named_expressions for_if_clauses {

self.raise_syntax_error_known_range(
"did you forget parentheses around the comprehension target?", a, b[-1]

)
}
| ('[' | '{') a=star_named_expression b=',' for_if_clauses {

self.raise_syntax_error_known_range(

(continues on next page)

150 Chapter 1. Table of Contents

Scenic

(continued from previous page)

"did you forget parentheses around the comprehension target?", a, b
)

}
invalid_dict_comprehension[NoReturn]:

| '{' a='**' bitwise_or for_if_clauses '}' {
self.raise_syntax_error_known_location("dict unpacking cannot be used in dict␣

→˓comprehension", a)
}

invalid_parameters[NoReturn]:
| param_no_default* invalid_parameters_helper a=param_no_default {

self.raise_syntax_error_known_location("non-default argument follows default␣
→˓argument", a)

}
| param_no_default* a='(' param_no_default+ ','? b=')' {

self.raise_syntax_error_known_range("Function parameters cannot be parenthesized
→˓", a, b)

}
| a="/" ',' {

self.raise_syntax_error_known_location("at least one argument must precede /", a)
}
| (slash_no_default | slash_with_default) param_maybe_default* a='/' {

self.raise_syntax_error_known_location("/ may appear only once", a)
}
| (slash_no_default | slash_with_default)? param_maybe_default* '*' (',' | param_no_

→˓default) param_maybe_default* a='/' {
self.raise_syntax_error_known_location("/ must be ahead of *", a)

}
| param_maybe_default+ '/' a='*' {

self.raise_syntax_error_known_location("expected comma between / and *", a)
}

invalid_default:
| a='=' &(')'|',') {

self.raise_syntax_error_known_location("expected default value expression", a)
}

invalid_star_etc:
| a='*' (')' | ',' (')' | '**')) {

self.raise_syntax_error_known_location("named arguments must follow bare *", a)
}
| '*' ',' TYPE_COMMENT { self.raise_syntax_error("bare * has associated type comment

→˓") }
| '*' param a='=' {

self.raise_syntax_error_known_location("var-positional argument cannot have␣
→˓default value", a)

}
| '*' (param_no_default | ',') param_maybe_default* a='*' (param_no_default | ',') {

self.raise_syntax_error_known_location("* argument may appear only once", a)
}

invalid_kwds:
| '**' param a='=' {

self.raise_syntax_error_known_location("var-keyword argument cannot have default␣
→˓value", a)

}
(continues on next page)

1.12. Scenic Internals 151

Scenic

(continued from previous page)

| '**' param ',' a=param {
self.raise_syntax_error_known_location("arguments cannot follow var-keyword␣

→˓argument", a)
}
| '**' param ',' a=('*'|'**'|'/') {

self.raise_syntax_error_known_location("arguments cannot follow var-keyword␣
→˓argument", a)

}
invalid_parameters_helper: # This is only there to avoid type errors

| a=slash_with_default { [a] }
| a=param_with_default+

invalid_lambda_parameters[NoReturn]:
| lambda_param_no_default* invalid_lambda_parameters_helper a=lambda_param_no_

→˓default {
self.raise_syntax_error_known_location("non-default argument follows default␣

→˓argument", a)
}
| lambda_param_no_default* a='(' ','.lambda_param+ ','? b=')' {

self.raise_syntax_error_known_range("Lambda expression parameters cannot be␣
→˓parenthesized", a, b)

}
| a="/" ',' {

self.raise_syntax_error_known_location("at least one argument must precede /", a)
}
| (lambda_slash_no_default | lambda_slash_with_default) lambda_param_maybe_default*␣

→˓a='/' {
self.raise_syntax_error_known_location("/ may appear only once", a)

}
| (lambda_slash_no_default | lambda_slash_with_default)? lambda_param_maybe_default*

→˓'*' (',' | lambda_param_no_default) lambda_param_maybe_default* a='/' {
self.raise_syntax_error_known_location("/ must be ahead of *", a)

}
| lambda_param_maybe_default+ '/' a='*' {

self.raise_syntax_error_known_location("expected comma between / and *", a)
}

invalid_lambda_parameters_helper[NoReturn]:
| a=lambda_slash_with_default { [a] }
| a=lambda_param_with_default+

invalid_lambda_star_etc[NoReturn]:
| '*' (':' | ',' (':' | '**')) {

self.raise_syntax_error("named arguments must follow bare *")
}
| '*' lambda_param a='=' {

self.raise_syntax_error_known_location("var-positional argument cannot have␣
→˓default value", a)

}
| '*' (lambda_param_no_default | ',') lambda_param_maybe_default* a='*' (lambda_

→˓param_no_default | ',') {
self.raise_syntax_error_known_location("* argument may appear only once", a)

}
invalid_lambda_kwds:

| '**' lambda_param a='=' {
(continues on next page)

152 Chapter 1. Table of Contents

Scenic

(continued from previous page)

self.raise_syntax_error_known_location("var-keyword argument cannot have default␣
→˓value", a)

}
| '**' lambda_param ',' a=lambda_param {

self.raise_syntax_error_known_location("arguments cannot follow var-keyword␣
→˓argument", a)

}
| '**' lambda_param ',' a=('*'|'**'|'/') {

self.raise_syntax_error_known_location("arguments cannot follow var-keyword␣
→˓argument", a)

}
invalid_double_type_comments[NoReturn]:

| TYPE_COMMENT NEWLINE TYPE_COMMENT NEWLINE INDENT {
self.raise_syntax_error("Cannot have two type comments on def")

}
invalid_with_item[NoReturn]:

| expression 'as' a=expression &(',' | ')' | ':') {
self.raise_syntax_error_invalid_target(Target.STAR_TARGETS, a)

}

invalid_for_target[NoReturn]:
| 'async'? 'for' a=star_expressions {

self.raise_syntax_error_invalid_target(Target.FOR_TARGETS, a)
}

invalid_group[NoReturn]:
| '(' a=starred_expression ')' {

self.raise_syntax_error_known_location("cannot use starred expression here", a)
}
| '(' a='**' expression ')' {

self.raise_syntax_error_known_location("cannot use double starred expression here
→˓", a)

}
invalid_import_from_targets[NoReturn]:

| import_from_as_names ',' NEWLINE {
self.raise_syntax_error("trailing comma not allowed without surrounding␣

→˓parentheses")
}

invalid_with_stmt[None]:
| ['async'] 'with' ','.(expression ['as' star_target])+ &&':' { UNREACHABLE }
| ['async'] 'with' '(' ','.(expressions ['as' star_target])+ ','? ')' &&':' {␣

→˓UNREACHABLE }
invalid_with_stmt_indent[NoReturn]:

| ['async'] a='with' ','.(expression ['as' star_target])+ ':' NEWLINE !INDENT {
self.raise_indentation_error(

f"expected an indented block after 'with' statement on line {a.start[0]}"
)

}
| ['async'] a='with' '(' ','.(expressions ['as' star_target])+ ','? ')' ':' NEWLINE !

→˓INDENT {
self.raise_indentation_error(

(continues on next page)

1.12. Scenic Internals 153

Scenic

(continued from previous page)

f"expected an indented block after 'with' statement on line {a.start[0]}"
)

}

invalid_try_stmt[NoReturn]:
| a='try' ':' NEWLINE !INDENT {

self.raise_indentation_error(
f"expected an indented block after 'try' statement on line {a.start[0]}",

)
}
| 'try' ':' block !('except' | 'finally') {

self.raise_syntax_error("expected 'except' or 'finally' block")
}

invalid_except_stmt[None]:
| 'except' a=expression ',' expressions ['as' NAME] ':' {

self.raise_syntax_error_starting_from("multiple exception types must be␣
→˓parenthesized", a)

}
| a='except' expression ['as' NAME] NEWLINE { self.raise_syntax_error("expected ':'

→˓") }
| a='except' NEWLINE { self.raise_syntax_error("expected ':'") }

invalid_finally_stmt[NoReturn]:
| a='finally' ':' NEWLINE !INDENT {

self.raise_indentation_error(
f"expected an indented block after 'finally' statement on line {a.start[0]}"

)
}

invalid_except_stmt_indent[NoReturn]:
| a='except' expression ['as' NAME] ':' NEWLINE !INDENT {

self.raise_indentation_error(
f"expected an indented block after 'except' statement on line {a.start[0]}"

)
}
| a='except' ':' NEWLINE !INDENT {

self.raise_indentation_error(
f"expected an indented block after 'except' statement on line {a.start[0]}"

)
}

invalid_match_stmt[NoReturn]:
| "match" subject_expr !':' {

self.check_version(
(3, 10),
"Pattern matching is",
self.raise_syntax_error("expected ':'")

)
}
| a="match" subject=subject_expr ':' NEWLINE !INDENT {

self.check_version(
(3, 10),
"Pattern matching is",
self.raise_indentation_error(

f"expected an indented block after 'match' statement on line {a.start[0]}
(continues on next page)

154 Chapter 1. Table of Contents

Scenic

(continued from previous page)

→˓"
)

)
}

invalid_case_block[NoReturn]:
| "case" patterns guard? !':' { self.raise_syntax_error("expected ':'") }
| a="case" patterns guard? ':' NEWLINE !INDENT {

self.raise_indentation_error(
f"expected an indented block after 'case' statement on line {a.start[0]}"

)
}

invalid_as_pattern[NoReturn]:
| or_pattern 'as' a="_" {

self.raise_syntax_error_known_location("cannot use '_' as a target", a)
}
| or_pattern 'as' !NAME a=expression {

self.raise_syntax_error_known_location("invalid pattern target", a)
}

invalid_class_pattern[NoReturn]:
| name_or_attr '(' a=invalid_class_argument_pattern {

self.raise_syntax_error_known_range(
"positional patterns follow keyword patterns", a[0], a[-1]

)
}

invalid_class_argument_pattern[list]:
| [positional_patterns ','] keyword_patterns ',' a=positional_patterns { a }

invalid_if_stmt[NoReturn]:
| 'if' named_expression NEWLINE { self.raise_syntax_error("expected ':'") }
| a='if' a=named_expression ':' NEWLINE !INDENT {

self.raise_indentation_error(
f"expected an indented block after 'if' statement on line {a.start[0]}"

)
}

invalid_elif_stmt[NoReturn]:
| 'elif' named_expression NEWLINE { self.raise_syntax_error("expected ':'") }
| a='elif' named_expression ':' NEWLINE !INDENT {

self.raise_indentation_error(
f"expected an indented block after 'elif' statement on line {a.start[0]}"

)
}

invalid_else_stmt[NoReturn]:
| a='else' ':' NEWLINE !INDENT {

self.raise_indentation_error(
f"expected an indented block after 'else' statement on line {a.start[0]}"

)
}

invalid_while_stmt[NoReturn]:
| 'while' named_expression NEWLINE { self.raise_syntax_error("expected ':'") }
| a='while' named_expression ':' NEWLINE !INDENT {

self.raise_indentation_error(
f"expected an indented block after 'while' statement on line {a.start[0]}"

)

(continues on next page)

1.12. Scenic Internals 155

Scenic

(continued from previous page)

}
invalid_for_stmt[NoReturn]:

| ['async'] a='for' star_targets 'in' star_expressions ':' NEWLINE !INDENT {
self.raise_indentation_error(

f"expected an indented block after 'for' statement on line {a.start[0]}"
)

}
invalid_def_raw[NoReturn]:

| ['async'] a='def' NAME '(' [params] ')' ['->' expression] ':' NEWLINE !INDENT {
self.raise_indentation_error(

f"expected an indented block after function definition on line {a.start[0]}"
)

}
invalid_class_def_raw[NoReturn]:

| a='class' NAME ['(' [arguments] ')'] ':' NEWLINE !INDENT {
self.raise_indentation_error(

f"expected an indented block after class definition on line {a.start[0]}"
)

}

invalid_double_starred_kvpairs[None]:
| ','.double_starred_kvpair+ ',' invalid_kvpair
| expression ':' a='*' bitwise_or {

self.raise_syntax_error_starting_from("cannot use a starred expression in a␣
→˓dictionary value", a)

}
| expression a=':' &('}'|',') {

self.raise_syntax_error_known_location("expression expected after dictionary key␣
→˓and ':'", a)

}
invalid_kvpair[None]:

| a=expression !(':') {
self.raise_raw_syntax_error(

"':' expected after dictionary key",
(a.lineno, a.col_offset),
(a.end_lineno, a.end_col_offset)

)
}
| expression ':' a='*' bitwise_or {

self.raise_syntax_error_starting_from("cannot use a starred expression in a␣
→˓dictionary value", a)

}
| expression a=':' {

self.raise_syntax_error_known_location("expression expected after dictionary key␣
→˓and ':'", a)

}

156 Chapter 1. Table of Contents

Scenic

1.12.4 Scenic Modules

Detailed documentation on Scenic’s components is organized by the submodules of the main scenic module:

scenic.core Scenic's core types and associated support code.
scenic.domains General scenario domains used across simulators.
scenic.formats Support for file formats not specific to particular simu-

lators.
scenic.simulators World models and interfaces for particular simulators.
scenic.syntax The Scenic compiler and associated support code.

scenic.core

Scenic’s core types and associated support code.

distributions Objects representing distributions that can be sampled
from.

dynamics Support for dynamic behaviors and modular scenarios.
errors Common exceptions and error handling.
external_params Support for values which are sampled outside of Scenic.
geometry Utility functions for geometric computation.
lazy_eval Support for lazy evaluation of expressions and specifiers.
object_types Implementations of the built-in Scenic classes.
propositions Objects representing propositions that can be used to

specify conditions
pruning Pruning parts of the sample space which violate require-

ments.
regions Objects representing regions in space.
requirements Support for hard and soft requirements.
sample_checking The SampleChecker class and it's implementations.
scenarios Scenario and scene objects.
serialization Utilities to help serialize Scenic objects.
shapes Module containing the Shape class and its subclasses,

which represent shapes of Objects
simulators Interface between Scenic and simulators.
specifiers Specifiers and associated objects.
type_support Support for checking Scenic types.
utils Assorted utility functions.
vectors Scenic vectors and vector fields.
visibility Implementations of Scenic's visibility functions.
workspaces Workspaces.

1.12. Scenic Internals 157

Scenic

scenic.core.distributions

Objects representing distributions that can be sampled from.

Summary of Module Members

Functions

Uniform Uniform distribution over a finite list of options.
addSupports

canUnpackDistributions Whether the function supports iterable unpacking of dis-
tributions.

distributionFunction Decorator for wrapping a function so that it can take dis-
tributions as arguments.

distributionMethod Decorator for wrapping a method so that it can take dis-
tributions as arguments.

makeOperatorHandler

monotonicDistributionFunction Like distributionFunction, but additionally specifies that
the function is monotonic.

supmax

supmin

supportInterval Lower and upper bounds on this value, if known.
toDistribution Wrap Python data types with Distributions, if necessary.
underlyingFunction Original function underlying a distribution wrapper.
unionOfSupports

unpacksDistributions Decorator indicating the function supports iterable un-
packing of distributions.

158 Chapter 1. Table of Contents

Scenic

Classes

AttributeDistribution Distribution resulting from accessing an attribute of a
distribution

ConstantSamplable A samplable which always evaluates to a constant value.
DiscreteRange Distribution over a range of integers.
Distribution Abstract class for distributions.
FunctionDistribution Distribution resulting from passing distributions to a

function
MethodDistribution Distribution resulting from passing distributions to a

method of a fixed object
MultiplexerDistribution Distribution selecting among values based on another

distribution.
Normal Normal distribution
OperatorDistribution Distribution resulting from applying an operator to one

or more distributions
Options Distribution over a finite list of options.
Range Uniform distribution over a range
Samplable Abstract class for values which can be sampled, possibly

depending on other values.
SliceDistribution Distributions over slice objects.
StarredDistribution A placeholder for the iterable unpacking operator * ap-

plied to a distribution.
TruncatedNormal Truncated normal distribution.
TupleDistribution Distributions over tuples (or namedtuples, or lists).
UniformDistribution Uniform distribution over a variable number of options.

Exceptions

RandomControlFlowError Exception indicating illegal conditional control flow de-
pending on a random value.

RejectionException Exception used to signal that the sample currently being
generated must be rejected.

Member Details

supportInterval(thing)
Lower and upper bounds on this value, if known.

underlyingFunction(thing)
Original function underlying a distribution wrapper.

canUnpackDistributions(func)
Whether the function supports iterable unpacking of distributions.

unpacksDistributions(func)
Decorator indicating the function supports iterable unpacking of distributions.

exception RejectionException

Bases: Exception

1.12. Scenic Internals 159

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/exceptions.html#Exception

Scenic

Exception used to signal that the sample currently being generated must be rejected.

exception RandomControlFlowError

Bases: ScenicError

Exception indicating illegal conditional control flow depending on a random value.

This includes trying to iterate over a random value, making a range of random length, etc.

class Samplable(dependencies)
Bases: LazilyEvaluable

Abstract class for values which can be sampled, possibly depending on other values.

Samplables may specify a proxy object which must have the same distribution as the original after conditioning
on the scenario’s requirements. This allows transparent conditioning without modifying Samplable fields of
immutable objects.

Parameters
dependencies – sequence of values that this value may depend on (formally, objects for which
sampled values must be provided to sampleGiven). It is legal to include values which are not
instances of Samplable, e.g. integers.

Attributes

• _conditioned – proxy object as described above; set using conditionTo.

• _dependencies – tuple of other samplables which must be sampled before this one; set by
the initializer and subsequently immutable.

static sampleAll(quantities)
Sample all the given Samplables, which may have dependencies in common.

Reproducibility note: the order in which the quantities are given can affect the order in which calls to
random are made, affecting the final result.

sample(subsamples=None)
Sample this value, optionally given some values already sampled.

sampleGiven(value)
Sample this value, given values for all its dependencies.

Implemented by subclasses.

Parameters
value (DefaultIdentityDict) – dictionary mapping objects to their sampled values.
Guaranteed to provide values for all objects given in the set of dependencies when this
Samplable was created.

conditionTo(value)
Condition this value to another value with the same conditional distribution.

evaluateIn(context)
See LazilyEvaluable.evaluateIn.

class ConstantSamplable(value)
Bases: Samplable

A samplable which always evaluates to a constant value.

Only for internal use.

160 Chapter 1. Table of Contents

Scenic

class Distribution(*dependencies, valueType=None)
Bases: Samplable

Abstract class for distributions.

Note: When called during dynamic simulations (vs. scenario compilation), constructors for distributions return
actual sampled values, not Distribution objects.

Parameters

• dependencies – values which this distribution may depend on (see Samplable).

• valueType – _valueType to use (see below), or None for the default.

Attributes
_valueType – type of the values sampled from this distribution, or Object if the type is not known.

_defaultValueType

Default valueType for distributions of this class, when not otherwise specified.

alias of object

_deterministic = False

Whether this type of distribution is a deterministic function of its dependencies.

For example, Options is implemented as deterministic by using an internal DiscreteRange to select
which of its finitely-many options to choose from: the value of the Options is then completely determined
by the value of the range and the values of each of the options. This simplifies serialization because these
dependencies likely have simpler valueTypes than the Options itself (e.g. if we had a random choice
between a list and a string, encoding the actual sampled value would require saving type information).

clone()

Construct an independent copy of this Distribution.

Optionally implemented by subclasses.

property isPrimitive

Whether this is a primitive Distribution.

serializeValue(values, serializer)
Serialize the sampled value of this distribution.

This method is used internally by Scenario.sceneToBytes and related APIs. If you define a new subclass
of Distribution, you probably don’t need to override this method. If your distribution has an unusual
valueType (i.e. not float, int, or Vector), see the documentation for Serializer for instructions on
how to support serialization.

bucket(buckets=None)
Construct a bucketed approximation of this Distribution.

Optionally implemented by subclasses.

This function factors a given Distribution into a discrete distribution over buckets together with a dis-
tribution for each bucket. The argument buckets controls how many buckets the domain of the original
Distribution is split into. Since the result is an independent distribution, the original must support clone.

1.12. Scenic Internals 161

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Scenic

supportInterval()

Compute lower and upper bounds on the value of this Distribution.

By default returns (None, None) indicating that no lower or upper bounds are known. Subclasses may
override this method to provide more accurate results.

class TupleDistribution(*coordinates, builder=<class 'tuple'>)
Bases: Distribution, Sequence

Distributions over tuples (or namedtuples, or lists).

class SliceDistribution(start, stop, step)
Bases: Distribution

Distributions over slice objects.

toDistribution(val)
Wrap Python data types with Distributions, if necessary.

For example, tuples containing Samplables need to be converted into TupleDistributions in order to keep track
of dependencies properly.

class FunctionDistribution(func, args, kwargs, support=None, valueType=None)
Bases: Distribution

Distribution resulting from passing distributions to a function

distributionFunction(wrapped=None, *, support=None, valueType=None)
Decorator for wrapping a function so that it can take distributions as arguments.

This decorator is mainly for internal use, and is not necessary when defining a function in a Scenic file. It
is, however, needed when calling external functions which contain control flow or other operations that Scenic
distribution objects (representing random values) do not support.

monotonicDistributionFunction(method, valueType=None)
Like distributionFunction, but additionally specifies that the function is monotonic.

class StarredDistribution(value, lineno)
Bases: Distribution

A placeholder for the iterable unpacking operator * applied to a distribution.

class MethodDistribution(method, obj, args, kwargs, valueType=None)
Bases: Distribution

Distribution resulting from passing distributions to a method of a fixed object

distributionMethod(method=None, *, identity=None)
Decorator for wrapping a method so that it can take distributions as arguments.

class AttributeDistribution(attribute, obj, valueType=None)
Bases: Distribution

Distribution resulting from accessing an attribute of a distribution

static inferType(ty, attribute)
Attempt to infer the type of the given attribute.

class OperatorDistribution(operator, obj, operands, valueType=None)
Bases: Distribution

Distribution resulting from applying an operator to one or more distributions

162 Chapter 1. Table of Contents

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#slice

Scenic

static inferType(ty, operator, operands)
Attempt to infer the result type of the given operator application.

class MultiplexerDistribution(index, options)
Bases: Distribution

Distribution selecting among values based on another distribution.

class Range(low, high)
Bases: Distribution

Uniform distribution over a range

class Normal(mean, stddev)
Bases: Distribution

Normal distribution

class TruncatedNormal(mean, stddev, low, high)
Bases: Normal

Truncated normal distribution.

class DiscreteRange(low, high, weights=None, emptyMessage='empty DiscreteRange')
Bases: Distribution

Distribution over a range of integers.

class Options(opts)
Bases: MultiplexerDistribution

Distribution over a finite list of options.

Specified by a dict giving probabilities; otherwise uniform over a given iterable.

Uniform(*opts)
Uniform distribution over a finite list of options.

Implemented as an instance of Options when the set of options is known statically, and an instance of
UniformDistribution otherwise.

class UniformDistribution(opts)
Bases: Distribution

Uniform distribution over a variable number of options.

See Options for the more common uniform distribution over a fixed number of options. This class is for the
special case where iterable unpacking is applied to a distribution, so that the number of options is unknown at
compile time.

scenic.core.dynamics

Support for dynamic behaviors and modular scenarios.

1.12. Scenic Internals 163

Scenic

Summary of Module Members

Module Attributes

stuckBehaviorWarningTimeout Timeout in seconds after which a
StuckBehaviorWarning will be raised.

Functions

runTryInterrupt

Classes

Behavior Dynamic behaviors of agents.
BlockConclusion An enumeration.
DynamicScenario Internal class for scenarios which can execute during dy-

namic simulations.
InterruptBlock

Invocable Abstract class with common code for behaviors and
modular scenarios.

Monitor Monitors for dynamic simulations.

Exceptions

GuardViolation Abstract exception raised when a guard of a behavior is
violated.

InvariantViolation Exception raised when an invariant is violated
PreconditionViolation Exception raised when a precondition is violated
StuckBehaviorWarning Warning issued when a behavior/scenario may have got-

ten stuck.

Member Details

exception StuckBehaviorWarning

Bases: UserWarning

Warning issued when a behavior/scenario may have gotten stuck.

When a behavior or compose block of a modular scenario executes for a long time without yielding control, there
is no way to tell whether it has entered an infinite loop with no take/wait statements, or is actually doing some
long computation. But since forgetting a wait statement in a wait loop is an easy mistake, we raise this warning
after a behavior/scenario has run for stuckBehaviorWarningTimeout seconds without yielding.

stuckBehaviorWarningTimeout = 10

Timeout in seconds after which a StuckBehaviorWarning will be raised.

164 Chapter 1. Table of Contents

https://docs.python.org/3/library/exceptions.html#UserWarning

Scenic

class Invocable(*args, **kwargs)
Abstract class with common code for behaviors and modular scenarios.

Both of these types of objects can be called like functions, can have guards, and can suspend their own execution
to invoke sub-behaviors/scenarios.

_invokeInner(agent, subs)
Run the given sub-behavior/scenario(s) in parallel.

Implemented by subclasses.

class DynamicScenario(*args, **kwargs)
Bases: Invocable

Internal class for scenarios which can execute during dynamic simulations.

Provides additional information complementing Scenario, which originally only supported static scenarios.
The two classes should probably eventually be merged.

classmethod _requiresArguments()

Whether this scenario cannot be instantiated without arguments.

_bindTo(scene)
Bind this scenario to a sampled scene when starting a new simulation.

_prepare(delayPreconditionCheck=False)
Prepare the scenario for execution, executing its setup block.

_start()

Start the scenario, starting its compose block, behaviors, and monitors.

_step()

Execute the (already-started) scenario for one time step.

Returns
None if the scenario will continue executing; otherwise a string describing why it has termi-
nated.

_stop(reason, quiet=False)
Stop the scenario’s execution, for the given reason.

_addRequirement(ty, reqID, req, line, name, prob)
Save a requirement defined at compile-time for later processing.

_addDynamicRequirement(ty, req, line, name)
Add a requirement defined during a dynamic simulation.

_addMonitor(monitor)
Add a monitor during a dynamic simulation.

class Behavior(*args, **kwargs)
Bases: Invocable, Samplable

Dynamic behaviors of agents.

Behavior statements are translated into definitions of subclasses of this class.

1.12. Scenic Internals 165

https://docs.python.org/3/library/constants.html#None

Scenic

class Monitor(*args, **kwargs)
Bases: Behavior

Monitors for dynamic simulations.

Monitor statements are translated into definitions of subclasses of this class.

exception GuardViolation(behavior, lineno)
Bases: Exception

Abstract exception raised when a guard of a behavior is violated.

This will never be raised directly; either of the subclasses PreconditionViolation or InvariantViolation
will be used, as appropriate.

exception PreconditionViolation(behavior, lineno)
Bases: GuardViolation

Exception raised when a precondition is violated

Raised when a precondition is violated when invoking a behavior or when a precondition encounters a
RejectionException, so that rejections count as precondition violations.

exception InvariantViolation(behavior, lineno)
Bases: GuardViolation

Exception raised when an invariant is violated

Raised when an invariant is violated when invoking/resuming a behavior or when an invariant encounters a
RejectionException, so that rejections count as invariant violations.

class BlockConclusion(value)
Bases: Enum

An enumeration.

scenic.core.errors

Common exceptions and error handling.

Summary of Module Members

Module Attributes

verbosityLevel Verbosity level.
showInternalBacktrace Whether or not to include Scenic's innards in backtraces.
postMortemDebugging Whether or not to do post-mortem debugging of un-

caught exceptions.
postMortemRejections Whether or not to do "post-mortem" debugging of re-

jected scenes/simulations.
hiddenFolders Folders elided from backtraces when

showInternalBacktrace is false.

166 Chapter 1. Table of Contents

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/enum.html#enum.Enum

Scenic

Functions

callBeginningScenicTrace Call the given function, starting the Scenic backtrace at
that point.

displayScenicException Print a Scenic exception, cleaning up the traceback if de-
sired.

excepthook

getText Attempt to recover the text of an error from the original
Scenic file.

includeFrame

optionallyDebugRejection

saveErrorLocation

setDebuggingOptions Configure Scenic's debugging options.

Exceptions

ASTParseError Parse error occuring during modification of the Python
AST.

InconsistentScenarioError Error for scenarios with inconsistent requirements.
InvalidScenarioError Error raised for syntactically-valid but otherwise prob-

lematic Scenic programs.
ParseCompileError Error occurring during Scenic/Python parsing or compi-

lation.
PythonCompileError Error occuring during Python compilation of translated

Scenic code.
ScenicError An error produced during Scenic compilation, scene

generation, or simulation.
ScenicParseError Error occuring during Scenic parsing or compilation.
ScenicSyntaxError An error produced by attempting to parse an invalid

Scenic program.
SpecifierError Error for illegal uses of specifiers.

Member Details

setDebuggingOptions(*, verbosity=0, fullBacktrace=False, debugExceptions=False, debugRejections=False)
Configure Scenic’s debugging options.

Parameters

• verbosity (int) – Verbosity level. Zero by default, although the command-line interface
uses 1 by default. See the --verbosity option for the allowed values.

• fullBacktrace (bool) – Whether to include Scenic’s innards in backtraces (like the -b
command-line option).

• debugExceptions (bool) – Whether to use pdb for post-mortem debugging of uncaught
exceptions (like the --pdb option).

1.12. Scenic Internals 167

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pdb.html#module-pdb

Scenic

• debugRejections (bool) – Whether to enter pdb when a scene or simulation is rejected
(like the --pdb-on-reject option).

verbosityLevel = 0

Verbosity level. See --verbosity for the allowed values.

showInternalBacktrace = False

Whether or not to include Scenic’s innards in backtraces.

Set to True by default so that any errors during import of the scenic module will get full backtraces; the scenic
module’s __init__.py sets it to False.

postMortemDebugging = False

Whether or not to do post-mortem debugging of uncaught exceptions.

postMortemRejections = False

Whether or not to do “post-mortem” debugging of rejected scenes/simulations.

hiddenFolders

Folders elided from backtraces when showInternalBacktrace is false.

exception ScenicError

Bases: Exception

An error produced during Scenic compilation, scene generation, or simulation.

exception ScenicSyntaxError

Bases: ScenicError

An error produced by attempting to parse an invalid Scenic program.

This is intentionally not a subclass of SyntaxError so that pdb can be used for post-mortem debugging of the
parser. Our custom excepthook below will arrange to still have it formatted as a SyntaxError, though.

exception ParseCompileError(exc)
Bases: ScenicSyntaxError

Error occurring during Scenic/Python parsing or compilation.

exception ScenicParseError(exc)
Bases: ParseCompileError

Error occuring during Scenic parsing or compilation.

exception PythonCompileError(exc)
Bases: ParseCompileError

Error occuring during Python compilation of translated Scenic code.

exception ASTParseError(node, message, filename)
Bases: ScenicSyntaxError

Parse error occuring during modification of the Python AST.

exception InvalidScenarioError

Bases: ScenicError

Error raised for syntactically-valid but otherwise problematic Scenic programs.

168 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pdb.html#module-pdb
https://docs.python.org/3/library/exceptions.html#Exception

Scenic

exception InconsistentScenarioError(line, message)
Bases: InvalidScenarioError

Error for scenarios with inconsistent requirements.

exception SpecifierError

Bases: ScenicError

Error for illegal uses of specifiers.

displayScenicException(exc, seen=None)
Print a Scenic exception, cleaning up the traceback if desired.

If showInternalBacktrace is False, this hides frames inside Scenic itself.

callBeginningScenicTrace(func)
Call the given function, starting the Scenic backtrace at that point.

This function is just a convenience to make Scenic backtraces cleaner when running Scenic programs from the
command line.

getText(filename, lineno, line='', offset=0, end_offset=None)
Attempt to recover the text of an error from the original Scenic file.

scenic.core.external_params

Support for values which are sampled outside of Scenic.

External Samplers in General

External samplers provide a mechanism to use different types of sampling techniques, like optimization or quasi-
random sampling, from within a Scenic program. Ordinary random values in Scenic are instances of Distribution;
this module defines a special subclass, ExternalParameter, representing a value which is sampled externally. Scenic
programs with external parameters are handled as follows:

1. During compilation, all instances of ExternalParameter are gathered together and given to the
ExternalSampler.forParameters function; this function creates an appropriate ExternalSampler, whose
configuration can be controlled using global parameters (see the function documentation for details).

2. When sampling a scene, before sampling any other distributions the sample method of the ExternalSampler
is called to sample all the external parameters. For active samplers, this method passes along the feedback
value given to Scenario.generate, if any.

3. Once the external parameters have values, the program is equivalent to one without external parameters, and
sampling proceeds as usual. As for every instance of Distribution, the external parameters will have their
sampleGiven method called once all their dependencies have been sampled; by default this method just returns
the value sampled for this parameter in step (2).

Note: Note that while external parameters, like all instances of Distribution, are allowed to have dependen-
cies, they are an exception to the usual rule that dependencies are always sampled before dependents, because
the ExternalSampler.sample method is called before any other sampling. However, as explained above, the
sampleGiven method is called in the proper order and external samplers which need to do sampling based on the
values of other distributions can be invoked from it. The two-step mechanism with ExternalSampler.sample is
provided for samplers which sample the whole space of external parameters at once (e.g. the VerifAI samplers).

1.12. Scenic Internals 169

Scenic

Samplers from VerifAI

The external sampling mechanism is designed to be extensible. The only built-in ExternalSampler is the
VerifaiSampler, which provides access to the samplers in the VerifAI toolkit (which in turn can use Scenic as a
modeling language).

The VerifaiSampler supports several types of external parameters corresponding to the primitive distributions:
VerifaiRange and VerifaiDiscreteRange for continuous and discrete intervals, and VerifaiOptions for dis-
crete sets. For example, suppose we write:

ego = new Object at (VerifaiRange(5, 15), 0)

This is equivalent to the ordinary Scenic line ego = new Object at (Range(5, 15), 0), except that the X co-
ordinate of the ego is sampled by VerifAI within the range (5, 15) instead of being uniformly distributed over it. By
default the VerifaiSampler uses VerifAI’s Halton sampler, so the range will still be covered uniformly but more
systematically. If we want to use a different sampler, we can set the verifaiSamplerType global parameter:

param verifaiSamplerType = 'ce'
ego = new Object at (VerifaiRange(5, 15), 0)

Now the X coordinate will be sampled using VerifAI’s cross-entropy sampler. If we pass a feedback value to Scenario.
generate which scores the previous scene, then the coordinate will not be sampled uniformly but rather converge
to a distribution concentrated on values minimizing the score. Active samplers like cross-entropy can be used for
falsification in this way, driving a system toward parts of the parameter space where a specification is violated.

The cross-entropy sampler in VerifAI can be started from a non-uniform prior. Scenic provides a convenient way to
define this prior using the ordinary syntax for distributions:

param verifaiSamplerType = 'ce'
ego = new Object at (VerifaiParameter.withPrior(Normal(10, 3)), 0)

Now cross-entropy sampling will start from a normal distribution with mean 10 and standard deviation 3. Priors
are restricted to primitive distributions and in general may be approximated so that VerifAI can handle them – see
VerifaiParameter.withPrior for details.

For more information on how to customize the sampler, see VerifaiSampler.

Summary of Module Members

Classes

ExternalParameter A value determined by external code rather than Scenic's
internal sampler.

ExternalSampler Abstract class for objects called to sample values for each
external parameter.

VerifaiDiscreteRange A DiscreteRange (integer interval) sampled by Veri-
fAI.

VerifaiOptions An Options (discrete set) sampled by VerifAI.
VerifaiParameter An external parameter sampled using one of VerifAI's

samplers.
VerifaiRange A Range (real interval) sampled by VerifAI.
VerifaiSampler An external sampler exposing the samplers in the Veri-

fAI toolkit.

170 Chapter 1. Table of Contents

https://github.com/BerkeleyLearnVerify/VerifAI
https://en.wikipedia.org/wiki/Halton_sequence
https://en.wikipedia.org/wiki/Cross-entropy_method

Scenic

Member Details

class ExternalSampler(params, globalParams)
Abstract class for objects called to sample values for each external parameter.

The initializer for this class takes the same arguments as the factory function forParameters below.

Attributes
rejectionFeedback – Value passed to the sample method when the last sample was re-
jected. This value can be chosen by a Scenic scenario using the global parameter
externalSamplerRejectionFeedback.

static forParameters(params, globalParams)
Create an ExternalSampler given the sets of external and global parameters.

The scenario may explicitly select an external sampler by assigning the global parameter
externalSampler to a subclass of ExternalSampler. Otherwise, a VerifaiSampler is used
by default.

Parameters

• params (tuple) – Tuple listing each ExternalParameter.

• globalParams (dict) – Dictionary of global parameters for the Scenario, made avail-
able here to support sampler customization through setting parameters. Note that the values
of these parameters may be instances of Distribution!

Returns
An ExternalSampler configured for the given parameters.

sample(feedback)
Sample values for all the external parameters.

Parameters
feedback – Feedback from the last sample (for active samplers).

nextSample(feedback)
Actually do the sampling. Implemented by subclasses.

valueFor(param)

Return the sampled value for a parameter. Implemented by subclasses.

class VerifaiSampler(params, globalParams)
Bases: ExternalSampler

An external sampler exposing the samplers in the VerifAI toolkit.

The sampler can be configured using the following Scenic global parameters:

• verifaiSamplerType – sampler type (see the verifai.server.choose_sampler function); the de-
fault is 'halton'

• verifaiSamplerParams – DotMap of options passed to the sampler

The VerifaiSampler supports external parameters which are instances of VerifaiParameter.

class ExternalParameter

Bases: Distribution

A value determined by external code rather than Scenic’s internal sampler.

1.12. Scenic Internals 171

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Scenic

sampleGiven(value)
Specialization of Samplable.sampleGiven for external parameters.

By default, this method simply looks up the value previously sampled by ExternalSampler.sample.

class VerifaiParameter(domain)
Bases: ExternalParameter

An external parameter sampled using one of VerifAI’s samplers.

static withPrior(dist, buckets=None)
Creates a VerifaiParameter using the given distribution as a prior.

Since the VerifAI cross-entropy sampler currently only supports piecewise-constant distributions, if the
prior is not of that form it may be approximated. For most built-in distributions, the approximation is exact:
for a particular distribution, check its bucket method.

class VerifaiRange(low, high, buckets=None, weights=None)
Bases: VerifaiParameter

A Range (real interval) sampled by VerifAI.

_defaultValueType

alias of float

class VerifaiDiscreteRange(low, high, weights=None)
Bases: VerifaiParameter

A DiscreteRange (integer interval) sampled by VerifAI.

_defaultValueType

alias of float

class VerifaiOptions(opts)
Bases: Options

An Options (discrete set) sampled by VerifAI.

scenic.core.geometry

Utility functions for geometric computation.

Summary of Module Members

172 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

Functions

allChains

apparentHeadingAtPoint

averageVectors

cleanChain

cleanPolygon

cos

distanceToLine

findMinMax

headingOfSegment

hypot

max

min

normalizeAngle

plotPolygon

pointIsInCone

polygonUnion

removeHoles

rotateVector

sin

splitSelfIntersections

triangulatePolygon Triangulate the given Shapely polygon.
triangulatePolygon_mapbox

viewAngleToPoint

1.12. Scenic Internals 173

Scenic

Exceptions

TriangulationError Signals that the installed triangulation libraries are insuf-
ficient.

Member Details

exception TriangulationError

Bases: RuntimeError

Signals that the installed triangulation libraries are insufficient.

triangulatePolygon(polygon)
Triangulate the given Shapely polygon.

Note that we can’t use shapely.ops.triangulate since it triangulates point sets, not polygons (i.e., it doesn’t
respect edges). We need an algorithm for triangulation of polygons with holes (it doesn’t need to be a Delaunay
triangulation).

Parameters
polygon (shapely.geometry.Polygon) – Polygon to triangulate.

Returns
A list of disjoint (except for edges) triangles whose union is the original polygon.

scenic.core.lazy_eval

Support for lazy evaluation of expressions and specifiers.

Lazy evaluation is necessary for expressions like 30 deg relative to roadDirection where roadDirection is
a vector field and so defines a different heading at different positions. Scenic defers evaluation of such expressions
until they are used in the definition of an object, when the required context (here, a position) is available. This is
implemented by representing lazy values as special objects which capture all operations applied to them (in a similar
way to Distribution objects). The main class of such objects is DelayedArgument: in the above example, the
relative to operator returns such an object. However, since lazy values can appear as arguments to distributions,
Distribution objects can also require lazy evaluation (prior to sampling); therefore both of these classes derive from
a common abstract class LazilyEvaluable.

Summary of Module Members

174 Chapter 1. Table of Contents

https://docs.python.org/3/library/exceptions.html#RuntimeError

Scenic

Functions

dependencies Dependencies which must be sampled before this value.
isLazy Whether this value requires either sampling or lazy eval-

uation.
makeDelayedFunctionCall Utility function for creating a lazily-evaluated function

call.
makeDelayedOperatorHandler

needsLazyEvaluation Whether the given value requires lazy evaluation.
needsSampling Whether this value requires sampling.
requiredProperties Set of properties needed to evaluate the given value, if

any.
toLazyValue Wrap a Python object in a DelayedArgument if it needs

lazy evaluation.
valueInContext Evaluate something in the context of an object being con-

structed.

Classes

DelayedArgument Specifier arguments requiring other properties to be
evaluated first.

LazilyEvaluable Values which may require evaluation in the context of an
object being constructed.

Member Details

class LazilyEvaluable(requiredProps, dependencies=())
Values which may require evaluation in the context of an object being constructed.

If a LazilyEvaluable specifies any properties it depends on, then it cannot be evaluated to a normal value except
during the construction of an object which already has values for those properties.

Parameters

• requiredProps – sequence of strings naming all properties which this value can depend
on (formally, which must exist in the object passed as the context to evaluateIn).

• dependencies – for internal use only (see Samplable).

Attributes
_requiredProperties – set of strings as above.

evaluateIn(context)
Evaluate this value in the context of an object being constructed.

The object must define all of the properties on which this value depends.

evaluateInner(context)
Actually evaluate in the given context, which provides all required properties.

Overridden by subclasses.

1.12. Scenic Internals 175

Scenic

static makeContext(**props)
Make a context with the given properties.

class DelayedArgument(requiredProps, value, _internal=False)
Bases: LazilyEvaluable

Specifier arguments requiring other properties to be evaluated first.

The value of a DelayedArgument is given by a function mapping the context (object under construction) to a
value.

Note: When called from a dynamic behavior, constructors for delayed arguments return actual evaluations, not
DelayedArgument objects. The agent running the behavior is used as the evaluation context.

Parameters

• requiredProps – see LazilyEvaluable.

• value – function taking a single argument (the context) and returning the corresponding
evaluation of this object.

• _internal (bool) – set to True for internal uses that need to suppress the exceptional
handling of calls from dynamic behaviors above.

makeDelayedFunctionCall(func, args, kwargs={})
Utility function for creating a lazily-evaluated function call.

valueInContext(value, context)
Evaluate something in the context of an object being constructed.

toLazyValue(thing)
Wrap a Python object in a DelayedArgument if it needs lazy evaluation.

requiredProperties(thing)
Set of properties needed to evaluate the given value, if any.

needsLazyEvaluation(thing)
Whether the given value requires lazy evaluation.

dependencies(thing)
Dependencies which must be sampled before this value.

needsSampling(thing)
Whether this value requires sampling.

isLazy(thing)
Whether this value requires either sampling or lazy evaluation.

176 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

Scenic

scenic.core.object_types

Implementations of the built-in Scenic classes.

Defines the 3 Scenic classes Point, OrientedPoint, and Object, and associated helper code (notably their base
class Constructible, which implements the handling of property definitions and Specifier Resolution).

Warning: In 2D compatibility mode, these classes are overwritten with 2D analogs. While we make an effort to
map imports to the correct class, this only works if imports use the form import scenic.core.object_types
as object_types followed by accessing object_types.Object. If you instead use from scenic.core.
object_types import Object, you may get the wrong class.

Summary of Module Members

Module Attributes

Interval Type alias for an interval (a pair of floats).
DimensionLimits Type alias for limits on dimensions (a triple of intervals).

Functions

defaultSideSurface Extracts a side surface from the occupiedSpace of an ob-
ject.

disableDynamicProxyFor

enableDynamicProxyFor

setDynamicProxyFor

Classes

Constructible Abstract base class for Scenic objects.
Mutator An object controlling how the mutate statement affects

an Object.
Object The Scenic class Object.
Object2D A 2D version of Object, used for backwards compati-

bility with Scenic 2.0
OrientationMutator Mutator adding Gaussian noise to yaw, pitch, and

roll.
OrientedPoint The Scenic class OrientedPoint.
OrientedPoint2D A 2D version of OrientedPoint, used for backwards

compatibility with Scenic 2.0
Point The Scenic base class Point.
Point2D A 2D version of Point, used for backwards compatibil-

ity with Scenic 2.0
PositionMutator Mutator adding Gaussian noise to position.

1.12. Scenic Internals 177

Scenic

Member Details

Interval

Type alias for an interval (a pair of floats).

alias of Tuple[float, float]

DimensionLimits

Type alias for limits on dimensions (a triple of intervals).

alias of Tuple[Tuple[float, float], Tuple[float, float], Tuple[float, float]]

class Constructible(properties, constProps=frozenset({}), _internal=False)
Bases: Samplable

Abstract base class for Scenic objects.

Scenic objects, which are constructed using specifiers, are implemented internally as instances of ordinary Python
classes. This abstract class implements the procedure to resolve specifiers and determine values for the properties
of an object, as well as several common methods supported by objects.

Warning: This class is an implementation detail, and none of its methods should be called directly from a
Scenic program.

classmethod _withProperties(properties, constProps=None)
Create an instance with the given property values.

Values of unspecified properties are determined by specifier resolution as usual.

classmethod _withSpecifiers(specifiers, constProps=None, register=True)
Create an instance from the given specifiers.

_copyWith(**overrides)
Copy this object, possibly overriding some of its properties.

class Mutator

An object controlling how the mutate statement affects an Object.

A Mutator can be assigned to the mutator property of an Object to control the effect of the mutate statement.
When mutation is enabled for such an object using that statement, the mutator’s appliedTo method is called to
compute a mutated version. The appliedTo method can also decide whether to apply mutators inherited from
superclasses.

appliedTo(obj)
Return a mutated copy of the given object. Implemented by subclasses.

The mutator may inspect the mutationScale attribute of the given object to scale its effect according to
the scale given in mutate O by S.

Returns
A pair consisting of the mutated copy of the object (which is most easily created using
_copyWith) together with a Boolean indicating whether the mutator inherited from the su-
perclass (if any) should also be applied.

class PositionMutator(stddevs)
Bases: Mutator

Mutator adding Gaussian noise to position. Used by Point.

178 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

Attributes
stddevs (tuple[float,float,float]) – standard deviation of noise for each dimension (x,y,z).

class OrientationMutator(stddevs)
Bases: Mutator

Mutator adding Gaussian noise to yaw, pitch, and roll. Used by OrientedPoint.

Attributes
stddevs (tuple[float,float,float]) – standard deviation of noise for each angle (yaw, pitch, roll).

class Point <specifiers>
Bases: Constructible

The Scenic base class Point.

The default mutator for Point adds Gaussian noise to position with a standard deviation given by the
positionStdDev property.

Properties

• position (Vector; dynamic) – Position of the point. Default value is the origin (0,0,0).

• width (float) – Default value 0 (only provided for compatibility with operators that expect
an Object).

• length (float) – Default value 0.

• height (float) – Default value 0.

• baseOffset (Vector) – Only provided for compatibility with the on region specifier. Default
value is (0,0,0).

• contactTolerance (float) – Only provided for compatibility with the specifiers that expect
an Object. Default value 0.

• onDirection (Vector) – The direction used to determine where to place this Point on a
region, when using the modifying on specifier. See the on region page for more details.
Default value is None, indicating the direction will be inferred from the region this object is
being placed on.

• visibleDistance (float) – Distance used to determine the visible range of this object. Default
value 50.

• viewRayDensity (float) – By default determines the number of rays used during visibility
checks. This value is the density of rays per degree of visible range in one dimension. The
total number of rays sent will be this value squared per square degree of this object’s view
angles. This value determines the default value for viewRayCount, so if viewRayCount is
overwritten this value is ignored. Default value 5.

• viewRayCount (None | tuple[float, float]) – The total number of horizontal and vertical
view angles to be sent, or None if this value should be computed automatically. Default
value None.

• viewRayDistanceScaling (bool) – Whether or not the number of rays should scale with the
distance to the object. Ignored if viewRayCount is passed. Default value False.

• mutationScale (float) – Overall scale of mutations, as set by the mutate statement. Default
value 0 (mutations disabled).

• positionStdDev (tuple[float, float, float]) – Standard deviation of Gaussian noise for each
dimension (x,y,z) to be added to this object’s position when mutation is enabled with scale
1. Default value (1,1,0), mutating only the x,y values of the point.

1.12. Scenic Internals 179

Scenic

property visibleRegion

The visible region of this object.

The visible region of a Point is a sphere centered at its position with radius visibleDistance.

canSee(other, occludingObjects=(), debug=False)
Whether or not this Point can see other.

Parameters

• other – A Point, OrientedPoint, or Object to check for visibility.

• occludingObjects – A list of objects that can occlude visibility.

Return type
bool

class OrientedPoint <specifiers>
Bases: Point

The Scenic class OrientedPoint.

The default mutator for OrientedPoint adds Gaussian noise to yaw while leaving pitch and roll unchanged,
using the three standard deviations (for yaw/pitch/roll respectively) given by the orientationStdDev property.
It then also applies the mutator for Point.

The default mutator for OrientedPoint adds Gaussian noise to yaw, pitch and roll according to
orientationStdDev. By default the standard deviations for pitch and roll are zero so that, by default,
only yaw is mutated.

Properties

• yaw (float; dynamic) – Yaw of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

• pitch (float; dynamic) – Pitch of the OrientedPoint in radians in the local coordinate
system provided by parentOrientation. Default value 0.

• roll (float; dynamic) – Roll of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

• parentOrientation (Orientation) – The local coordinate system that the
OrientedPoint’s yaw, pitch, and roll are interpreted in. Default value is the
global coordinate system, where an object is flat in the XY plane, facing North.

• orientation (Orientation; dynamic; final) – The orientation of the OrientedPoint
relative to the global coordinate system. Derived from the yaw, pitch, roll, and
parentOrientation of this OrientedPoint and non-overridable.

• heading (float; dynamic; final) – Yaw value of this OrientedPoint in the global coordinate
system. Derived from orientation and non-overridable.

• viewAngles (tuple[float,float]) – Horizontal and vertical view angles of this
OrientedPoint in radians. Horizontal view angle can be up to 2 and vertical view
angle can be up to . Values greater than these will be truncated. Default value is (2,)

• orientationStdDev (tuple[float,float,float]) – Standard deviation of Gaussian noise to add
to this object’s Euler angles (yaw, pitch, roll) when mutation is enabled with scale 1. Default
value (5°, 0, 0), mutating only the yaw of this OrientedPoint.

180 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#bool

Scenic

property visibleRegion

The visible region of this object.

The visible region of an OrientedPoint restricts that of Point (a sphere with radius visibleDistance)
based on the value of viewAngles. In general, it is a capped rectangular pyramid subtending an angle of
viewAngles[0] horizontally and viewAngles[1] vertically, as long as those angles are less than /2; larger
angles yield various kinds of wrap-around regions. See ViewRegion for details.

canSee(other, occludingObjects=(), debug=False)
Whether or not this OrientedPoint can see other.

Parameters

• other – A Point, OrientedPoint, or Object to check for visibility.

• occludingObjects – A list of objects that can occlude visibility.

Return type
bool

distancePast(vec)
Distance past a given point, assuming we’ve been moving in a straight line.

class Object <specifiers>
Bases: OrientedPoint

The Scenic class Object.

This is the default base class for Scenic classes.

Properties

• width (float) – Width of the object, i.e. extent along its X axis. Default value of 1 inherited
from the object’s shape.

• length (float) – Length of the object, i.e. extent along its Y axis. Default value of 1 inherited
from the object’s shape.

• height (float) – Height of the object, i.e. extent along its Z axis. Default value of 1 inherited
from the object’s shape.

• shape (Shape) – The shape of the object, which must be an instance of Shape. The default
shape is a box, with default unit dimensions.

• allowCollisions (bool) – Whether the object is allowed to intersect other objects. Default
value False.

• regionContainedIn (Region or None) – A Region the object is required to be contained
in. If None, the object need only be contained in the scenario’s workspace.

• baseOffset (Vector) – An offset from the position of the Object to the base of the object,
used by the on region specifier. Default value is (0, 0, -self.height/2), placing the
base of the Object at the bottom center of the Object’s bounding box.

• contactTolerance (float) – The maximum distance this object can be away from a surface
to be considered on the surface. Objects are placed at half this distance away from a point
when the on region specifier or a directional specifier like (left | right) of Object [by scalar]
is used. Default value 1e-4.

• sideComponentThresholds (DimensionLimits) – Used to determine the various sides
of an object (when using the default implementation). The three interior 2-tuples rep-
resent the maximum and minimum bounds for each dimension’s (x,y,z) surface. See

1.12. Scenic Internals 181

https://docs.python.org/3/library/functions.html#bool

Scenic

defaultSideSurface for details. Default value ((-0.5, 0.5), (-0.5, 0.5), (-0.
5, 0.5)).

• cameraOffset (Vector) – Position of the camera for the can see operator, relative to the
object’s position. Default (0, 0, 0).

• requireVisible (bool) – Whether the object is required to be visible from the ego object.
Default value False.

• occluding (bool) – Whether or not this object can occlude other objects. Default value True.

• showVisibleRegion (bool) – Whether or not to display the visible region in the Scenic in-
ternal visualizer.

• color (tuple[float, float, float, float] or tuple[float, float, float] or None) – An optional color
(with optional alpha) property that is used by the internal visualizer, or possibly simulators.
All values should be between 0 and 1. Default value None

• velocity (Vector; dynamic) – Velocity in dynamic simulations. Default value is the velocity
determined by speed and orientation.

• speed (float; dynamic) – Speed in dynamic simulations. Default value 0.

• angularVelocity (Vector; dynamic)

• angularSpeed (float; dynamic) – Angular speed in dynamic simulations. Default value 0.

• behavior – Behavior for dynamic agents, if any (see Dynamic Scenarios). Default value
None.

• lastActions – Tuple of actions taken by this agent in the last time step (or None if the object
is not an agent or this is the first time step).

startDynamicSimulation()

Hook called when the object is created in a dynamic simulation.

Does nothing by default; provided for objects to do simulator-specific initialization as needed.

Changed in version 3.0: This method is called on objects created in the middle of dynamic simulations, not
only objects present in the initial scene.

containsPoint(point)
Whether or not the space this object occupies contains a point

distanceTo(point)
The minimal distance from the space this object occupies to a given point

intersects(other)
Whether or not this object intersects another object

property visibleRegion

The visible region of this object.

The visible region of an Object is the same as that of an OrientedPoint (see OrientedPoint.
visibleRegion) except that it is offset by the value of cameraOffset (which is the zero vector by default).

canSee(other, occludingObjects=(), debug=False)
Whether or not this Object can see other.

Parameters

• other – A Point, OrientedPoint, or Object to check for visibility.

• occludingObjects – A list of objects that can occlude visibility.

182 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Scenic

Return type
bool

property corners

A tuple containing the corners of this object’s bounding box

property occupiedSpace

A region representing the space this object occupies

property _isConvex

Whether this object’s shape is convex

property boundingBox

A region representing this object’s bounding box

property inradius

A lower bound on the inradius of this object

property surface

A region containing the entire surface of this object

property onSurface

The surface used by the on specifier.

This region is used to sample position when another object is placed on this object. By default the top
surface of this object (topSurface), but can be overwritten by subclasses.

property topSurface

A region containing the top surface of this object

For how this surface is computed, see defaultSideSurface.

property rightSurface

A region containing the right surface of this object

For how this surface is computed, see defaultSideSurface.

property leftSurface

A region containing the left surface of this object

For how this surface is computed, see defaultSideSurface.

property frontSurface

A region containing the front surface of this object

For how this surface is computed, see defaultSideSurface.

property backSurface

A region containing the back surface of this object

For how this surface is computed, see defaultSideSurface.

property bottomSurface

A region containing the bottom surface of this object

For how this surface is computed, see defaultSideSurface.

property _isPlanarBox

Whether this object is a box aligned with the XY plane.

1.12. Scenic Internals 183

https://docs.python.org/3/library/functions.html#bool

Scenic

defaultSideSurface(occupiedSpace, dimension, positive, thresholds)
Extracts a side surface from the occupiedSpace of an object.

This function is the default implementation for computing a region representing a side surface of an object.
This is done by keeping only the faces of the object’s occupiedSpace mesh that have normal vectors with a
large/small enough x,y, or z component. For example, for the front surface of an object we would would keep all
faces that had a normal vector with y component greater than thresholds[1][1] and for the back surface of
an object we would keep all faces that had a normal vector with y component less than thresholds[1][0].

Parameters

• occupiedSpace – The occupiedSpace region of the object to extract the side surface from.

• dimension – The target dimension who’s component will be checked.

• positive – If False, the target component must be less than the first value in the appropriate
tuple. If True, the component must be greater than the second value in the appropriate tuple.

• thresholds – A 3-tuple of 2-tuples, one for each dimension (x,y,z), with each tuple con-
taining the thresholds for a non-positive and positive side, respectively, in each dimension.

• on_dimension – The on_dimension to be passed to the created surface.

Return type
MeshSurfaceRegion

class Point2D <specifiers>
Bases: Point

A 2D version of Point, used for backwards compatibility with Scenic 2.0

_3DClass

alias of Point

property visibleRegion

The visible region of this 2D point.

The visible region of a Point is a disc centered at its position with radius visibleDistance.

class OrientedPoint2D <specifiers>
Bases: Point2D, OrientedPoint

A 2D version of OrientedPoint, used for backwards compatibility with Scenic 2.0

_3DClass

alias of OrientedPoint

property visibleRegion

The visible region of this 2D oriented point.

The visible region of an OrientedPoint is a sector of the disc centered at its position with radius
visibleDistance, oriented along heading and subtending an angle of viewAngle.

class Object2D <specifiers>
Bases: OrientedPoint2D, Object

A 2D version of Object, used for backwards compatibility with Scenic 2.0

_3DClass

alias of Object

184 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True

Scenic

property visibleRegion

The visible region of this 2D object.

The visible region of a 2D Object is a circular sector as for OrientedPoint, except that the base of the
sector may be offset from position by the cameraOffset property (to allow modeling cameras which
are not located at the center of the object).

scenic.core.propositions

Objects representing propositions that can be used to specify conditions

Summary of Module Members

Classes

Always

And

Atomic

Eventually

Implies

Next

Not

Or

PropositionMonitor

PropositionNode Base class for temporal and non-temporal propositions
UnaryProposition Base class for temporal unary operators
Until

Member Details

class PropositionNode(ltl_node)
Base class for temporal and non-temporal propositions

is_temporal

tells if the proposition is temporal

1.12. Scenic Internals 185

Scenic

check_constrains_sampling()

Checks if the proposition can be used for pruning.

A requirement can be used for pruning if it is evaluated on the scene generation phase before simulation, and
violation in that phase immediately results in discarding the scene and regenerating a new one. For simplic-
ity, we currently check two special cases: 1. requirements with no temporal requirement 2. requirements
with only one always operator on top-level

Returns
bool – True if the requirement is one of the forms above. False otherwise.

property children: List[PropositionNode]

Returns all children of proposition tree.

Returns
list – proposition nodes that are directly under this node

flatten()

Flattens the tree and return the list of nodes.

Returns
list – list of all children nodes

Return type
List[PropositionNode]

class UnaryProposition(ltl_node)
Bases: PropositionNode

Base class for temporal unary operators

scenic.core.pruning

Pruning parts of the sample space which violate requirements.

The top-level function here, prune, is called as the very last step of scenario compilation (from translator.
constructScenarioFrom).

186 Chapter 1. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Scenic

Summary of Module Members

Functions

currentPropValue Get the current value of an object's property, taking into
account prior pruning.

feasibleRHPolygon Find where objects aligned to the given fields can satisfy
the given RH bounds.

isFunctionCall Match calls to a given function, taking into account dis-
tribution decorators.

isMethodCall Match calls to a given method, taking into account dis-
tribution decorators.

matchInRegion Match uniform samples from a Region
matchPolygonalField Match orientation yaw defined by a

PolygonalVectorField at the given position.
maxDistanceBetween Upper bound the distance between the given Objects.
prune Prune a Scenario, removing infeasible parts of the

space.
pruneContainment Prune based on the requirement that individual Objects

fit within their container.
pruneRelativeHeading Prune based on requirements bounding the relative head-

ing of an Object.
relativeHeadingRange Lower/upper bound the possible RH between two head-

ings with bounded disturbances.
visibilityBound Upper bound the distance from an Object to another it

can see.

Member Details

currentPropValue(obj, prop)
Get the current value of an object’s property, taking into account prior pruning.

isMethodCall(thing, method)
Match calls to a given method, taking into account distribution decorators.

isFunctionCall(thing, function)
Match calls to a given function, taking into account distribution decorators.

matchInRegion(position)
Match uniform samples from a Region

Returns the Region, if any, and a lower and upper bound on the distance the object will be placed along with any
offset that should be added to the base.

matchPolygonalField(heading, position)
Match orientation yaw defined by a PolygonalVectorField at the given position.

Matches the yaw attribute of orientations exactly equal to a PolygonalVectorField , or offset by a bounded
disturbance. Returns a triple consisting of the matched field if any, together with lower/upper bounds on the
disturbance.

prune(scenario, verbosity=1)
Prune a Scenario, removing infeasible parts of the space.

1.12. Scenic Internals 187

Scenic

This function directly modifies the Distributions used in the Scenario, but leaves the conditional distribution
under the scenario’s requirements unchanged. See Samplable.conditionTo.

Currently, the following pruning techniques are applied in order:

• Pruning based on containment (pruneContainment)

• Pruning based on relative heading bounds (pruneRelativeHeading)

pruneContainment(scenario, verbosity)
Prune based on the requirement that individual Objects fit within their container.

Specifically, if O is positioned uniformly (with a possible offset) in region B and has container C, then we can
instead pick a position uniformly in their intersection. If we can also lower bound the radius of O, then we can
first erode C by that distance minus that maximum offset distance.

pruneRelativeHeading(scenario, verbosity)
Prune based on requirements bounding the relative heading of an Object.

Specifically, if an object O is:

• positioned uniformly within a polygonal region B;

• aligned to a polygonal vector field F (up to a bounded offset);

and another object O’ is:

• aligned to a polygonal vector field F’ (up to a bounded offset);

• at most some finite maximum distance from O;

• required to have relative heading within a bounded offset of that of O;

then we can instead position O uniformly in the subset of B intersecting the cells of F which satisfy the relative
heading requirements w.r.t. some cell of F’ which is within the distance bound.

maxDistanceBetween(scenario, obj, target)
Upper bound the distance between the given Objects.

visibilityBound(obj, target)
Upper bound the distance from an Object to another it can see.

feasibleRHPolygon(field, offsetL, offsetR, tField, tOffsetL, tOffsetR, lowerBound, upperBound, maxDist)
Find where objects aligned to the given fields can satisfy the given RH bounds.

relativeHeadingRange(baseHeading, offsetL, offsetR, targetHeading, tOffsetL, tOffsetR)
Lower/upper bound the possible RH between two headings with bounded disturbances.

scenic.core.regions

Objects representing regions in space.

Manipulations of polygons and line segments are done using the shapely package.

Manipulations of meshes is done using the trimesh package.

188 Chapter 1. Table of Contents

https://github.com/shapely/shapely
https://trimsh.org/

Scenic

Summary of Module Members

Module Attributes

everywhere A Region containing all points.
nowhere A Region containing no points.

Functions

convertToFootprint Recursively convert a region into it's footprint.
orientationFor

regionFromShapelyObject Build a 'Region' from Shapely geometry.
toPolygon

1.12. Scenic Internals 189

Scenic

Classes

AllRegion Region consisting of all space.
BoxRegion Region in the shape of a rectangular cuboid, i.e. a box.
CircularRegion A circular region with a possibly-random center and ra-

dius.
CylinderSectionRegion

DifferenceRegion

EmptyRegion Region containing no points.
GridRegion A Region given by an obstacle grid.
IntersectionRegion

MeshRegion Region given by a scaled, positioned, and rotated mesh.
MeshSurfaceRegion A region representing the surface of a mesh.
MeshVolumeRegion A region representing the volume of a mesh.
PathRegion A region composed of multiple polylines in 3D space.
PointInRegionDistribution Uniform distribution over points in a Region
PointSetRegion Region consisting of a set of discrete points.
PolygonalFootprintRegion Region that contains all points in a polygonal footprint,

regardless of their z value.
PolygonalRegion Region given by one or more polygons (possibly with

holes) at a fixed z coordinate.
PolylineRegion Region given by one or more polylines (chain of line seg-

ments).
RectangularRegion A rectangular region with a possibly-random position,

heading, and size.
Region An abstract base class for Scenic Regions
SectorRegion A sector of a CircularRegion.
SpheroidRegion Region in the shape of a spheroid.
SurfaceCollisionTrimesh A Trimesh object that always returns non-convex.
UnionRegion

ViewRegion The viewing volume of a camera defined by a radius and
horizontal/vertical view angles.

ViewSectionRegion

190 Chapter 1. Table of Contents

Scenic

Exceptions

UndefinedSamplingException

Member Details

class Region(name, *dependencies, orientation=None)
Bases: Samplable, ABC

An abstract base class for Scenic Regions

abstract uniformPointInner()

Do the actual random sampling. Implemented by subclasses.

abstract containsPoint(point)
Check if the Region contains a point. Implemented by subclasses.

Return type
bool

abstract containsObject(obj)
Check if the Region contains an Object

Return type
bool

abstract containsRegionInner(reg, tolerance)
Check if the Region contains a Region

Return type
bool

abstract distanceTo(point)
Distance to this region from a given point.

Return type
float

abstract projectVector(point, onDirection)
Returns point projected onto this region along onDirection.

abstract property AABB

Axis-aligned bounding box for this Region.

intersects(other)
Check if this Region intersects another.

Return type
bool

intersect(other, triedReversed=False)
Get a Region representing the intersection of this one with another.

If both regions have a preferred orientation, the one of self is inherited by the intersection.

Return type
Region

1.12. Scenic Internals 191

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Scenic

union(other, triedReversed=False)
Get a Region representing the union of this one with another.

Not supported by all region types.

Return type
Region

difference(other)
Get a Region representing the difference of this one and another.

Not supported by all region types.

Return type
Region

static uniformPointIn(region)
Get a uniform Distribution over points in a Region.

orient(vec)
Orient the given vector along the region’s orientation, if any.

class PointInRegionDistribution(region)
Bases: VectorDistribution

Uniform distribution over points in a Region

class AllRegion(name, *dependencies, orientation=None)
Bases: Region

Region consisting of all space.

class EmptyRegion(name, *dependencies, orientation=None)
Bases: Region

Region containing no points.

everywhere = <AllRegion everywhere>

A Region containing all points.

Points may not be sampled from this region, as no uniform distribution over it exists.

nowhere = <EmptyRegion nowhere>

A Region containing no points.

Attempting to sample from this region causes the sample to be rejected.

regionFromShapelyObject(obj, orientation=None)
Build a ‘Region’ from Shapely geometry.

class SurfaceCollisionTrimesh(vertices=None, faces=None, face_normals=None, vertex_normals=None,
face_colors=None, vertex_colors=None, face_attributes=None,
vertex_attributes=None, metadata=None, process=True, validate=False,
merge_tex=None, merge_norm=None, use_embree=True,
initial_cache=None, visual=None, **kwargs)

Bases: Trimesh

A Trimesh object that always returns non-convex.

Used so that fcl doesn’t find collision without an actual surface intersection.

192 Chapter 1. Table of Contents

https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh

Scenic

class MeshRegion(mesh, dimensions=None, position=None, rotation=None, orientation=None, tolerance=1e-06,
centerMesh=True, onDirection=None, engine='blender', name=None, additionalDeps=[])

Bases: Region

Region given by a scaled, positioned, and rotated mesh.

This is an abstract class and cannot be instantiated directly. Instead a subclass should be used, like
MeshVolumeRegion or MeshSurfaceRegion.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False). The
mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon, and then
rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note that
scaling and rotation transformations may not behave as expected, since they are performed around the origin.

Parameters

• mesh – The base mesh for this MeshRegion.

• name – An optional name to help with debugging.

• dimensions – An optional 3-tuple, with the values representing width, length, height re-
spectively. The mesh will be scaled such that the bounding box for the mesh has these di-
mensions.

• position – An optional position, which determines where the center of the region will be.

• rotation – An optional Orientation object which determines the rotation of the object in
space.

• orientation – An optional vector field describing the preferred orientation at every point
in the region.

• tolerance – Tolerance for internal computations.

• centerMesh – Whether or not to center the mesh after copying and before transformations.

• onDirection – The direction to use if an object being placed on this region doesn’t specify
one.

• engine – Which engine to use for mesh operations. Either “blender” or “scad”.

• additionalDeps – Any additional sampling dependencies this region relies on.

classmethod fromFile(path, filetype=None, compressed=None, binary=False, **kwargs)
Load a mesh region from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file. “foo.obj” is assumed to be an un-
compressed .obj file. “foo” is an unknown filetype, so unless a filetype is provided an exception will be
raised.

Parameters

• path (str) – Path to the file to import.

• filetype (str) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load.

• compressed (bool) – Whether or not this file is compressed (with bz2). This will be
inferred if not provided.

• binary (bool) – Whether or not to open the file as a binary file.

• kwargs – Additional arguments to the MeshRegion initializer.

1.12. Scenic Internals 193

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://trimsh.org/trimesh.html#trimesh.load
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scenic

projectVector(point, onDirection)
Find the nearest point in the region following the onDirection or its negation.

Returns None if no such points exist.

property circumcircle

Compute an upper bound on the radius of the region

property boundingPolygon

A PolygonalRegion bounding the mesh

class MeshVolumeRegion(*args, **kwargs)
Bases: MeshRegion

A region representing the volume of a mesh.

The mesh passed must be a trimesh.base.Trimesh object that represents a well defined volume (i.e. the
is_volume property must be true), meaning the mesh must be watertight, have consistent winding and have
outward facing normals.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False). The
mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon, and then
rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note that
scaling and rotation transformations may not behave as expected, since they are performed around the origin.

Parameters

• mesh – The base mesh for this region.

• name – An optional name to help with debugging.

• dimensions – An optional 3-tuple, with the values representing width, length, height re-
spectively. The mesh will be scaled such that the bounding box for the mesh has these di-
mensions.

• position – An optional position, which determines where the center of the region will be.

• rotation – An optional Orientation object which determines the rotation of the object in
space.

• orientation – An optional vector field describing the preferred orientation at every point
in the region.

• tolerance – Tolerance for internal computations.

• centerMesh – Whether or not to center the mesh after copying and before transformations.

• onDirection – The direction to use if an object being placed on this region doesn’t specify
one.

• engine – Which engine to use for mesh operations. Either “blender” or “scad”.

intersects(other, triedReversed=False)
Check if this region intersects another.

This function handles intersect calculations for MeshVolumeRegion with: * MeshVolumeRegion *
MeshSurfaceRegion * PolygonalFootprintRegion

containsPoint(point)
Check if this region’s volume contains a point.

194 Chapter 1. Table of Contents

https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh

Scenic

containsObject(obj)
Check if this region’s volume contains an Object.

intersect(other, triedReversed=False)
Get a Region representing the intersection of this region with another.

This function handles intersection computation for MeshVolumeRegion with: * MeshVolumeRegion *
PolygonalFootprintRegion * PolygonalRegion * PathRegion * PolylineRegion

union(other, triedReversed=False)
Get a Region representing the union of this region with another.

This function handles union computation for MeshVolumeRegion with:

• MeshVolumeRegion

difference(other, debug=False)
Get a Region representing the difference of this region with another.

This function handles union computation for MeshVolumeRegion with: * MeshVolumeRegion *
PolygonalFootprintRegion

distanceTo(point)
Get the minimum distance from this region to the specified point.

getSurfaceRegion()

Return a region equivalent to this one, except as a MeshSurfaceRegion

getVolumeRegion()

Returns this object, as it is already a MeshVolumeRegion

class MeshSurfaceRegion(*args, **kwargs)
Bases: MeshRegion

A region representing the surface of a mesh.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False). The
mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon, and then
rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note that
scaling and rotation transformations may not behave as expected, since they are performed around the origin.

If an orientation is not passed to this mesh, a default orientation is provided which provides an orientation that
aligns an object’s z axis with the normal vector of the face containing that point, and has a yaw aligned with a
yaw of 0 in the global coordinate system.

Parameters

• mesh – The base mesh for this region.

• name – An optional name to help with debugging.

• dimensions – An optional 3-tuple, with the values representing width, length, height re-
spectively. The mesh will be scaled such that the bounding box for the mesh has these di-
mensions.

• position – An optional position, which determines where the center of the region will be.

• rotation – An optional Orientation object which determines the rotation of the object in
space.

1.12. Scenic Internals 195

Scenic

• orientation – An optional vector field describing the preferred orientation at every point
in the region.

• tolerance – Tolerance for internal computations.

• centerMesh – Whether or not to center the mesh after copying and before transformations.

• onDirection – The direction to use if an object being placed on this region doesn’t specify
one.

intersects(other, triedReversed=False)
Check if this region’s surface intersects another.

This function handles intersection computation for MeshSurfaceRegion with: * MeshSurfaceRegion
* PolygonalFootprintRegion

containsPoint(point)
Check if this region’s surface contains a point.

distanceTo(point)
Get the minimum distance from this object to the specified point.

getFlatOrientation(pos)
Get a flat orientation at a point in the region.

Given a point on the surface of the mesh, returns an orientation that aligns an instance’s z axis with the
normal vector of the face containing that point. Since there are infinitely many such orientations, the
orientation returned has yaw aligned with a global yaw of 0.

If pos is not within self.tolerance of the surface of the mesh, a RejectionException is raised.

getVolumeRegion()

Return a region equivalent to this one, except as a MeshVolumeRegion

getSurfaceRegion()

Returns this object, as it is already a MeshSurfaceRegion

class BoxRegion(*args, **kwargs)
Bases: MeshVolumeRegion

Region in the shape of a rectangular cuboid, i.e. a box.

By default the unit box centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh parameter which is excluded.

class SpheroidRegion(*args, **kwargs)
Bases: MeshVolumeRegion

Region in the shape of a spheroid.

By default the unit sphere centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh parameter which is excluded.

class PolygonalFootprintRegion(polygon, name=None)
Bases: Region

Region that contains all points in a polygonal footprint, regardless of their z value.

This region cannot be sampled from, as it has infinite height and therefore infinite volume.

Parameters

196 Chapter 1. Table of Contents

Scenic

• polygon – A shapely Polygon or MultiPolygon, that defines the footprint of this region.

• name – An optional name to help with debugging.

intersect(other, triedReversed=False)
Get a Region representing the intersection of this region with another.

This function handles intersection computation for PolygonalFootprintRegion with: *
PolygonalFootprintRegion * PolygonalRegion

union(other, triedReversed=False)
Get a Region representing the union of this region with another.

This function handles union computation for PolygonalFootprintRegion with: *
PolygonalFootprintRegion

difference(other)
Get a Region representing the difference of this region with another.

This function handles difference computation for PolygonalFootprintRegion with: *
PolygonalFootprintRegion

containsPoint(point)
Checks if a point is contained in the polygonal footprint.

Equivalent to checking if the (x, y) values are contained in the polygon.

Parameters
point – A point to be checked for containment.

containsObject(obj)
Checks if an object is contained in the polygonal footprint.

Parameters
obj – An object to be checked for containment.

distanceTo(point)
Minimum distance from this polygonal footprint to the target point

approxBoundFootprint(centerZ, height)
Returns an overapproximation of boundFootprint

Returns a volume that is guaranteed to contain the result of boundFootprint(centerZ, height), but may be
taller. Used to save time on recomputing boundFootprint.

boundFootprint(centerZ, height)
Cap the footprint of the object to a given height, centered at a given z.

Parameters

• centerZ – The resulting mesh will be vertically centered at this height.

• height – The resulting mesh will have this height.

class PathRegion(points=None, polylines=None, tolerance=1e-08, name=None)
Bases: Region

A region composed of multiple polylines in 3D space.

One of points or polylines should be provided.

Parameters

• points – A list of points defining a single polyline.

1.12. Scenic Internals 197

Scenic

• polylines – A list of list of points, defining multiple polylines.

• tolerance – Tolerance used internally.

class PolygonalRegion(points=None, polygon=None, z=0, orientation=None, name=None, additionalDeps=[])
Bases: Region

Region given by one or more polygons (possibly with holes) at a fixed z coordinate.

The region may be specified by giving either a sequence of points defining the boundary of the polygon, or a
collection of shapely polygons (a Polygon or MultiPolygon).

Parameters

• points – sequence of points making up the boundary of the polygon (or None if using the
polygon argument instead).

• polygon – shapely polygon or collection of polygons (or None if using the points argument
instead).

• z – The z coordinate the polygon is located at.

• orientation (VectorField ; optional) – preferred orientation to use.

• name (str; optional) – name for debugging.

property boundary: PolylineRegion

Get the boundary of this region as a PolylineRegion.

class CircularRegion(center, radius, resolution=32, name=None)
Bases: PolygonalRegion

A circular region with a possibly-random center and radius.

Parameters

• center (Vector) – center of the disc.

• radius (float) – radius of the disc.

• resolution (int; optional) – number of vertices to use when approximating this region
as a polygon.

• name (str; optional) – name for debugging.

class SectorRegion(center, radius, heading, angle, resolution=32, name=None)
Bases: PolygonalRegion

A sector of a CircularRegion.

This region consists of a sector of a disc, i.e. the part of a disc subtended by a given arc.

Parameters

• center (Vector) – center of the corresponding disc.

• radius (float) – radius of the disc.

• heading (float) – heading of the centerline of the sector.

• angle (float) – angle subtended by the sector.

• resolution (int; optional) – number of vertices to use when approximating this region
as a polygon.

• name (str; optional) – name for debugging.

198 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

class RectangularRegion(position, heading, width, length, name=None)
Bases: PolygonalRegion

A rectangular region with a possibly-random position, heading, and size.

Parameters

• position (Vector) – center of the rectangle.

• heading (float) – the heading of the length axis of the rectangle.

• width (float) – width of the rectangle.

• length (float) – length of the rectangle.

• name (str; optional) – name for debugging.

class PolylineRegion(points=None, polyline=None, orientation=True, name=None)
Bases: Region

Region given by one or more polylines (chain of line segments).

The region may be specified by giving either a sequence of points or shapely polylines (a LineString or
MultiLineString).

Parameters

• points – sequence of points making up the polyline (or None if using the polyline argument
instead).

• polyline – shapely polyline or collection of polylines (or None if using the points argu-
ment instead).

• orientation (optional) – preferred orientation to use, or True to use an orientation
aligned with the direction of the polyline (the default).

• name (str; optional) – name for debugging.

property start

Get an OrientedPoint at the start of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if there is one (the default orientation
pointing along the polyline).

property end

Get an OrientedPoint at the end of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if there is one (the default orientation
pointing along the polyline).

signedDistanceTo(point)
Compute the signed distance of the PolylineRegion to a point.

The distance is positive if the point is left of the nearest segment, and negative otherwise.

Return type
float

pointAlongBy(distance, normalized=False)
Find the point a given distance along the polyline from its start.

If normalized is true, then distance should be between 0 and 1, and is interpreted as a fraction of the
length of the polyline. So for example pointAlongBy(0.5, normalized=True) returns the polyline’s
midpoint.

1.12. Scenic Internals 199

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float

Scenic

Return type
Vector

class PointSetRegion(name, points, kdTree=None, orientation=None, tolerance=1e-06)
Bases: Region

Region consisting of a set of discrete points.

No Object can be contained in a PointSetRegion, since the latter is discrete. (This may not be true for
subclasses, e.g. GridRegion.)

Parameters

• name (str) – name for debugging

• points (arraylike) – set of points comprising the region

• kdTree (scipy.spatial.KDTree, optional) – k-D tree for the points (one will be computed
if none is provided)

• orientation (VectorField ; optional) – preferred orientation for the region

• tolerance (float; optional) – distance tolerance for checking whether a point lies in
the region

convertToFootprint(region)
Recursively convert a region into it’s footprint.

For a polygonal region, returns the footprint. For composed regions, recursively reconstructs them using the
footprints of their sub regions.

class GridRegion(name, grid, Ax, Ay, Bx, By, orientation=None)
Bases: PointSetRegion

A Region given by an obstacle grid.

A point is considered to be in a GridRegion if the nearest grid point is not an obstacle.

Parameters

• name (str) – name for debugging

• grid – 2D list, tuple, or NumPy array of 0s and 1s, where 1 indicates an obstacle and 0
indicates free space

• Ax (float) – spacing between grid points along X axis

• Ay (float) – spacing between grid points along Y axis

• Bx (float) – X coordinate of leftmost grid column

• By (float) – Y coordinate of lowest grid row

• orientation (VectorField ; optional) – orientation of region

class ViewRegion(visibleDistance, viewAngles, name=None, position=Vector(0, 0, 0), rotation=None,
orientation=None, angleCutoff=0.01, tolerance=1e-08)

Bases: MeshVolumeRegion

The viewing volume of a camera defined by a radius and horizontal/vertical view angles.

The default view region can take several forms, depending on the viewAngles parameter:

• Case 1: viewAngles[1] = 180 degrees

– Case 2.a viewAngles[0] = 360 degrees => Sphere

200 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

– Case 2.b viewAngles[0] < 360 degrees => Sphere & CylinderSectionRegion

• Case 2: viewAngles[1] < 180 degrees

– Case 2.a viewAngles[0] = 360 degrees => Sphere - (Cone + Cone) (Cones on z axis expanding from
origin)

– Case 2.b viewAngles[0] < 360 degrees => Sphere & ViewSectionRegion

When making changes to this class you should run pytest -k test_viewRegion --exhaustive.

Parameters

• visibleDistance – The view distance for this region.

• viewAngles – The view angles for this region.

• name – An optional name to help with debugging.

• position – An optional position, which determines where the center of the region will be.

• rotation – An optional Orientation object which determines the rotation of the object in
space.

• orientation – An optional vector field describing the preferred orientation at every point
in the region.

• angleCutoff – How close to 180/360 degrees an angle has to be to be mapped to that value.

• tolerance – Tolerance for collision computations.

scenic.core.requirements

Support for hard and soft requirements.

Summary of Module Members

Functions

getAllGlobals Find all names the given lambda depends on, along with
their current bindings.

1.12. Scenic Internals 201

Scenic

Classes

BlanketCollisionRequirement

BoundRequirement

CompiledRequirement

ContainmentRequirement

DynamicMonitorRequirement

DynamicRequirement

IntersectionRequirement

MonitorRequirement MonitorRequirement is a BoundRequirement with tem-
poral proposition monitor

NonVisibilityRequirement

PendingRequirement

RequirementType An enumeration.
SamplingRequirement A requirement to be checked to validate a sample.
VisibilityRequirement

Member Details

class RequirementType(value)
Bases: Enum

An enumeration.

getAllGlobals(req, restrictTo=None)
Find all names the given lambda depends on, along with their current bindings.

class MonitorRequirement(compiledReq, sample, proposition)
Bases: BoundRequirement

MonitorRequirement is a BoundRequirement with temporal proposition monitor

class SamplingRequirement(optional)
Bases: ABC

A requirement to be checked to validate a sample.

Parameters
optional – Whether or not this requirement must be checked to validate the sample. Optional
samples can be checked, and if False imply that the sample is invalid, but do not need to be
checked if all non-optional requirements are satisfied.

abstract falsifiedByInner(sample)
Returns False if the requirement is falsifed, True otherwise

202 Chapter 1. Table of Contents

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/abc.html#abc.ABC

Scenic

abstract property violationMsg

Message to be printed if the requirement is violated

scenic.core.sample_checking

The SampleChecker class and it’s implementations.

Summary of Module Members

Classes

BasicChecker Basic requirement checker.
SampleChecker

WeightedAcceptanceChecker Picks the requirement with the lowest time-weighted ac-
ceptance chance.

Member Details

class BasicChecker(initialCollisionCheck)
Bases: SampleChecker

Basic requirement checker.

Evaluates requirements in order, with a tiny bit of tuning.

class WeightedAcceptanceChecker(bufferSize=10)
Bases: SampleChecker

Picks the requirement with the lowest time-weighted acceptance chance.

Incentivizes exploration by initializing all buffer values to 0.

Parameters
bufferSize – Max samples to use when calculating time-weighted rejection chance.

sortedRequirements()

Return the list of requirements in sorted order

updateMetrics(req, new_metrics)
Update the metrics for a given requirement

scenic.core.scenarios

Scenario and scene objects.

1.12. Scenic Internals 203

Scenic

Summary of Module Members

Classes

Scenario A compiled Scenic scenario, from which scenes can be
sampled.

Scene A scene generated from a Scenic scenario.

Member Details

class Scene

A scene generated from a Scenic scenario.

To run a dynamic simulation from a scene, create an instance of Simulator for the simulator you want to use,
and pass the scene to its simulate method.

Attributes

• objects (tuple of Object) – All objects in the scene. The ego object is first, if there is one.

• egoObject (Object or None) – The ego object, if any.

• params (dict) – Dictionary mapping the name of each global parameter to its value.

• workspace (Workspace) – The workspace for the scenario.

Changed in version 3.0: The egoObject attribute can now be None.

dumpAsScenicCode(stream=sys.stdout)
Dump Scenic code reproducing this scene to the given stream.

For non-human-readable but complete serialization of scenes see Scenario.sceneToBytes and
Scenario.sceneFromBytes.

Note: This function does not currently reproduce parts of the original Scenic program defining behaviors,
functions, etc. used in the scene. Also, if the scene involves any user-defined types, they must provide a
suitable __repr__ for this function to print them properly.

Parameters
stream (text file) – Where to print the code (default sys.stdout).

show3D(axes)
Render a 3D schematic of the scene for debugging.

show2D(zoom=None, block=True)
Render a 2D schematic of the scene for debugging.

class Scenario

A compiled Scenic scenario, from which scenes can be sampled.

generate(maxIterations=2000, verbosity=0, feedback=None)
Sample a Scene from this scenario.

For a description of how scene generation is done, see Scene Generation.

Parameters

204 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/reference/datamodel.html#object.__repr__
https://docs.python.org/3/glossary.html#term-text-file
https://docs.python.org/3/library/sys.html#sys.stdout

Scenic

• maxIterations (int) – Maximum number of rejection sampling iterations.

• verbosity (int) – Verbosity level.

• feedback (float) – Feedback to pass to external samplers doing active sampling. See
scenic.core.external_params.

Returns
A pair with the sampled Scene and the number of iterations used.

Raises
RejectionException – if no valid sample is found in maxIterations iterations.

generateBatch(numScenes, maxIterations=inf, verbosity=0, feedback=None)
Sample several Scene objects from this scenario.

For a description of how scene generation is done, see Scene Generation.

Parameters

• numScenes (int) – Number of scenes to generate.

• maxIterations (int) – Maximum number of rejection sampling iterations (over all
scenes).

• verbosity (int) – Verbosity level.

• feedback (float) – Feedback to pass to external samplers doing active sampling. See
scenic.core.external_params.

Returns
A pair with a list of the sampled Scene objects and the total number of iterations used.

Raises
RejectionException – if not enough valid samples are found in maxIterations iterations.

resetExternalSampler()

Reset the scenario’s external sampler, if any.

If the Python random seed is reset before calling this function, this should cause the sequence of generated
scenes to be deterministic.

conditionOn(scene=None, objects=(), params={})
Condition the scenario on particular values for some objects or parameters.

This method changes the distribution of the scenario and should be used with care: it does not attempt to
check that the new distribution is equivalent to the old one or that it has nonzero probability of satisfying
the scenario’s requirements.

For example, to sample object #5 in the scenario once and then leave it fixed in all subsequent samples:

sceneA, _ = scenario.generate()
scenario.conditionOn(scene=sceneA, objects=(5,))
sceneB, _ = scenario.generate() # will have the same object 5 as sceneA

Parameters

• scene (Scene) – Scene from which to take values for the given objects, if any.

• objects – Sequence of indices specifying which objects in this scenario should be condi-
tioned on the corresponding objects in scene (i.e. those with the same index in the list of
objects).

1.12. Scenic Internals 205

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Scenic

• params (dict) – Dictionary of global parameters to condition and their new values (which
may be constants or distributions).

sceneToBytes(scene, allowPickle=False)
Encode a Scene sampled from this scenario to a bytes object.

The serialized scene may be reconstituted with sceneFromBytes. The format used is suitable for long-
term storage of scenes, although it is not guaranteed to be compatible across major versions of Scenic. For
further discussion and usage examples, see Storing Scenes/Simulations for Later Use.

Raises
SerializationError – if the scene could not be properly encoded. This should not happen
unless your scenario includes a user-defined Distribution subclass with an unusual value
type. If you get this exception, see the documentation for the internal class Serializer for
solutions.

sceneFromBytes(data, verify=True, allowPickle=False)
Decode a Scene serialized with sceneToBytes.

Parameters

• data (bytes) – Encoding of a Scene sampled from this scenario.

• verify (bool) – If true (the default), raise an exception if the scene appears to have been
generated from a different scenario (meaning it will almost certainly not decode correctly).

• allowPickle (bool) – Enable using pickle to deserialize custom object types. False by
default because it allows malicious data to trigger arbitrary code execution (see the pickle
documentation). Use this option only if you trust the source of the data and it is not practical
to implement serialization for the datatypes you need.

Raises
SerializationError – if the scene could not be properly decoded.

simulationToBytes(simulation, allowPickle=False)
Encode a Simulation sampled from this scenario to a bytes object.

The serialized simulation may be replayed with simulationFromBytes. As with sceneToBytes, the
format used is suitable for long-term storage but is not guaranteed to be compatible across major versions
of Scenic.

Raises
SerializationError – if the simulation could not be properly encoded. This should not
happen unless your scenario includes a user-defined Distribution subclass with an unusual
value type. If you get this exception, see the documentation for the internal class Serializer
for solutions.

Note: The returned data encodes both the scene comprising the initial condition for the simulation and
the simulation itself. If you will be running many simulations starting from the same scene, you can save
space by separately encoding the scene and the various simulations: use sceneToBytes and Simulation.
getReplay for encoding, and the replay argument of Simulator.simulate for decoding.

simulationFromBytes(data, simulator, *, verify=True, allowPickle=False, **kwargs)
Replay a Simulation serialized with simulationToBytes.

Parameters

• data (bytes) – Encoding of a Simulation sampled from this scenario.

206 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Scenic

• simulator (Simulator) – Simulator in which to run the simulation. Using a differ-
ent simulator configuration than that used for the original simulation may cause errors or
unexpected behavior. If you need to do this, see the enableDivergenceCheck option of
Simulator.simulate.

• verify (bool) – As in sceneFromBytes.

• allowPickle (bool) – As in sceneFromBytes.

• kwargs – All additional keyword arguments are passed through to the simulator; see
Simulator.simulate for the available configuration options.

Returns
A Simulation object representing the completed simulation.

Raises

• SerializationError – if the simulation could not be properly decoded.

• DivergenceError – if the replayed simulation has diverged from the original (requires the
original to have been run with divergence-checking support; see Simulator.simulate).

scenic.core.serialization

Utilities to help serialize Scenic objects.

The functions in this module usually do not need to be used directly. For high-level serialization APIs, see Scenario.
sceneToBytes, Scenario.simulationToBytes, and Scene.dumpAsScenicCode.

Summary of Module Members

1.12. Scenic Internals 207

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scenic

Functions

dumpAsScenicCode Utility function to help export Scenic objects as Scenic
code.

readBool

readBytes

readFloat

readInt

readStr

scenicToJSON Utility function to help serialize Scenic objects to JSON.
writeBool

writeBytes

writeFloat

writeInt

writeStr

Classes

Serializer Class for (de)serializing scenes, etc.

Exceptions

SerializationError An error occurring during serialization/deserialization
of Scenic objects.

Member Details

scenicToJSON(obj)
Utility function to help serialize Scenic objects to JSON.

Suitable for passing as the default argument to json.dump. At the moment this only supports very basic types
like scalars and vectors: it does not allow encoding of an entire Object.

dumpAsScenicCode(value, stream)

Utility function to help export Scenic objects as Scenic code.

exception SerializationError

Bases: Exception

An error occurring during serialization/deserialization of Scenic objects.

208 Chapter 1. Table of Contents

https://docs.python.org/3/library/json.html#json.dump
https://docs.python.org/3/library/exceptions.html#Exception

Scenic

class Serializer(data=b'', allowPickle=False, detectEnd=False)
Class for (de)serializing scenes, etc.

Ordinary Scenic users do not need to know about this class: they can use public APIs such as Scenario.
sceneToBytes. If you have defined a custom type of Distribution whose valueType isn’t one of the types
used by the built-in primitive distributions (i.e. int, float, Vector), read on.

The sampled value of a Distribution is encoded as follows:

1. If the Distribution is _deterministic, recursively encode the sampled values of its dependencies.

2. If its valueType is a type for which we have a “codec” (like int or float), use the encoding function
provided by the codec.

3. If the valueType provides a encodeTo method, use that.

4. If the user has allowed the use of pickle, pickle the value.

5. Otherwise raise a SerializationError.

Thus, you need only extend the serialization mechanism if your Distribution cannot be made deterministic
(by adding appropriate dependencies with simpler valueTypes) and it has an unusual valueType. In that case,
it’s best to have your valueType implement encodeTo and decodeFrom methods: see Vector for example.
If for some reason you can’t add those methods to the class in question, you can use Serializer.addCodec
to register encoder/decoder functions. Finally, if you’re only using serialization internally and aren’t concerned
about security issues or making the encoding as compact as possible, you can turn on the allowPickle option:
this will use pickle to encode any objects for which no specialized encoder is known.

classmethod sceneFormatVersion()

Current version of the Scene serialization format.

Must be incremented if the writeScene method or any of its helper methods (e.g. writeValue) change,
or if a new codec is added.

classmethod replayFormatVersion()

Current version of the Simulation replay serialization format.

Must be incremented if the writeReplayHeader or writeValue methods change, or if a new codec is
added.

writeScene(scenario, scene)
Serialize a Scene.

writeReplayHeader(flags)
Begin the encoding of a Simulation replay.

classmethod addCodec(ty, encoder, decoder)
Register encoder and decoder functions for the given type.

The encoder function should have signature encoder(value, stream) with stream a binary file-like
object. The decoder function should have signature decoder(stream) and return the decoded value.

writeValue(value, ty)
Serialize a value of the given type.

1.12. Scenic Internals 209

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/glossary.html#term-binary-file
https://docs.python.org/3/glossary.html#term-binary-file

Scenic

scenic.core.shapes

Module containing the Shape class and its subclasses, which represent shapes of Objects

Summary of Module Members

Classes

BoxShape A box shape with all dimensions 1 by default.
ConeShape A cone shape with all dimensions 1 by default.
CylinderShape A cylinder shape with all dimensions 1 by default.
MeshShape A Shape subclass defined by a trimesh.base.

Trimesh object.
Shape An abstract base class for Scenic shapes.
SpheroidShape A spheroid shape with all dimensions 1 by default.

Member Details

class Shape(dimensions, scale)
Bases: ABC

An abstract base class for Scenic shapes.

Represents a physical shape in Scenic. Does not encode position or orientation, which are handled by the Region
class. Does contain dimension information, which is used as a default value by any Object with this shape and
can be overwritten.

If dimensions and scale are both specified the dimensions are first set by dimensions, and then scaled by scale.

Parameters

• dimensions – The raw (before scaling) dimensions of the shape.

• scale – Scales all the dimensions of the shape by a multiplicative factor.

property containsCenter

Whether or not this object contains its central point

class MeshShape(mesh, dimensions=None, scale=1, initial_rotation=None)
Bases: Shape

A Shape subclass defined by a trimesh.base.Trimesh object.

The mesh passed must be a trimesh.base.Trimesh object that represents a well defined volume (i.e. the
is_volume property must be true), meaning the mesh must be watertight, have consistent winding and have
outward facing normals.

Parameters

• mesh – A mesh object.

• dimensions – The raw (before scaling) dimensions of the shape. If dimensions and scale
are both specified the dimensions are first set by dimensions, and then scaled by scale.

• scale – Scales all the dimensions of the shape by a multiplicative factor. If dimensions and
scale are both specified the dimensions are first set by dimensions, and then scaled by scale.

210 Chapter 1. Table of Contents

https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh
https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh
https://docs.python.org/3/library/abc.html#abc.ABC
https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh
https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh

Scenic

• initial_rotation – A 3-tuple containing the yaw, pitch, and roll respectively to apply
when loading the mesh. Note the initial_rotation must be fixed.

classmethod fromFile(path, filetype=None, compressed=None, binary=False, **kwargs)
Load a mesh shape from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file. “foo.obj” is assumed to be an un-
compressed .obj file. “foo” is an unknown filetype, so unless a filetype is provided an exception will be
raised.

Parameters

• path (str) – Path to the file to import.

• filetype (str) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load.

• compressed (bool) – Whether or not this file is compressed (with bz2). This will be
inferred if not provided.

• binary (bool) – Whether or not to open the file as a binary file.

• kwargs – Additional arguments to the MeshShape initializer.

class BoxShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)
Bases: MeshShape

A box shape with all dimensions 1 by default.

class CylinderShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None, sections=24)
Bases: MeshShape

A cylinder shape with all dimensions 1 by default.

class ConeShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)
Bases: MeshShape

A cone shape with all dimensions 1 by default.

class SpheroidShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)
Bases: MeshShape

A spheroid shape with all dimensions 1 by default.

scenic.core.simulators

Interface between Scenic and simulators.

This module defines the core classes Simulator and Simulation which orchestrate dynamic simulations. Each
simulator interface defines subclasses of these classes for their particular simulator.

Ordinary Scenic users only need to know about the top-level simulation API Simulator.simulate and the attributes
of the Simulation class (in particular the result attribute, which captures information about the result of the simu-
lation as a SimulationResult object).

1.12. Scenic Internals 211

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://trimsh.org/trimesh.html#trimesh.load
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scenic

Summary of Module Members

Classes

Action An action which can be taken by an agent for one step of
a simulation.

DummySimulation Minimal Simulation subclass for DummySimulator.
DummySimulator Simulator which does (almost) nothing, for testing and

debugging purposes.
EndScenarioAction Special action indicating it is time to end the current sce-

nario.
EndSimulationAction Special action indicating it is time to end the simulation.
ReplayMode An enumeration.
Simulation A single simulation run.
SimulationResult Result of running a simulation.
Simulator A simulator which can execute dynamic simulations

from Scenic scenes.
TerminationType Enum describing the possible ways a simulation can end.

Exceptions

DivergenceError Exception indicating simulation replay failed due to sim-
ulator nondeterminism.

RejectSimulationException Exception indicating a requirement was violated at run-
time.

SimulationCreationError Exception indicating a simulation could not be run from
the given scene.

SimulatorInterfaceWarning Warning indicating an issue with the interface to an ex-
ternal simulator.

Member Details

exception SimulatorInterfaceWarning

Bases: UserWarning

Warning indicating an issue with the interface to an external simulator.

exception SimulationCreationError

Bases: Exception

Exception indicating a simulation could not be run from the given scene.

Can also be issued during a simulation if dynamic object creation fails.

exception DivergenceError

Bases: Exception

Exception indicating simulation replay failed due to simulator nondeterminism.

exception RejectSimulationException

Bases: Exception

Exception indicating a requirement was violated at runtime.

212 Chapter 1. Table of Contents

https://docs.python.org/3/library/exceptions.html#UserWarning
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

Scenic

class Simulator

Bases: ABC

A simulator which can execute dynamic simulations from Scenic scenes.

Simulator interfaces which support dynamic simulations should implement a subclass of Simulator. An in-
stance of the class represents a connection to the simulator suitable for running multiple simulations (not neces-
sarily of the same Scenic program). For a simple example of how to implement this class, and its counterpart
Simulation for individual simulations, see scenic.simulators.lgsvl.simulator.

Users who create an instance of Simulator should call its destroy method when they are finished running
simulations to allow the interface to do any necessary cleanup.

simulate(scene, maxSteps=None, maxIterations=1, *, timestep=None, verbosity=None,
raiseGuardViolations=False, replay=None, enableReplay=True, enableDivergenceCheck=False,
divergenceTolerance=0, continueAfterDivergence=False, allowPickle=False)

Run a simulation for a given scene.

For details on how simulations are run, see Execution of Dynamic Scenarios.

Parameters

• scene (Scene) – Scene from which to start the simulation (sampled using Scenario.
generate).

• maxSteps (int) – Maximum number of time steps for the simulation, or None to not
impose a time bound.

• maxIterations (int) – Maximum number of rejection sampling iterations.

• timestep (float) – Length of a time step in seconds, or None to use a default provided
by the simulator interface. Some interfaces may not allow arbitrary time step lengths or
may require the timestep to be set when creating the Simulator and not customized per-
simulation.

• verbosity (int) – If not None, override Scenic’s global verbosity level (from the
--verbosity option or scenic.setDebuggingOptions).

• raiseGuardViolations (bool) – Whether violations of preconditions/invariants of sce-
narios/behaviors should cause this method to raise an exception, instead of only rejecting
the simulation (the default behavior).

• replay (bytes) – If not None, must be replay data output by Simulation.getReplay:
we will then replay the saved simulation rather than randomly generating one as usual. If
maxSteps is larger than that of the original simulation, then once the replay is exhausted
the simulation will continue to run in the usual randomized manner.

• enableReplay (bool) – Whether to save data from the simulation so that it can be serial-
ized for later replay using Scenario.simulationToBytes or Simulation.getReplay.
Enabled by default as the overhead is generally low.

• enableDivergenceCheck (bool) – Whether to save the values of every dynamic property
at each time step, so that when the simulation is replayed, nondeterminism in the simulator
(or replaying the simulation in the wrong simulator) can be detected. Disabled by default
as this option greatly increases the size of replay objects (~100 bytes per object per step).

• divergenceTolerance (float) – Amount by which a dynamic property can deviate in
a replay from its original value before we consider the replay to have diverged. The default
value is zero: no deviation is allowed. If finer control over divergences is required, see
Simulation.valuesHaveDiverged .

1.12. Scenic Internals 213

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Scenic

• continueAfterDivergence (bool) – Whether to continue simulating after a divergence
is detected instead of raising a DivergenceError. If this is true, then a divergence ends
the replaying of the saved scenario but the simulation will continue in the usual randomized
manner (i.e., it is as if the replay data ran out at the moment of the divergence).

• allowPickle (bool) – Whether to use pickle to (de)serialize custom object types. See
sceneFromBytes for a discussion of when this may be needed (rarely) and its security
implications.

Returns
A Simulation object representing the completed simulation, or None if no simulation sat-
isfying the requirements could be found within maxIterations iterations.

Raises

• SimulationCreationError – if an error occurred while trying to run a simulation (e.g.
some assumption made by the simulator was violated, like trying to create an object inside
another).

• GuardViolation – if raiseGuardViolations is true and a precondition or invariant was
violated during the simulation.

• DivergenceError – if replaying a simulation (via the replay option) and the replay has
diverged from the original; requires the original simulation to have been run with enable-
DivergenceCheck.

• SerializationError – if writing or reading replay data fails. This could happen if your
scenario uses an unusual custom distribution (see sceneToBytes) or if the replayed sce-
nario has diverged without divergence-checking enabled.

Changed in version 3.0: maxIterations is now 1 by default.

New in version 3.0: The timestep argument.

replay(scene, replay, **kwargs)
Replay a simulation.

This convenience method simply calls simulate (and so takes all the same arguments), but makes the re-
play argument positional so you can write simulator.replay(scene, replay) instead of simulator.
simulate(scene, replay=replay).

abstract createSimulation(scene, **kwargs)
Create a Simulation from a Scenic scene.

This should be overridden by subclasses to return instances of their own specialized subclass of
Simulation. The given scene and kwargs (together making up all the arguments passed to simulate
except for maxIterations) should be passed through to the initializer of that instance.

Changed in version 3.0: This method is now called with all the arguments to simulate except for maxIt-
erations; these should be passed through as described above.

destroy()

Clean up as needed when shutting down the simulator interface.

Subclasses should call the parent implementation, which will catch this method being called twice on the
same Simulator.

class Simulation(scene, *, maxSteps, name, timestep, replay=None, enableReplay=True, allowPickle=False,
enableDivergenceCheck=False, divergenceTolerance=0, continueAfterDivergence=False,
verbosity=0)

Bases: ABC

214 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/abc.html#abc.ABC

Scenic

A single simulation run.

These objects are not manipulated manually, but are created by a Simulator. Simulator interfaces should
subclass this class, implementing various abstract methods to call the appropriate simulator APIs. In particular,
the following methods must be implemented:

• createObjectInSimulator, to create an object;

• step, to run the simulation for one time step;

• getProperties, to read back the new state of an object.

Other methods can be overridden if necessary, e.g. setup for initialization at the start of the simulation and
destroy for cleanup afterward.

Changed in version 3.0: The __init__ method of subclasses should no longer create objects; the
createObjectInSimulator method will be called instead. Other initialization which needs to take place after
object creation should be done in setup after calling the superclass implementation.

The arguments to __init__ are the same as those to simulate, except that maxIterations is omitted.

Attributes

• currentTime (int) – Number of time steps elapsed so far.

• timestep (float) – Length of each time step in seconds.

• objects – List of Scenic objects (instances of Object) existing in the simulation. This list
will change if objects are created dynamically.

• agents – List of agents in the simulation.

• result (SimulationResult) – Result of the simulation, or None if it has not yet completed.
This is the primary object which should be inspected to get data out of the simulation: the
other undocumented attributes of this class are for internal use only.

Raises
RejectSimulationException – if a requirement is violated.

setup()

Set up the simulation to run in the simulator.

Subclasses may override this method to perform custom initialization, but should call the parent implemen-
tation to create the objects in the initial scene (through createObjectInSimulator).

abstract createObjectInSimulator(obj)
Create the given object in the simulator.

Implemented by subclasses. Should raise SimulationCreationError if creating the object fails.

Parameters
obj (Object) – the Scenic object to create.

Raises
SimulationCreationError – if unable to create the object in the simulator.

scheduleForAgents()

Compute the order for the agents to run in the next time step.

The default order is the order in which the agents were created.

Returns
An iterable which is a permutation of self.agents.

1.12. Scenic Internals 215

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/glossary.html#term-iterable

Scenic

actionsAreCompatible(agent, actions)
Check whether the given actions can be taken simultaneously by an agent.

The default is to consider all actions compatible with each other, and to call Action.canBeTakenBy to
determine if an agent can take an action. Subclasses should override this method as appropriate.

Parameters

• agent (Object) – the agent which wants to take the given actions.

• actions (tuple) – tuple of actions to be taken.

executeActions(allActions)
Execute the actions selected by the agents.

The default implementation calls the applyTo method of each Action to apply it to the appropriate agent.
Subclasses may override this method to make additional simulator API calls as needed, but should call this
implementation too or otherwise emulate its functionality.

Parameters
allActions – an OrderedDict mapping each agent to a tuple of actions. The order of
agents in the dict should be respected in case the order of actions matters.

abstract step()

Run the simulation for one step and return the next trajectory element.

Implemented by subclasses. This should cause the simulator to simulate physics for self.timestep sec-
onds.

updateObjects()

Update the positions and other properties of objects from the simulation.

Subclasses likely do not need to override this method: they should implement its subroutine
getProperties below.

valuesHaveDiverged(obj, prop, expected, actual)
Decide whether the value of a dynamic property has diverged from the replay.

The default implementation considers scalar and vector properties to have diverged if the distance between
the actual and expected values is greater than self.divergenceTolerance (which is 0 by default); other
types of properties use the != operator.

Subclasses may override this function to provide more specialized criteria (e.g. allowing some properties
to diverge more than others).

Parameters

• obj (Object) – The object being considered.

• prop (str) – The name of the dynamic property being considered.

• expected – The value of the property saved in the replay currently being run.

• actual – The value of the property in the current simulation.

Returns
True if the actual value should be considered as having diverged from the expected one;
otherwise False.

abstract getProperties(obj, properties)
Read the values of the given properties of the object from the simulator.

Implemented by subclasses.

216 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Scenic

Parameters

• obj (Object) – Scenic object in question.

• properties (set) – Set of names of properties to read from the simulator. It is safe to
destructively iterate through the set if you want.

Returns
A dict mapping each of the given properties to its current value.

currentState()

Return the current state of the simulation.

The definition of ‘state’ is up to the simulator; the ‘state’ is simply saved at each time step to define the
‘trajectory’ of the simulation.

The default implementation returns a tuple of the positions of all objects.

property currentRealTime

Current simulation time, in seconds.

destroy()

Perform any cleanup necessary to reset the simulator after a simulation.

The default implementation does nothing by default; it may be overridden by subclasses.

getReplay()

Encode this simulation to a bytes object for future replay.

Requires that the simulation was run with enableReplay=True (the default).

class ReplayMode(value)
Bases: IntFlag

An enumeration.

class DummySimulator(drift=0)
Bases: Simulator

Simulator which does (almost) nothing, for testing and debugging purposes.

To allow testing the change of dynamic properties over time, all objects drift upward by drift every time step.

class DummySimulation(scene, drift=0, **kwargs)
Bases: Simulation

Minimal Simulation subclass for DummySimulator.

class Action

Bases: ABC

An action which can be taken by an agent for one step of a simulation.

canBeTakenBy(agent)
Whether this action is allowed to be taken by the given agent.

The default implementation always returns True.

abstract applyTo(agent, simulation)
Apply this action to the given agent in the given simulation.

This method should call simulator APIs so that the agent will take this action during the next simulated
time step. Depending on the simulator API, it may be necessary to batch each agent’s actions into a

1.12. Scenic Internals 217

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/enum.html#enum.IntFlag
https://docs.python.org/3/library/abc.html#abc.ABC

Scenic

single update: in that case you can have this method set some state on the agent, then apply the ac-
tual update in an overridden implementation of Simulation.executeActions. For examples, see the
CARLA interface: scenic.simulators.carla.actions has some CARLA-specific actions which di-
rectly call CARLA APIs, while the generic steering and braking actions from scenic.domains.driving.
actions are implemented using the batching approach (see for example the setThrottle method of the
class scenic.simulators.carla.model.Vehicle, which sets state later read by CarlaSimulation.
executeActions in scenic.simulators.carla.simulator).

class EndSimulationAction(line)
Bases: Action

Special action indicating it is time to end the simulation.

Only for internal use.

class EndScenarioAction(scenario, line)
Bases: Action

Special action indicating it is time to end the current scenario.

Only for internal use.

class TerminationType(value)
Bases: Enum

Enum describing the possible ways a simulation can end.

timeLimit = 'reached simulation time limit'

Simulation reached the specified time limit.

scenarioComplete = 'the top-level scenario finished'

The top-level scenario finished executing.

(Either its compose block completed, one of its termination conditions was met, or it was terminated with
terminate.)

simulationTerminationCondition = 'a simulation termination condition was met'

A user-specified simulation termination condition was met.

terminatedByMonitor = 'a monitor terminated the simulation'

A monitor used terminate simulation to end the simulation.

terminatedByBehavior = 'a behavior terminated the simulation'

A dynamic behavior used terminate simulation to end the simulation.

class SimulationResult(trajectory, actions, terminationType, terminationReason, records)
Result of running a simulation.

Attributes

• trajectory – A tuple giving for each time step the simulation’s ‘state’: by default the positions
of every object. See Simulation.currentState.

• finalState – The last ‘state’ of the simulation, as above.

• actions – A tuple giving for each time step a dict specifying for each agent the (possibly-
empty) tuple of actions it took at that time step.

• terminationType (TerminationType) – The way the simulation ended.

• terminationReason (str) – A human-readable string giving the reason why the simulation
ended, possibly including debugging info.

218 Chapter 1. Table of Contents

https://docs.python.org/3/library/enum.html#enum.Enum

Scenic

• records (dict) – For each record statement, the value or time series of values its expression
took during the simulation.

scenic.core.specifiers

Specifiers and associated objects.

Summary of Module Members

Classes

ModifyingSpecifier Specifier providing values (or modifying) properties.
PropertyDefault A default value, possibly with dependencies.
Specifier Specifier providing values for properties.

Member Details

class Specifier(name, priorities, value, deps=None)
Specifier providing values for properties.

Each property is set to a value, at a given priority, given dependencies.

Parameters

• name – The name of this specifier.

• priorities – A dictionary mapping properties to the priority they are being specified with.

• value – A dictionary mapping properties to the values they are being specified as.

• deps – An iterable containing all properties that this specifier relies on.

getValuesFor(obj)
Get the values specified for a given object.

class ModifyingSpecifier(name, priorities, value, modifiable_props, deps=None)
Bases: Specifier

Specifier providing values (or modifying) properties.

Parameters

• name – The name of this specifier.

• priorities – A dictionary mapping properties to the priority they are being specified with.

• value – A dictionary mapping properties to the values they are being specified as.

• modifiable_props – What properties specified by this specifier can be modified.

• deps – An iterable containing all properties that this specifier relies on.

class PropertyDefault(requiredProperties, attributes, value)
A default value, possibly with dependencies.

resolveFor(prop, overriddenDefs)
Create a Specifier for a property from this default and any superclass defaults.

1.12. Scenic Internals 219

Scenic

scenic.core.type_support

Support for checking Scenic types.

This module provides a system for checking that values passed to Scenic operators and functions have the expected
types. The top-level function toTypes and its specializations toType, toVector, toScalar, etc. can also coerce
closely-related types into the desired type in some cases. For lazily-evaluated values (random values and delayed
arguments of specifiers), it may not be possible to determine the type at object creation time: in such cases these
functions return a lazily-evaluated object that performs the type check either during specifier resolution or sampling as
needed.

In general, the only objects which are coercible to a type T are instances of that type, together with Distribution
objects whose _valueType is a type coercible to T (and therefore whose sampled value can be coerced to T). However,
we also have the following exceptional rules:

• Coercible to a scalar (type float):

– Instances of numbers.Real (coerced by calling float on them); this includes NumPy types such as
numpy.single

• Coercible to a heading (type Heading):

– Anything coercible to a scalar

– Any type with a toHeading method (including OrientedPoint)

• Coercible to a vector (type Vector):

– Tuples and lists of length 2 or 3

– Any type with a toVector method (including Point)

• Coercible to a Behavior:

– Subclasses of Behavior (coerced by calling them with no arguments)

– None (considered to have type Behavior for convenience)

220 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/numbers.html#numbers.Real
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.single
https://docs.python.org/3/library/constants.html#None

Scenic

Summary of Module Members

Functions

canCoerce Can this value be coerced into the given type?
canCoerceType Can values of typeA be coerced into typeB?
coerce Coerce something into the given type.
coerceToAny Coerce something into any of the given types, raising an

error if impossible.
coerceToFloat

coerceToHeading

evaluateRequiringEqualTypes Evaluate the func, assuming thingA and thingB have the
same type.

isA Is this guaranteed to evaluate to a member of the given
Scenic type?

is_typing_generic Whether this is a pre-3.9 generic type from the typing
module.

toHeading Convert something to a heading, raising an error if im-
possible.

toOrientation Convert something to an orientation, raising an error if
impossible.

toScalar Convert something to a scalar, raising an error if impos-
sible.

toType Convert something to a given type, raising an error if
impossible.

toTypes Convert something to any of the given types, raising an
error if impossible.

toVector Convert something to a vector, raising an error if impos-
sible.

underlyingType What type this value ultimately evaluates to, if we can
tell.

unifierOfTypes Most specific type unifying the given types.
unifyingType Most specific type unifying the given values.

Classes

Heading Dummy class used as a target for type coercions to head-
ings.

TypeChecker Checks that a given lazy value has one of a given list of
types.

TypeEqualityChecker Evaluates a function after checking that two lazy values
have the same type.

TypecheckedDistribution Distribution which typechecks its value at sampling
time.

1.12. Scenic Internals 221

Scenic

Exceptions

CoercionFailure Raised by coercion functions when coercion is impossi-
ble.

Member Details

class Heading(x=0, /)
Bases: float

Dummy class used as a target for type coercions to headings.

underlyingType(thing)
What type this value ultimately evaluates to, if we can tell.

isA(thing, ty)
Is this guaranteed to evaluate to a member of the given Scenic type?

unifyingType(opts)
Most specific type unifying the given values.

unifierOfTypes(types)
Most specific type unifying the given types.

canCoerceType(typeA, typeB)
Can values of typeA be coerced into typeB?

canCoerce(thing, ty)
Can this value be coerced into the given type?

coerce(thing, ty, error='wrong type')
Coerce something into the given type.

Used internally by toType, etc.; this function should not otherwise be called directly.

exception CoercionFailure

Bases: Exception

Raised by coercion functions when coercion is impossible.

Only used internally; will be converted to a parse error for reporting to the user.

class TypecheckedDistribution(dist, ty, errorMessage, coercer=None)
Bases: Distribution

Distribution which typechecks its value at sampling time.

Only for internal use by the typechecking system; introduced by coerce when it is unable to guarantee that a
random value will have the correct type after sampling. Note that the type check is not a purely passive operation,
and may actually transform the sampled value according to the coercion rules above (e.g. a sampled Point will
be converted to a Vector in a context which expects the latter).

coerceToAny(thing, types, error)
Coerce something into any of the given types, raising an error if impossible.

Only for internal use by the typechecking system; called from toTypes.

222 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception

Scenic

Raises
TypeError – if it is impossible to coerce the value into any of the types.

toTypes(thing, types, typeError='wrong type')
Convert something to any of the given types, raising an error if impossible.

Types are tried in the order they are given: the first one compatible with the given value is used. Coercions of
closely-related types may take place as described in the module documentation above.

If the given value requires lazy evaluation, this function returns a TypeChecker object that performs the type
conversion after specifier resolution.

Parameters

• thing – Value to convert.

• types – Sequence of one or more destination types.

• typeError (str) – Message included in exception raised on failure.

Raises
TypeError – if the given value is not one of the given types and cannot be converted to any of
them.

toType(thing, ty, typeError='wrong type')
Convert something to a given type, raising an error if impossible.

Equivalent to toTypes with a single destination type.

toScalar(thing, typeError='non-scalar in scalar context')
Convert something to a scalar, raising an error if impossible.

See toTypes for details.

toHeading(thing, typeError='non-heading in heading context')
Convert something to a heading, raising an error if impossible.

See toTypes for details.

toOrientation(thing, typeError='non-orientation in orientation context')
Convert something to an orientation, raising an error if impossible.

See toTypes for details.

toVector(thing, typeError='non-vector in vector context')
Convert something to a vector, raising an error if impossible.

See toTypes for details.

evaluateRequiringEqualTypes(func, thingA, thingB, typeError='type mismatch')
Evaluate the func, assuming thingA and thingB have the same type.

If func produces a lazy value, it should not have any required properties beyond those of thingA and thingB.

Raises
TypeError – if thingA and thingB do not have the same type.

class TypeChecker(*args, _internal=False, **kwargs)
Bases: DelayedArgument

Checks that a given lazy value has one of a given list of types.

1.12. Scenic Internals 223

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

Scenic

class TypeEqualityChecker(*args, _internal=False, **kwargs)
Bases: DelayedArgument

Evaluates a function after checking that two lazy values have the same type.

is_typing_generic(tp)
Whether this is a pre-3.9 generic type from the typing module.

scenic.core.utils

Assorted utility functions.

Summary of Module Members

Functions

alarm

argsToString

batched

cached Decorator for making a method with no arguments cache
its result

cached_method Decorator for making a method cache its result on a per-
object basis.

cached_property

loadMesh

Classes

DefaultIdentityDict Dictionary which is the identity map by default.

Member Details

cached(oldMethod)
Decorator for making a method with no arguments cache its result

cached_method(oldMethod)
Decorator for making a method cache its result on a per-object basis.

Like functools.lru_cache(maxsize=None) except using a separate cache for each object, with the cache
automatically deallocated when the object is garbage collected.

class DefaultIdentityDict

Dictionary which is the identity map by default.

The map works on all objects, even unhashable ones, but doesn’t support all of the standard mapping operations.

224 Chapter 1. Table of Contents

Scenic

scenic.core.vectors

Scenic vectors and vector fields.

Summary of Module Members

Functions

alwaysGlobalOrientation Whether this orientation is always aligned with the
global coordinate system.

makeVectorOperatorHandler

scalarOperator Decorator for vector operators that yield scalars.
vectorDistributionMethod Decorator for methods that produce vectors.
vectorOperator Decorator for vector operators that yield vectors.
zeroIdentityVectorOperator

zeroPreservingVectorOperator

Classes

Orientation An orientation in 3D space.
OrientedVector

PiecewiseVectorField A vector field defined by patching together several re-
gions.

PolygonalVectorField A piecewise-constant vector field defined over polygonal
cells.

PolyhedronVectorField

Vector A 3D vector, whose coordinates can be distributions.
VectorDistribution A distribution over Vectors.
VectorField A vector field, providing an orientation at every point.
VectorMethodDistribution Vector version of MethodDistribution.
VectorOperatorDistribution Vector version of OperatorDistribution.

Member Details

class VectorDistribution(*dependencies, valueType=None)
Bases: Distribution

A distribution over Vectors.

_defaultValueType

alias of Vector

1.12. Scenic Internals 225

Scenic

class VectorOperatorDistribution(operator, obj, operands)
Bases: VectorDistribution

Vector version of OperatorDistribution.

class VectorMethodDistribution(method, obj, args, kwargs)
Bases: VectorDistribution

Vector version of MethodDistribution.

scalarOperator(method)
Decorator for vector operators that yield scalars.

vectorOperator(method, preservesZero=False, zeroIdentity=False)
Decorator for vector operators that yield vectors.

vectorDistributionMethod(method)
Decorator for methods that produce vectors. See distributionMethod.

class Orientation(rotation)
An orientation in 3D space.

classmethod fromQuaternion(quaternion)
Create an Orientation from a quaternion (of the form (x,y,z,w))

Return type
Orientation

classmethod fromEuler(yaw, pitch, roll)
Create an Orientation from yaw, pitch, and roll angles (in radians).

Return type
Orientation

property yaw: float

Yaw in the global coordinate system.

property pitch: float

Pitch in the global coordinate system.

property roll: float

Roll in the global coordinate system.

property eulerAngles: Tuple[float, float, float]

Global intrinsic Euler angles yaw, pitch, roll.

localAnglesFor(orientation)
Get local Euler angles for an orientation w.r.t. this orientation.

That is, considering self as the parent orientation, find the Euler angles expressing the given orientation.

Return type
Tuple[float, float, float]

globalToLocalAngles(yaw, pitch, roll)
Convert global Euler angles to local angles w.r.t. this orientation.

Equivalent to localAnglesFor but takes Euler angles as input.

Return type
Tuple[float, float, float]

226 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

alwaysGlobalOrientation(orientation)
Whether this orientation is always aligned with the global coordinate system.

Returns False if the orientation is a distribution or delayed argument, since then the value cannot be known at
this time.

class Vector(x, y, z=0)
Bases: Samplable, Sequence

A 3D vector, whose coordinates can be distributions.

sphericalCoordinates()

Returns this vector in spherical coordinates (rho, theta, phi)

rotatedBy(angleOrOrientation)
Return a vector equal to this one rotated counterclockwise by angle/orientation.

Return type
Vector

angleWith(other)
Compute the signed angle between self and other.

The angle is positive if other is counterclockwise of self (considering the smallest possible rotation to align
them).

Return type
float

class VectorField(name, value, minSteps=4, defaultStepSize=5)
A vector field, providing an orientation at every point.

Parameters

• name (str) – name for debugging.

• value – function computing the heading at the given Vector.

• minSteps (int) – Minimum number of steps for followFrom ; default 4.

• defaultStepSize (float) – Default step size for followFrom ; default 5. This is an upper
bound: more steps will be taken as needed to ensure that no single step is longer than this
value, but if the distance to travel is small then the steps may be smaller.

followFrom(pos, dist, steps=None, stepSize=None)
Follow the field from a point for a given distance.

Uses the forward Euler approximation, covering the given distance with equal-size steps. The number of
steps can be given manually, or computed automatically from a desired step size.

Parameters

• pos (Vector) – point to start from.

• dist (float) – distance to travel.

• steps (int) – number of steps to take, or None to compute the number of steps based on
the distance (default None).

• stepSize (float) – length used to compute how many steps to take, or None to use the
field’s default step size.

1.12. Scenic Internals 227

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Scenic

static forUnionOf(regions, tolerance=0)
Creates a PiecewiseVectorField from the union of the given regions.

If none of the regions have an orientation, returns None instead.

class PolygonalVectorField(name, cells, headingFunction=None, defaultHeading=None)
Bases: VectorField

A piecewise-constant vector field defined over polygonal cells.

Parameters

• name (str) – name for debugging.

• cells – a sequence of cells, with each cell being a pair consisting of a Shapely geometry
and a heading. If the heading is None, we call the given headingFunction for points in the
cell instead.

• headingFunction – function computing the heading for points in cells without specified
headings, if any (default None).

• defaultHeading – heading for points not contained in any cell (default None, meaning
reject such points).

class PiecewiseVectorField(name, regions, tolerance=0, defaultHeading=None)
Bases: VectorField

A vector field defined by patching together several regions.

The heading at a point is determined by checking each region in turn to see if it has an orientation and contains
the point, returning the corresponding heading if so. If we get through all the regions, and tolerance is nonzero,
we try again, this time allowing the point to be up to tolerance away from each region. If we still fail to find a
region “containing” the point, then we return the defaultHeading, if any, and otherwise reject the scene.

Parameters

• name (str) – name for debugging.

• regions (sequence of Region objects) – the regions making up the field.

• tolerance (float) – maximum distance at which to consider a point as being in one of the
regions, if it is not otherwise contained (default 0).

• defaultHeading (float) – the heading for points not in any region with an orientation
(default None, meaning reject such points).

scenic.core.visibility

Implementations of Scenic’s visibility functions.

228 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Scenic

Summary of Module Members

Functions

canSee Perform visibility checks on Points, OrientedPoints, or
Objects, accounting for occlusion.

Member Details

canSee(position, orientation, visibleDistance, viewAngles, rayCount, rayDensity, distanceScaling, target,
occludingObjects, debug=False)

Perform visibility checks on Points, OrientedPoints, or Objects, accounting for occlusion.

For visibilty of Objects:

1. Do several quick checks to see if the object is naively visible or not visible:

• If the object contains its position and its position is visible, the object is visible.

• If the viewer is inside the object, the object is visible.

• If the closest distance from the object to the viewer is greater than the visible distance, the object is
not visible.

2. Check if the object crosses the back and/or front of the viewing object.

3. Compute the spherical coordinates of all vertices in the mesh of the region we are trying to view, with the
goal of using this to send rays only where they have a chance of hitting the region.

4. Compute 2 ranges of angles (horizontal/vertical) in which rays have a chance of hitting the object, as follows:

• If the object does not cross behind the viewer, take the min and max of the the spherical coordinate
angles, while noting that this range is centered on the front of the viewer.

• If the object crosses behind the viewer but not in front, transform the spherical angles so they are
coming from the back of the object, while noting that this range is centered on the back of the object.

• If it crosses both, we do not optimize the amount of rays sent.

5. Compute the intersection of the optimizated range from step 4 and the viewAngles range, accounting for
where the optimization range is centered. If it is empty, the object cannot be visible. If it is not empty,
shoot rays at the desired density in the intersection region. Keep all rays that intersect the object (candidate
rays).

6. If there are no candidate rays, the object is not visible.

7. For each occluding object in occludingObjects: check if any candidate rays intersect the occluding object
at a distance less than the distance they intersected the target object. If they do, remove them from the
candidate rays.

8. If any candidate rays remain, the object is visible. If not, it is occluded and not visible.

For visibility of Points/OrientedPoints:

1. Check if distance from the viewer to the point is greater than visibleDistance. If so, the point cannot be
visible

2. Create a single candidate ray, using the vector from the viewer to the target. If this ray is outside of the
bounds of viewAngles, the point cannot be visible.

1.12. Scenic Internals 229

Scenic

3. For each occluding object in occludingObjets: check if the candidate ray hits the occluding object at a
distance less than the distance from the viewer to the target point. If so, then the object is not visible.
Otherwise, the object is visible.

Parameters

• position – Position of the viewer, accounting for any offsets.

• orientation – Orientation of the viewer.

• visibleDistance – The maximum distance the viewer can view objects from.

• viewAngles – The horizontal and vertical view angles, in radians, of the viewer.

• rayCount – The total number of rays in each dimension used in visibility calculations..

• target – The target being viewed. Currently supports Point, OrientedPoint, and Object.

• occludingObjects – An optional list of objects which can occlude the target.

scenic.core.workspaces

Workspaces.

Summary of Module Members

Classes

Workspace A workspace describing the fixed world of a scenario.

Member Details

class Workspace(region=<AllRegion everywhere>)
Bases: Region

A workspace describing the fixed world of a scenario.

Parameters
region (Region) – The region defining the extent of the workspace (default everywhere).

show3D(viewer)
Render a schematic of the workspace (in 3D) for debugging

show2D(plt)
Render a schematic of the workspace (in 2D) for debugging

zoomAround(plt, objects, expansion=1)
Zoom the schematic around the specified objects

scenicToSchematicCoords(coords)
Convert Scenic coordinates to those used for schematic rendering.

230 Chapter 1. Table of Contents

Scenic

scenic.domains

General scenario domains used across simulators.

driving Domain for driving scenarios.

scenic.domains.driving

Domain for driving scenarios.

The world model defines Scenic classes for cars, pedestrians, etc., actions for dynamic agents which walk or drive, as
well as simple behaviors like lane-following. Scenarios for the driving domain should import the model as follows:

model scenic.domains.driving.model

Scenarios written for the driving domain should work without changes1 in any of the following simulators:

• CARLA, using the model scenic.simulators.carla.model

• LGSVL, using the model scenic.simulators.lgsvl.model

• the built-in Newtonian simulator, using the model scenic.simulators.newtonian.driving_model

For example, the examples/driving/badlyParkedCarPullingIn.scenic scenario is written for the driving do-
main and can be run in multiple simulators:

• no simulator, for viewing the initial scene:

$ scenic examples/driving/badlyParkedCarPullingIn.scenic

• the built-in Newtonian simulator, for quick debugging without having to install an external simulator:

$ scenic -S --model scenic.simulators.newtonian.driving_model \
examples/driving/badlyParkedCarPullingIn.scenic

• CARLA, using the default map specified in the scenario:

$ scenic -S --model scenic.simulators.carla.model \
examples/driving/badlyParkedCarPullingIn.scenic

• LGSVL, specifying a map which it supports:

$ scenic -S --model scenic.simulators.lgsvl.model \
--param map tests/formats/opendrive/maps/LGSVL/borregasave.xodr \
--param lgsvl_map BorregasAve \
examples/driving/badlyParkedCarPullingIn.scenic

1 Assuming the simulator supports the selected map. If necessary, the map may be changed from the command line using the --param option;
see the model documentation for details.

1.12. Scenic Internals 231

Scenic

actions Actions for dynamic agents in the driving domain.
behaviors Library of useful behaviors for dynamic agents in driving

scenarios.
controllers Low-level controllers useful for vehicles.
model Scenic world model for scenarios using the driving do-

main.
roads Library for representing road network geometry and traf-

fic information.
simulators Abstract interface to simulators supporting the driving

domain.
workspace Workspaces for the driving domain.

scenic.domains.driving.actions

Actions for dynamic agents in the driving domain.

These actions are automatically imported when using the driving domain.

The RegulatedControlAction is based on code from the CARLA project, licensed under the following terms:

Copyright (c) 2018-2020 CVC.

This work is licensed under the terms of the MIT license. For a copy, see <https://opensource.org/licenses/
MIT>.

Summary of Module Members

Classes

OffsetAction Teleports actor forward (in direction of its heading) by
some offset.

RegulatedControlAction Regulated control of throttle, braking, and steering.
SetBrakeAction Set the amount of brake.
SetHandBrakeAction Set or release the hand brake.
SetPositionAction Teleport an agent to the given position.
SetReverseAction Engage or release reverse gear.
SetSpeedAction Set the speed of an agent (keeping its heading fixed).
SetSteerAction Set the steering 'angle'.
SetThrottleAction Set the throttle.
SetVelocityAction Set the velocity of an agent.
SetWalkingDirectionAction Set the walking direction.
SetWalkingSpeedAction Set the walking speed.
SteeringAction Abstract class for actions usable by agents which can

steer.
Steers Mixin protocol for agents which can steer.
WalkingAction Abstract class for actions usable by agents which can

walk.
Walks Mixin protocol for agents which can walk with a given

direction and speed.

232 Chapter 1. Table of Contents

https://carla.org/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

Scenic

Member Details

class Steers

Mixin protocol for agents which can steer.

Specifically, agents must support throttling, braking, steering, setting the hand brake, and going into reverse.

class Walks

Mixin protocol for agents which can walk with a given direction and speed.

We provide a simplistic implementation which directly sets the velocity of the agent. This implementation needs
to be explicitly opted-into, since simulators may provide a more sophisticated API that properly animates pedes-
trians.

class SetPositionAction(pos)
Bases: Action

Teleport an agent to the given position.

Parameters
pos (Vector) –

class OffsetAction(offset)
Bases: Action

Teleports actor forward (in direction of its heading) by some offset.

Parameters
offset (Vector) –

class SetVelocityAction(xVel, yVel, zVel=0)
Bases: Action

Set the velocity of an agent.

Parameters

• xVel (float) –

• yVel (float) –

• zVel (float) –

class SetSpeedAction(speed)
Bases: Action

Set the speed of an agent (keeping its heading fixed).

Parameters
speed (float) –

class SteeringAction

Bases: Action

Abstract class for actions usable by agents which can steer.

Such agents must implement the Steers protocol.

class SetThrottleAction(throttle)
Bases: SteeringAction

Set the throttle.

1.12. Scenic Internals 233

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

Parameters
throttle (float) – Throttle value between 0 and 1.

class SetSteerAction(steer)
Bases: SteeringAction

Set the steering ‘angle’.

Parameters
steer (float) – Steering ‘angle’ between -1 and 1.

class SetBrakeAction(brake)
Bases: SteeringAction

Set the amount of brake.

Parameters
brake (float) – Amount of braking between 0 and 1.

class SetHandBrakeAction(handBrake)
Bases: SteeringAction

Set or release the hand brake.

Parameters
handBrake (bool) – Whether or not the hand brake is set.

class SetReverseAction(reverse)
Bases: SteeringAction

Engage or release reverse gear.

Parameters
reverse (bool) – Whether or not the car is in reverse.

class RegulatedControlAction(throttle, steer, past_steer, max_throttle=0.5, max_brake=0.5, max_steer=0.8)
Bases: SteeringAction

Regulated control of throttle, braking, and steering.

Controls throttle and braking using one signal that may be positive or negative. Useful with simple controllers
that output a single value.

Parameters

• throttle (float) – Control signal for throttle and braking (will be clamped as below).

• steer (float) – Control signal for steering (also clamped).

• past_steer (float) – Previous steering signal, for regulating abrupt changes.

• max_throttle (float) – Maximum value for throttle, when positive.

• max_brake (float) – Maximum (absolute) value for throttle, when negative.

• max_steer (float) – Maximum absolute value for steer.

class WalkingAction

Bases: Action

Abstract class for actions usable by agents which can walk.

Such agents must implement the Walks protocol.

234 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

class SetWalkingDirectionAction(heading)
Bases: WalkingAction

Set the walking direction.

class SetWalkingSpeedAction(speed)
Bases: WalkingAction

Set the walking speed.

scenic.domains.driving.behaviors

Library of useful behaviors for dynamic agents in driving scenarios.

These behaviors are automatically imported when using the driving domain.

Summary of Module Members

Functions

concatenateCenterlines

Behaviors

AccelerateForwardBehavior

ConstantThrottleBehavior

DriveAvoidingCollisions

FollowLaneBehavior Follow's the lane on which the vehicle is at, unless the
laneToFollow is specified.

FollowTrajectoryBehavior Follows the given trajectory.
LaneChangeBehavior is_oppositeTraffic should be specified as True only if

the laneSectionToSwitch to has the opposite traffic di-
rection to the initial lane from which the vehicle started
LaneChangeBehavior e.g.

TurnBehavior This behavior uses a controller specifically tuned for
turning at an intersection.

WalkForwardBehavior Walk forward behavior for pedestrians.

1.12. Scenic Internals 235

Scenic

Member Details

behavior FollowLaneBehavior(target_speed=10, laneToFollow=None, is_oppositeTraffic=False)
Follow’s the lane on which the vehicle is at, unless the laneToFollow is specified. Once the vehicle reaches an
intersection, by default, the vehicle will take the straight route. If straight route is not available, then any availble
turn route will be taken, uniformly randomly. If turning at the intersection, the vehicle will slow down to make
the turn, safely.

This behavior does not terminate. A recommended use of the behavior is to accompany it with condition, e.g.
do FollowLaneBehavior() until . . .

Parameters

• target_speed – Its unit is in m/s. By default, it is set to 10 m/s

• laneToFollow – If the lane to follow is different from the lane that the vehicle is on, this
parameter can be used to specify that lane. By default, this variable will be set to None,
which means that the vehicle will follow the lane that it is currently on.

behavior FollowTrajectoryBehavior(target_speed=10, trajectory=None, turn_speed=None)
Follows the given trajectory. The behavior terminates once the end of the trajectory is reached.

Parameters

• target_speed – Its unit is in m/s. By default, it is set to 10 m/s

• trajectory – It is a list of sequential lanes to track, from the lane that the vehicle is initially
on to the lane it should end up on.

behavior LaneChangeBehavior(laneSectionToSwitch, is_oppositeTraffic=False, target_speed=10)
is_oppositeTraffic should be specified as True only if the laneSectionToSwitch to has the opposite traffic direc-
tion to the initial lane from which the vehicle started LaneChangeBehavior e.g. refer to the use of this flag in
examples/carla/Carla_Challenge/carlaChallenge6.scenic

behavior TurnBehavior(trajectory, target_speed=6)
This behavior uses a controller specifically tuned for turning at an intersection. This behavior is only operational
within an intersection, it will terminate if the vehicle is outside of an intersection.

behavior WalkForwardBehavior()

Walk forward behavior for pedestrians.

It will uniformly randomly choose either end of the sidewalk that the pedestrian is on, and have the pedestrian
walk towards the endpoint.

scenic.domains.driving.controllers

Low-level controllers useful for vehicles.

The Lateral/Longitudinal PID controllers are adapted from CARLA’s PID controllers, which are licensed under the
following terms:

Copyright (c) 2018-2020 CVC.

This work is licensed under the terms of the MIT license. For a copy, see <https://opensource.org/licenses/
MIT>.

236 Chapter 1. Table of Contents

https://carla.org/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

Scenic

Summary of Module Members

Classes

PIDLateralController Lateral control using a PID to track a trajectory.
PIDLongitudinalController Longitudinal control using a PID to reach a target speed.

Member Details

class PIDLongitudinalController(K_P=0.5, K_D=0.1, K_I=0.2, dt=0.1)
Longitudinal control using a PID to reach a target speed.

Parameters

• K_P – Proportional gain

• K_D – Derivative gain

• K_I – Integral gain

• dt – time step

run_step(speed_error)
Estimate the throttle/brake of the vehicle based on the PID equations.

Parameters
speed_error – target speed minus current speed

Returns
a signal between -1 and 1, with negative values indicating braking.

class PIDLateralController(K_P=0.3, K_D=0.2, K_I=0, dt=0.1)
Lateral control using a PID to track a trajectory.

Parameters

• K_P – Proportional gain

• K_D – Derivative gain

• K_I – Integral gain

• dt – time step

run_step(cte)
Estimate the steering angle of the vehicle based on the PID equations.

Parameters
cte – cross-track error (distance to right of desired trajectory)

Returns
a signal between -1 and 1, with -1 meaning maximum steering to the left.

1.12. Scenic Internals 237

Scenic

scenic.domains.driving.model

Scenic world model for scenarios using the driving domain.

Imports actions and behaviors for dynamic agents from scenic.domains.driving.actions and
scenic.domains.driving.behaviors.

The map file to use for the scenario must be specified before importing this model by defining the global parameter
map. This path is passed to the Network.fromFile function to create a Network object representing the road net-
work. Extra options may be passed to the function by defining the global parameter map_options, which should be a
dictionary of keyword arguments. For example, we could write:

param map = localPath('mymap.xodr')
param map_options = { 'tolerance': 0.1 }
model scenic.domains.driving.model

If you are writing a generic scenario that supports multiple maps, you may leave the map parameter undefined; then
running the scenario will produce an error unless the user uses the --param command-line option to specify the map.

Note: If you are using a simulator, you may have to also define simulator-specific global parameters to tell the simulator
which world to load. For example, our LGSVL interface uses a parameter lgsvl_map to specify the name of the Unity
scene. See the documentation of the simulator interfaces for details.

Summary of Module Members

Module Attributes

network The road network being used for the scenario, as a
Network object.

road The union of all drivable roads, including intersections
but not shoulders or parking lanes.

curb The union of all curbs.
sidewalk The union of all sidewalks.
shoulder The union of all shoulders, including parking lanes.
roadOrShoulder All drivable areas, including both ordinary roads and

shoulders.
intersection The union of all intersections.
roadDirection A VectorField representing the nominal traffic direc-

tion at a given point.

Functions

is2DMode

withinDistanceToAnyCars returns boolean
withinDistanceToAnyObjs checks whether there exists any obj (1) in front of the

vehicle, (2) within thresholdDistance
withinDistanceToObjsInLane checks whether there exists any obj (1) in front of the ve-

hicle, (2) on the same lane, (3) within thresholdDistance

238 Chapter 1. Table of Contents

Scenic

Classes

Car A car.
DrivingObject Abstract class for objects in a road network.
NPCCar Car for which accurate physics is not required.
Pedestrian A pedestrian.
Vehicle Vehicles which drive, such as cars.

Member Details

network: Network

The road network being used for the scenario, as a Network object.

road: Region

The union of all drivable roads, including intersections but not shoulders or parking lanes.

curb: Region

The union of all curbs.

sidewalk: Region

The union of all sidewalks.

shoulder: Region

The union of all shoulders, including parking lanes.

roadOrShoulder: Region

All drivable areas, including both ordinary roads and shoulders.

intersection: Region

The union of all intersections.

roadDirection: VectorField

A VectorField representing the nominal traffic direction at a given point.

Inside intersections or anywhere else where there can be multiple nominal traffic directions, the choice is arbitrary.
At such points, the function Network.nominalDirectionsAt can be used to get all nominal directions.

class DrivingObject <specifiers>
Bases: Object2D

Abstract class for objects in a road network.

Provides convenience properties for the lane, road, intersection, etc. at the object’s current position (if any).

Also defines the elevation property as a standard way to access the Z component of an object’s position, since
the Scenic built-in property position is only 2D. If elevation is set to None, the simulator is responsible
for choosing an appropriate Z coordinate so that the object is on the ground, then updating the property. 2D
simulators should set the property to zero.

Properties

• elevation (float or None; dynamic) – default None (see above).

• requireVisible (bool) – Default value False (overriding the default from Object).

1.12. Scenic Internals 239

https://docs.python.org/3/library/constants.html#None

Scenic

property lane: Lane

The Lane at the object’s current position.

The simulation is rejected if the object is not in a lane. (Use DrivingObject._lane to get None instead.)

property _lane: Optional[Lane]

The Lane at the object’s current position, if any.

property laneSection: LaneSection

The LaneSection at the object’s current position.

The simulation is rejected if the object is not in a lane.

property _laneSection: Optional[LaneSection]

The LaneSection at the object’s current position, if any.

property laneGroup: LaneGroup

The LaneGroup at the object’s current position.

The simulation is rejected if the object is not in a lane.

property _laneGroup: Optional[LaneGroup]

The LaneGroup at the object’s current position, if any.

property oppositeLaneGroup: LaneGroup

The LaneGroup on the other side of the road from the object.

The simulation is rejected if the object is not on a two-way road.

property road: Road

The Road at the object’s current position.

The simulation is rejected if the object is not on a road.

property _road: Optional[Road]

The Road at the object’s current position, if any.

property intersection: Intersection

The Intersection at the object’s current position.

The simulation is rejected if the object is not in an intersection.

property _intersection: Optional[Intersection]

The Intersection at the object’s current position, if any.

property crossing: PedestrianCrossing

The PedestrianCrossing at the object’s current position.

The simulation is rejected if the object is not in a crosswalk.

property _crossing: Optional[PedestrianCrossing]

The PedestrianCrossing at the object’s current position, if any.

property element: NetworkElement

The highest-level NetworkElement at the object’s current position.

See Network.elementAt for the details of how this is determined. The simulation is rejected if the object
is not in any network element.

property _element: Optional[NetworkElement]

The highest-level NetworkElement at the object’s current position, if any.

240 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional

Scenic

distanceToClosest(type)
Compute the distance to the closest object of the given type.

For example, one could write self.distanceToClosest(Car) in a behavior.

Parameters
type (type) –

Return type
Object2D

class Vehicle <specifiers>
Bases: DrivingObject

Vehicles which drive, such as cars.

Properties

• position – The default position is uniformly random over the road .

• heading – The default heading is aligned with roadDirection, plus an offset given by
roadDeviation.

• roadDeviation (float) – Relative heading with respect to the road direction at the Vehicle’s
position. Used by the default value for heading.

• regionContainedIn – The default container is roadOrShoulder.

• viewAngle – The default view angle is 90 degrees.

• width – The default width is 2 meters.

• length – The default length is 4.5 meters.

• color (Color or RGB tuple) – Color of the vehicle. The default value is a distribution derived
from car color popularity statistics; see Color.defaultCarColor.

class Car <specifiers>
Bases: Vehicle

A car.

class NPCCar <specifiers>
Bases: Car

Car for which accurate physics is not required.

class Pedestrian <specifiers>
Bases: DrivingObject

A pedestrian.

Properties

• position – The default position is uniformly random over sidewalks and crosswalks.

• heading – The default heading is uniformly random.

• viewAngle – The default view angle is 90 degrees.

• width – The default width is 0.75 m.

• length – The default length is 0.75 m.

• color – The default color is turquoise. Pedestrian colors are not necessarily used by simula-
tors, but do appear in the debugging diagram.

1.12. Scenic Internals 241

https://docs.python.org/3/library/functions.html#type

Scenic

withinDistanceToAnyCars(car, thresholdDistance)
returns boolean

withinDistanceToAnyObjs(vehicle, thresholdDistance)
checks whether there exists any obj (1) in front of the vehicle, (2) within thresholdDistance

withinDistanceToObjsInLane(vehicle, thresholdDistance)
checks whether there exists any obj (1) in front of the vehicle, (2) on the same lane, (3) within thresholdDistance

scenic.domains.driving.roads

Library for representing road network geometry and traffic information.

A road network is represented by an instance of the Network class, which can be created from a map file using
Network.fromFile.

Note: This library is a prototype under active development. We will try not to make backwards-incompatible changes,
but the API may not be entirely stable.

Summary of Module Members

Module Attributes

Vectorlike Alias for types which can be interpreted as positions in
Scenic.

Classes

Intersection An intersection where multiple roads meet.
Lane A lane for cars, bicycles, or other vehicles.
LaneGroup A group of parallel lanes with the same type and direc-

tion.
LaneSection Part of a lane in a single RoadSection.
LinearElement A part of a road network with (mostly) linear 1- or 2-way

flow.
Maneuver A maneuver which can be taken upon reaching the end

of a lane.
ManeuverType A type of Maneuver, e.g., going straight or turning left.
Network A road network.
NetworkElement Abstract class for part of a road network.
PedestrianCrossing A pedestrian crossing (crosswalk).
Road A road consisting of one or more lanes.
RoadSection Part of a road with a fixed number of lanes.
Shoulder A shoulder of a road, including parking lanes by default.
Sidewalk A sidewalk.
Signal Traffic lights, stop signs, etc.
VehicleType A type of vehicle, including pedestrians.

242 Chapter 1. Table of Contents

Scenic

Member Details

Vectorlike

Alias for types which can be interpreted as positions in Scenic.

This includes instances of Point and Object, and pairs of numbers.

alias of Union[Vector, Point2D, Tuple[Real, Real]]

class VehicleType(value)
Bases: Enum

A type of vehicle, including pedestrians. Used to classify lanes.

class ManeuverType(value)
Bases: Enum

A type of Maneuver, e.g., going straight or turning left.

STRAIGHT = 1

Straight, including one lane merging into another.

LEFT_TURN = 2

Left turn.

RIGHT_TURN = 3

Right turn.

U_TURN = 4

U-turn.

static guessTypeFromLanes(start, end, connecting, turnThreshold=0.3490658503988659)
For formats lacking turn information, guess it from the geometry.

Parameters

• start (Lane) – starting lane of the maneuver.

• end (Lane) – ending lane of the maneuver.

• connecting (Optional[Lane]) – connecting lane of the maneuver, if any.

• turnThreshold (float) – angle beyond which to consider a maneuver a turn.

class Maneuver

A maneuver which can be taken upon reaching the end of a lane.

Parameters

• type (ManeuverType) –

• startLane (Lane) –

• endLane (Lane) –

• connectingLane (Optional[Lane]) –

• intersection (Optional[Intersection]) –

type: ManeuverType

type of maneuver (straight, left turn, etc.)

1.12. Scenic Internals 243

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/numbers.html#numbers.Real
https://docs.python.org/3/library/numbers.html#numbers.Real
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional

Scenic

startLane: Lane

starting lane of the maneuver

endLane: Lane

ending lane of the maneuver

connectingLane: Optional[Lane]

connecting lane from the start to the end lane, if any (None for lane mergers)

intersection: Optional[Intersection]

intersection where the maneuver takes place, if any (None for lane mergers)

property conflictingManeuvers: Tuple[Maneuver]

Maneuvers whose connecting lanes intersect this one’s.

property reverseManeuvers: Tuple[Maneuver]

Maneuvers whose start and end roads are the reverse of this one’s.

class NetworkElement

Bases: PolygonalRegion

Abstract class for part of a road network.

Includes roads, lane groups, lanes, sidewalks, pedestrian crossings, and intersections.

This is a subclass of Region, so you can do things like Car in lane or Car on road if lane and road are
elements, as well as computing distances to an element, etc.

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

name: str

Human-readable name, if any.

uid: str

Unique identifier; from underlying format, if possible. (In OpenDRIVE, for example, ids are not necessarily
unique, so we invent our own.)

id: Optional[str]

Identifier from underlying format, if any.

network: Network

Link to parent network.

vehicleTypes: FrozenSet[VehicleType]

Which types of vehicles (car, bicycle, etc.) can be here.

244 Chapter 1. Table of Contents

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet

Scenic

speedLimit: Optional[float]

Optional speed limit, which may be inherited from parent.

tags: FrozenSet[str]

Uninterpreted semantic tags, e.g. ‘roundabout’.

nominalDirectionsAt(point)
Get nominal traffic direction(s) at a point in this element.

There must be at least one such direction. If there are multiple, we pick one arbitrarily to be the orientation
of the element as a Region. (So Object in element will align by default to that orientation.)

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Tuple[Orientation]

class LinearElement

Bases: NetworkElement

A part of a road network with (mostly) linear 1- or 2-way flow.

Includes roads, lane groups, lanes, sidewalks, and pedestrian crossings, but not intersections.

LinearElements have a direction, namely from the first point on their centerline to the last point. This is called
‘forward’, even for 2-way roads. The ‘left’ and ‘right’ edges are interpreted with respect to this direction.

The left/right edges are oriented along the direction of traffic near them; so for 2-way roads they will point
opposite directions.

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

• centerline (PolylineRegion) –

• leftEdge (PolylineRegion) –

• rightEdge (PolylineRegion) –

• successor (Union[NetworkElement, None]) –

• predecessor (Union[NetworkElement, None]) –

flowFrom(point, distance, steps=None, stepSize=5)
Advance a point along this element by a given distance.

Equivalent to follow element.orientation from point for distance, but possibly more accu-
rate. The default implementation uses the forward Euler approximation with a step size of 5 meters; sub-
classes may ignore the steps and stepSize parameters if they can compute the flow exactly.

1.12. Scenic Internals 245

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str

Scenic

Parameters

• point (`scenic.domains.driving.roads.Vectorlike`) – point to start from.

• distance (float) – distance to travel.

• steps (Optional[int]) – number of steps to take, or None to compute the number of
steps based on the distance (default None).

• stepSize (float) – length used to compute how many steps to take, if steps is not spec-
ified (default 5 meters).

Return type
Vector

class Road

Bases: LinearElement

A road consisting of one or more lanes.

Lanes are grouped into 1 or 2 instances of LaneGroup:

• forwardLanes: the lanes going the same direction as the road

• backwardLanes: the lanes going the opposite direction

One of these may be None if there are no lanes in that direction.

Because of splits and mergers, the Lanes of a Road do not necessarily start or end at the same point as the Road .
Such intermediate branching points cause the Road to be partitioned into multiple road sections, within which
the configuration of lanes is fixed.

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

• centerline (PolylineRegion) –

• leftEdge (PolylineRegion) –

• rightEdge (PolylineRegion) –

• successor (Union[NetworkElement, None]) –

• predecessor (Union[NetworkElement, None]) –

• lanes (Tuple[Lane]) –

• forwardLanes (Optional[LaneGroup]) –

• backwardLanes (Optional[LaneGroup]) –

• laneGroups (Tuple[LaneGroup]) –

246 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple

Scenic

• sections (Tuple[RoadSection]) –

• signals (Tuple[Signal]) –

• crossings (Tuple[PedestrianCrossing]) –

• sidewalks (Tuple[Sidewalk]) –

• sidewalkRegion (PolygonalRegion) –

lanes: Tuple[Lane]

All lanes of this road, in either direction.

The order of the lanes is arbitrary. To access lanes in order according to their geometry, use LaneGroup.
lanes.

forwardLanes: Optional[LaneGroup]

Group of lanes aligned with the direction of the road, if any.

backwardLanes: Optional[LaneGroup]

Group of lanes going in the opposite direction, if any.

laneGroups: Tuple[LaneGroup]

All LaneGroups of this road, with forwardLanes being first if it exists.

sections: Tuple[RoadSection]

All sections of this road, ordered from start to end.

crossings: Tuple[PedestrianCrossing]

All crosswalks of this road, ordered from start to end.

sidewalks: Tuple[Sidewalk]

All sidewalks of this road, with the one adjacent to forwardLanes being first.

sidewalkRegion: PolygonalRegion

Possibly-empty region consisting of all sidewalks of this road.

sectionAt(point, reject=False)
Get the RoadSection passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[RoadSection]

laneSectionAt(point, reject=False)
Get the LaneSection passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[LaneSection]

laneAt(point, reject=False)
Get the Lane passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[Lane]

1.12. Scenic Internals 247

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional

Scenic

laneGroupAt(point, reject=False)
Get the LaneGroup passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[LaneGroup]

crossingAt(point, reject=False)
Get the PedestrianCrossing passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[PedestrianCrossing]

shiftLanes(point, offset)
Find the point equivalent to this one but shifted over some # of lanes.

Parameters

• point (`scenic.domains.driving.roads.Vectorlike`) –

• offset (int) –

Return type
Optional[Vector]

class LaneGroup

Bases: LinearElement

A group of parallel lanes with the same type and direction.

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

• centerline (PolylineRegion) –

• leftEdge (PolylineRegion) –

• rightEdge (PolylineRegion) –

• successor (Union[NetworkElement, None]) –

• predecessor (Union[NetworkElement, None]) –

• road (Road) –

248 Chapter 1. Table of Contents

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str

Scenic

• lanes (Tuple[Lane]) –

• curb (PolylineRegion) –

• sidewalk (Union[Sidewalk, None]) –

• bikeLane (Union[Lane, None]) –

• shoulder (Union[Shoulder, None]) –

• opposite (Union[LaneGroup, None]) –

road: Road

Parent road.

lanes: Tuple[Lane]

Lanes, partially ordered with lane 0 being closest to the curb.

curb: PolylineRegion

Region representing the associated curb, which is not necessarily adjacent if there are parking lanes or some
other kind of shoulder.

_sidewalk: Optional[Sidewalk]

Adjacent sidewalk, if any.

_shoulder: Optional[Shoulder]

Adjacent shoulder, if any.

_opposite: Optional[LaneGroup]

Opposite lane group of the same road, if any.

property sidewalk: Sidewalk

The adjacent sidewalk; rejects if there is none.

property shoulder: Shoulder

The adjacent shoulder; rejects if there is none.

property opposite: LaneGroup

The opposite lane group of the same road; rejects if there is none.

laneAt(point, reject=False)
Get the Lane passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[Lane]

class Lane

Bases: LinearElement

A lane for cars, bicycles, or other vehicles.

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

1.12. Scenic Internals 249

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Scenic

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

• centerline (PolylineRegion) –

• leftEdge (PolylineRegion) –

• rightEdge (PolylineRegion) –

• successor (Union[NetworkElement, None]) –

• predecessor (Union[NetworkElement, None]) –

• group (LaneGroup) –

• road (Road) –

• sections (Tuple[LaneSection]) –

• adjacentLanes (Tuple[Lane]) –

• maneuvers (Tuple[Maneuver]) –

sectionAt(point, reject=False)
Get the LaneSection passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[LaneSection]

class RoadSection

Bases: LinearElement

Part of a road with a fixed number of lanes.

A RoadSection has a fixed number of lanes: when a lane begins or ends, we move to a new section (which will
be the successor of the current one).

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Union[float, None]) –

• tags (FrozenSet[str]) –

• centerline (PolylineRegion) –

250 Chapter 1. Table of Contents

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Scenic

• leftEdge (PolylineRegion) –

• rightEdge (PolylineRegion) –

• successor (Union[NetworkElement, None]) –

• predecessor (Union[NetworkElement, None]) –

• road (Road) –

• lanes (Tuple[LaneSection]) –

• forwardLanes (Tuple[LaneSection]) –

• backwardLanes (Tuple[LaneSection]) –

• lanesByOpenDriveID (Dict[LaneSection]) –

laneAt(point, reject=False)
Get the lane section passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[LaneSection]

class LaneSection

Bases: LinearElement

Part of a lane in a single RoadSection.

Since the lane configuration in a RoadSection is fixed, a LaneSection can have at most one adjacent lane to
left or right. These are accessible using the laneToLeft and laneToRight properties, which for convenience
reject the simulation if the desired lane does not exist. If rejection is not desired (for example if you want to
handle the case where there is no lane to the left yourself), you can use the _laneToLeft and _laneToRight
properties instead.

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

• centerline (PolylineRegion) –

• leftEdge (PolylineRegion) –

• rightEdge (PolylineRegion) –

• successor (Union[NetworkElement, None]) –

• predecessor (Union[NetworkElement, None]) –

1.12. Scenic Internals 251

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str

Scenic

• lane (Lane) –

• group (LaneGroup) –

• road (Road) –

• openDriveID (int) –

• isForward (bool) –

• adjacentLanes (Tuple[LaneSection]) –

• laneToLeft (Union[LaneSection, None]) –

• laneToRight (Union[LaneSection, None]) –

• fasterLane (Union[LaneSection, None]) –

• slowerLane (Union[LaneSection, None]) –

lane: Lane

Parent lane.

group: LaneGroup

Grandparent lane group.

road: Road

Great-grandparent road.

isForward: bool

Whether this lane has the same direction as its parent road.

adjacentLanes: Tuple[LaneSection]

Adjacent lanes of the same type, if any.

_laneToLeft: Optional[LaneSection]

Adjacent lane of same type to the left, if any.

_laneToRight: Optional[LaneSection]

Adjacent lane of same type to the right, if any.

_fasterLane: Optional[LaneSection]

Faster adjacent lane of same type, if any. Could be to left or right depending on the country.

_slowerLane: Optional[LaneSection]

Slower adjacent lane of same type, if any.

property laneToLeft: LaneSection

The adjacent lane of the same type to the left; rejects if there is none.

property laneToRight: LaneSection

The adjacent lane of the same type to the right; rejects if there is none.

property fasterLane: LaneSection

The faster adjacent lane of the same type; rejects if there is none.

property slowerLane: LaneSection

The slower adjacent lane of the same type; rejects if there is none.

252 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional

Scenic

shiftedBy(offset)
Find the lane a given number of lanes over from this lane.

Parameters
offset (int) –

Return type
Optional[LaneSection]

class Sidewalk

Bases: LinearElement

A sidewalk.

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

• centerline (PolylineRegion) –

• leftEdge (PolylineRegion) –

• rightEdge (PolylineRegion) –

• successor (Union[NetworkElement, None]) –

• predecessor (Union[NetworkElement, None]) –

• road (Road) –

• crossings (Tuple[PedestrianCrossing]) –

class PedestrianCrossing

Bases: LinearElement

A pedestrian crossing (crosswalk).

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

1.12. Scenic Internals 253

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet

Scenic

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

• centerline (PolylineRegion) –

• leftEdge (PolylineRegion) –

• rightEdge (PolylineRegion) –

• successor (Union[NetworkElement, None]) –

• predecessor (Union[NetworkElement, None]) –

• parent (Union[Road, Intersection]) –

• startSidewalk (Sidewalk) –

• endSidewalk (Sidewalk) –

class Shoulder

Bases: LinearElement

A shoulder of a road, including parking lanes by default.

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

• centerline (PolylineRegion) –

• leftEdge (PolylineRegion) –

• rightEdge (PolylineRegion) –

• successor (Union[NetworkElement, None]) –

• predecessor (Union[NetworkElement, None]) –

• road (Road) –

class Intersection

Bases: NetworkElement

An intersection where multiple roads meet.

Parameters

• polygon (Union[Polygon, MultiPolygon]) –

• orientation (Optional[VectorField]) –

• name (str) –

254 Chapter 1. Table of Contents

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Scenic

• uid (str) –

• id (Optional[str]) –

• network (Network) –

• vehicleTypes (FrozenSet[VehicleType]) –

• speedLimit (Optional[float]) –

• tags (FrozenSet[str]) –

• roads (Tuple[Road]) –

• incomingLanes (Tuple[Lane]) –

• outgoingLanes (Tuple[Lane]) –

• maneuvers (Tuple[Maneuver]) –

• signals (Tuple[Signal]) –

• crossings (Tuple[PedestrianCrossing]) –

property is3Way: bool

Whether or not this is a 3-way intersection.

Type
bool

property is4Way: bool

Whether or not this is a 4-way intersection.

Type
bool

property isSignalized: bool

Whether or not this is a signalized intersection.

Type
bool

maneuversAt(point)
Get all maneuvers possible at a given point in the intersection.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
List[Maneuver]

class Signal(*, uid=None, openDriveID, country, type)
Traffic lights, stop signs, etc.

Warning: Signal parsing is a work in progress and the API is likely to change in the future.

Parameters

• uid (str) –

• openDriveID (int) –

• country (str) –

1.12. Scenic Internals 255

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.FrozenSet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Scenic

• type (str) –

openDriveID: int

ID number as in OpenDRIVE (unique ID of the signal within the database)

country: str

Country code of the signal

type: str

Type identifier according to country code.

property isTrafficLight: bool

Whether or not this signal is a traffic light.

class Network

A road network.

Networks are composed of roads, intersections, sidewalks, etc., which are all instances of NetworkElement.

Road networks can be loaded from standard formats using Network.fromFile.

Parameters

• elements (Dict[str, NetworkElement]) –

• roads (Tuple[Road]) –

• connectingRoads (Tuple[Road]) –

• allRoads (Tuple[Road]) –

• laneGroups (Tuple[LaneGroup]) –

• lanes (Tuple[Lane]) –

• intersections (Tuple[Intersection]) –

• crossings (Tuple[PedestrianCrossing]) –

• sidewalks (Tuple[Sidewalk]) –

• shoulders (Tuple[Shoulder]) –

• roadSections (Tuple[RoadSection]) –

• laneSections (Tuple[LaneSection]) –

• driveOnLeft (bool) –

• tolerance (float) –

• drivableRegion (PolygonalRegion) –

• walkableRegion (PolygonalRegion) –

• roadRegion (PolygonalRegion) –

• laneRegion (PolygonalRegion) –

• intersectionRegion (PolygonalRegion) –

• crossingRegion (PolygonalRegion) –

• sidewalkRegion (PolygonalRegion) –

• curbRegion (PolylineRegion) –

• shoulderRegion (PolygonalRegion) –

256 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Scenic

• roadDirection (VectorField) –

elements: Dict[str, NetworkElement]

All network elements, indexed by unique ID.

roads: Tuple[Road]

All ordinary roads in the network (i.e. those not part of an intersection).

connectingRoads: Tuple[Road]

All roads connecting one exit of an intersection to another.

allRoads: Tuple[Road]

All roads of either type.

laneGroups: Tuple[LaneGroup]

All lane groups in the network.

lanes: Tuple[Lane]

All lanes in the network.

intersections: Tuple[Intersection]

All intersections in the network.

crossings: Tuple[PedestrianCrossing]

All pedestrian crossings in the network.

sidewalks: Tuple[Sidewalk]

All sidewalks in the network.

shoulders: Tuple[Shoulder]

All shoulders in the network (by default, includes parking lanes).

roadSections: Tuple[RoadSection]

All sections of ordinary roads in the network.

laneSections: Tuple[LaneSection]

All sections of lanes in the network.

driveOnLeft: bool

Whether or not cars drive on the left in this network.

tolerance: float

Distance tolerance for testing inclusion in network elements.

roadDirection: VectorField

Traffic flow vector field aggregated over all roads (0 elsewhere).

pickledExt = '.snet'

File extension for cached versions of processed networks.

exception DigestMismatchError

Bases: Exception

Exception raised when loading a cached map not matching the original file.

classmethod fromFile(path, useCache=True, writeCache=True, **kwargs)
Create a Network from a map file.

This function calls an appropriate parsing routine based on the extension of the given file. Supported map
formats are:

1.12. Scenic Internals 257

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception

Scenic

• OpenDRIVE (.xodr): Network.fromOpenDrive

See the functions listed above for format-specific options to this function. If no file extension is given in
path, this function searches for any file with the given name in one of the formats above (in order).

Parameters

• path – A string or other path-like object giving a path to a file. If no file extension is
included, we search for any file type we know how to parse.

• useCache (bool) – Whether to use a cached version of the map, if one exists and matches
the given map file (default true; note that if the map file changes, the cached version will
still not be used).

• writeCache (bool) – Whether to save a cached version of the processed map after parsing
has finished (default true).

• kwargs – Additional keyword arguments specific to particular map formats.

Raises

• FileNotFoundError – no readable map was found at the given path.

• ValueError – the given map is of an unknown format.

classmethod fromOpenDrive(path, ref_points=20, tolerance=0.05, fill_gaps=True,
fill_intersections=True, elide_short_roads=False)

Create a Network from an OpenDRIVE file.

Parameters

• path – Path to the file, as in Network.fromFile.

• ref_points (int) – Number of points to discretize continuous reference lines into.

• tolerance (float) – Tolerance for merging nearby geometries.

• fill_gaps (bool) – Whether to attempt to fill gaps between adjacent lanes.

• fill_intersections (bool) – Whether to attempt to fill gaps inside intersections.

• elide_short_roads (bool) – Whether to attempt to fix geometry artifacts by eliding
roads with length less than tolerance.

findPointIn(point, elems, reject)
Find the first of the given elements containing the point.

Elements which actually contain the point have priority; if none contain the point, then we search again
allowing an error of up to tolerance. If there are still no matches, we return None, unless reject is true, in
which case we reject the current sample.

Parameters

• point (`scenic.domains.driving.roads.Vectorlike`) –

• elems (Sequence[NetworkElement]) –

• reject (Union[bool, str]) –

Return type
Optional[NetworkElement]

258 Chapter 1. Table of Contents

https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

Scenic

elementAt(point, reject=False)
Get the highest-level NetworkElement at a given point, if any.

If the point lies in an Intersection, we return that; otherwise if the point lies in a Road , we return that;
otherwise we return None, or reject the simulation if reject is true (default false).

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[NetworkElement]

roadAt(point, reject=False)
Get the Road passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[Road]

laneAt(point, reject=False)
Get the Lane passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[Lane]

laneSectionAt(point, reject=False)
Get the LaneSection passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[LaneSection]

laneGroupAt(point, reject=False)
Get the LaneGroup passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[LaneGroup]

crossingAt(point, reject=False)
Get the PedestrianCrossing passing through a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Optional[PedestrianCrossing]

intersectionAt(point, reject=False)
Get the Intersection at a given point.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

1.12. Scenic Internals 259

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional

Scenic

Return type
Optional[Intersection]

nominalDirectionsAt(point, reject=False)
Get the nominal traffic direction(s) at a given point, if any.

There can be more than one such direction in an intersection, for example: a car at a given point could be
going straight, turning left, etc.

Parameters
point (`scenic.domains.driving.roads.Vectorlike`) –

Return type
Tuple[Orientation]

show(labelIncomingLanes=False)
Render a schematic of the road network for debugging.

If you call this function directly, you’ll need to subsequently call matplotlib.pyplot.show to actually
display the diagram.

Parameters
labelIncomingLanes (bool) – Whether to label the incoming lanes of intersections with
their indices in incomingLanes.

scenic.domains.driving.simulators

Abstract interface to simulators supporting the driving domain.

Summary of Module Members

Classes

DrivingSimulation A Simulation with a simulator supporting the driving
domain.

DrivingSimulator A Simulator supporting the driving domain.

Member Details

class DrivingSimulator

Bases: Simulator

A Simulator supporting the driving domain.

class DrivingSimulation(scene, *, maxSteps, name, timestep, replay=None, enableReplay=True,
allowPickle=False, enableDivergenceCheck=False, divergenceTolerance=0,
continueAfterDivergence=False, verbosity=0)

Bases: Simulation

A Simulation with a simulator supporting the driving domain.

This subclass of Simulation provides no special behavior by itself; it just provides convenience methods for
creating controllers to be used by FollowLaneBehavior and related behaviors, so that the parameters of these
controllers can be customized for different simulators.

260 Chapter 1. Table of Contents

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://docs.python.org/3/library/functions.html#bool

Scenic

getLaneFollowingControllers(agent)
Get longitudinal and lateral controllers for lane following.

The default controllers are simple PID controllers with parameters that work reasonably well for
cars in simulators with realistic physics. See the classes PIDLongitudinalController and
PIDLateralController for details, and NewtonianSimulation for an example of how to override this
function.

Returns
A pair of controllers for throttle and steering respectively.

getTurningControllers(agent)
Get longitudinal and lateral controllers for turning.

getLaneChangingControllers(agent)
Get longitudinal and lateral controllers for lane changing.

scenic.domains.driving.workspace

Workspaces for the driving domain.

Summary of Module Members

Classes

DrivingWorkspace Workspace created from a road Network .

Member Details

class DrivingWorkspace(network)
Bases: Workspace

Workspace created from a road Network .

scenic.formats

Support for file formats not specific to particular simulators.

opendrive Support for loading OpenDRIVE maps.

scenic.formats.opendrive

Support for loading OpenDRIVE maps.

workspace Workspaces based on OpenDRIVE maps.
xodr_parser Parser for OpenDRIVE (.xodr) files.

1.12. Scenic Internals 261

Scenic

scenic.formats.opendrive.workspace

Workspaces based on OpenDRIVE maps.

Summary of Module Members

Classes

OpenDriveWorkspace

Member Details

scenic.formats.opendrive.xodr_parser

Parser for OpenDRIVE (.xodr) files.

Summary of Module Members

Functions

buffer_union

warn

262 Chapter 1. Table of Contents

Scenic

Classes

Clothoid An Euler spiral with curvature varying linearly between
CURV0 and CURV1.

Cubic A curve defined by the cubic polynomial a + bu + cu^2
+ du^3.

Curve Geometric elements which compose road reference
lines.

Junction

Lane

LaneSection

Line A line segment between (x0, y0) and (x1, y1).
ParamCubic A curve defined by the parametric equations u = a_u +

b_up + c_up^2 + d_up^3, v = a_v + b_vp + c_vp^2 +
d_up^3, with p in [0, p_range].

Poly3 Cubic polynomial.
Road

RoadLink Indicates Roads a and b, with ids id_a and id_b respec-
tively, are connected.

RoadMap

Signal Traffic lights, stop signs, etc.
SignalReference

Exceptions

OpenDriveWarning

Member Details

class Poly3(a, b, c, d)
Cubic polynomial.

class Curve(x0, y0, hdg, length)
Geometric elements which compose road reference lines. See the OpenDRIVE Format Specification for coordi-
nate system details.

to_points(num, extra_points=[])
Sample NUM evenly-spaced points from curve.

Points are tuples of (x, y, s) with (x, y) absolute coordinates and s the arc length along the curve. Additional
points at s values in extra_points are included if they are contained in the curve (unless they are extremely
close to one of the equally-spaced points).

1.12. Scenic Internals 263

Scenic

abstract point_at(s)
Get an (x, y, s) point along the curve at the given s coordinate.

rel_to_abs(point)
Convert from relative coordinates of curve to absolute coordinates. I.e. rotate counterclockwise by self.hdg
and translate by (x0, x1).

class Cubic(x0, y0, hdg, length, a, b, c, d)
Bases: Curve

A curve defined by the cubic polynomial a + bu + cu^2 + du^3. The curve starts at (X0, Y0) in direction HDG,
with length LENGTH.

class ParamCubic(x0, y0, hdg, length, au, bu, cu, du, av, bv, cv, dv, p_range=1)
Bases: Curve

A curve defined by the parametric equations u = a_u + b_up + c_up^2 + d_up^3, v = a_v + b_vp + c_vp^2 +
d_up^3, with p in [0, p_range]. The curve starts at (X0, Y0) in direction HDG, with length LENGTH.

class Clothoid(x0, y0, hdg, length, curv0, curv1)
Bases: Curve

An Euler spiral with curvature varying linearly between CURV0 and CURV1. The spiral starts at (X0, Y0) in
direction HDG, with length LENGTH.

class Line(x0, y0, hdg, length)
Bases: Curve

A line segment between (x0, y0) and (x1, y1).

class RoadLink(id_a, id_b, contact_a, contact_b)
Indicates Roads a and b, with ids id_a and id_b respectively, are connected.

class Signal(id_, country, type_, subtype, orientation, validity=None)
Traffic lights, stop signs, etc.

scenic.simulators

World models and interfaces for particular simulators.

carla Interface to the CARLA driving simulator.
gta Scenic world model for Grand Theft Auto V (GTAV).
lgsvl Interface to the LGSVL driving simulator.
newtonian Simple Newtonian physics simulator.
utils Various utilities useful across multiple simulators.
webots Scenic world models for the Webots robotics simulator.
xplane Scenic world model for the X-Plane flight simulator.

264 Chapter 1. Table of Contents

Scenic

scenic.simulators.carla

Interface to the CARLA driving simulator.

This interface has been tested with CARLA versions 0.9.9, 0.9.10, and 0.9.11. It supports dynamic scenarios involving
vehicles, pedestrians, and props.

The interface implements the scenic.domains.driving abstract domain, so any object types, behaviors, utility
functions, etc. from that domain may be used freely. For details of additional CARLA-specific functionality, see the
world model scenic.simulators.carla.model.

actions Actions for dynamic agents in CARLA scenarios.
behaviors Behaviors for dynamic agents in CARLA scenarios.
blueprints CARLA blueprints for cars, pedestrians, etc.
misc Module with auxiliary functions.
model Scenic world model for traffic scenarios in CARLA.
simulator Simulator interface for CARLA.

scenic.simulators.carla.actions

Actions for dynamic agents in CARLA scenarios.

Summary of Module Members

Classes

PedestrianAction

SetAngularVelocityAction

SetAutopilotAction

SetGearAction

SetJumpAction

SetManualFirstGearShiftAction

SetManualGearShiftAction

SetTrafficLightAction Set the traffic light to desired color.
SetTransformAction

SetVehicleLightStateAction Set the vehicle lights' states.
SetWalkAction

TrackWaypointsAction

VehicleAction

1.12. Scenic Internals 265

https://carla.org/

Scenic

Member Details

class SetTrafficLightAction(color, distance=100, group=False)
Bases: VehicleAction

Set the traffic light to desired color. It will only take effect if the car is within a given distance of the traffic light.

Parameters

• color – the string red/yellow/green/off/unknown

• distance – the maximum distance to search for traffic lights from the current position

class SetVehicleLightStateAction(vehicleLightState)
Bases: VehicleAction

Set the vehicle lights’ states.

Parameters
vehicleLightState – Which lights are on.

scenic.simulators.carla.behaviors

Behaviors for dynamic agents in CARLA scenarios.

behavior AutopilotBehavior()

Behavior causing a vehicle to use CARLA’s built-in autopilot.

behavior CrossingBehavior(reference_actor, min_speed=1, threshold=10, final_speed=None)
This behavior dynamically controls the speed of an actor that will perpendicularly (or close to) cross the road,
so that it arrives at a spot in the road at the same time as a reference actor.

Parameters

• min_speed (float) – minimum speed of the crossing actor. As this is a type of “synchro-
nization action”, a minimum speed is needed, to allow the actor to keep moving even if the
reference actor has stopped

• threshold (float) – starting distance at which the crossing actor starts moving

• final_speed (float) – speed of the crossing actor after the reference one surpasses it

scenic.simulators.carla.blueprints

CARLA blueprints for cars, pedestrians, etc.

Summary of Module Members

266 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

Module Attributes

oldBlueprintNames Mapping from current names of blueprints to ones in old
CARLA versions.

carModels blueprints for cars
bicycleModels blueprints for bicycles
motorcycleModels blueprints for motorcycles
truckModels blueprints for trucks
trashModels blueprints for trash cans
coneModels blueprints for traffic cones
debrisModels blueprints for road debris
vendingMachineModels blueprints for vending machines
chairModels blueprints for chairs
busStopModels blueprints for bus stops
advertisementModels blueprints for roadside billboards
garbageModels blueprints for pieces of trash
containerModels blueprints for containers
tableModels blueprints for tables
barrierModels blueprints for traffic barriers
plantpotModels blueprints for flowerpots
mailboxModels blueprints for mailboxes
gnomeModels blueprints for garden gnomes
creasedboxModels blueprints for creased boxes
caseModels blueprints for briefcases, suitcases, etc.
boxModels blueprints for boxes
benchModels blueprints for benches
barrelModels blueprints for barrels
atmModels blueprints for ATMs
kioskModels blueprints for kiosks
ironplateModels blueprints for iron plates
trafficwarningModels blueprints for traffic warning signs
walkerModels blueprints for pedestrians

Member Details

oldBlueprintNames = {'vehicle.dodge.charger_police': ('vehicle.dodge_charger.police',),
'vehicle.ford.mustang': ('vehicle.mustang.mustang',), 'vehicle.lincoln.mkz_2017':
('vehicle.lincoln.mkz2017',), 'vehicle.mercedes.coupe':
('vehicle.mercedes-benz.coupe',), 'vehicle.mini.cooper_s': ('vehicle.mini.cooperst',)}

Mapping from current names of blueprints to ones in old CARLA versions.

We provide a tuple of old names in case they change more than once.

carModels = ['vehicle.audi.a2', 'vehicle.audi.etron', 'vehicle.audi.tt',
'vehicle.bmw.grandtourer', 'vehicle.chevrolet.impala', 'vehicle.citroen.c3',
'vehicle.dodge.charger_police', 'vehicle.jeep.wrangler_rubicon',
'vehicle.lincoln.mkz_2017', 'vehicle.mercedes.coupe', 'vehicle.mini.cooper_s',
'vehicle.ford.mustang', 'vehicle.nissan.micra', 'vehicle.nissan.patrol',
'vehicle.seat.leon', 'vehicle.tesla.model3', 'vehicle.toyota.prius',
'vehicle.volkswagen.t2']

blueprints for cars

1.12. Scenic Internals 267

Scenic

bicycleModels = ['vehicle.bh.crossbike', 'vehicle.diamondback.century',
'vehicle.gazelle.omafiets']

blueprints for bicycles

motorcycleModels = ['vehicle.harley-davidson.low_rider', 'vehicle.kawasaki.ninja',
'vehicle.yamaha.yzf']

blueprints for motorcycles

truckModels = ['vehicle.carlamotors.carlacola', 'vehicle.tesla.cybertruck']

blueprints for trucks

trashModels = ['static.prop.trashcan01', 'static.prop.trashcan02',
'static.prop.trashcan03', 'static.prop.trashcan04', 'static.prop.trashcan05',
'static.prop.bin']

blueprints for trash cans

coneModels = ['static.prop.constructioncone', 'static.prop.trafficcone01',
'static.prop.trafficcone02']

blueprints for traffic cones

debrisModels = ['static.prop.dirtdebris01', 'static.prop.dirtdebris02',
'static.prop.dirtdebris03']

blueprints for road debris

vendingMachineModels = ['static.prop.vendingmachine']

blueprints for vending machines

chairModels = ['static.prop.plasticchair']

blueprints for chairs

busStopModels = ['static.prop.busstop']

blueprints for bus stops

advertisementModels = ['static.prop.advertisement', 'static.prop.streetsign',
'static.prop.streetsign01', 'static.prop.streetsign04']

blueprints for roadside billboards

garbageModels = ['static.prop.colacan', 'static.prop.garbage01', 'static.prop.garbage02',
'static.prop.garbage03', 'static.prop.garbage04', 'static.prop.garbage05',
'static.prop.garbage06', 'static.prop.plasticbag', 'static.prop.trashbag']

blueprints for pieces of trash

containerModels = ['static.prop.container', 'static.prop.clothcontainer',
'static.prop.glasscontainer']

blueprints for containers

tableModels = ['static.prop.table', 'static.prop.plastictable']

blueprints for tables

barrierModels = ['static.prop.streetbarrier', 'static.prop.chainbarrier',
'static.prop.chainbarrierend']

blueprints for traffic barriers

plantpotModels = ['static.prop.plantpot01', 'static.prop.plantpot02',
'static.prop.plantpot03', 'static.prop.plantpot04', 'static.prop.plantpot05',
'static.prop.plantpot06', 'static.prop.plantpot07', 'static.prop.plantpot08']

blueprints for flowerpots

268 Chapter 1. Table of Contents

Scenic

mailboxModels = ['static.prop.mailbox']

blueprints for mailboxes

gnomeModels = ['static.prop.gnome']

blueprints for garden gnomes

creasedboxModels = ['static.prop.creasedbox01', 'static.prop.creasedbox02',
'static.prop.creasedbox03']

blueprints for creased boxes

caseModels = ['static.prop.travelcase', 'static.prop.briefcase',
'static.prop.guitarcase']

blueprints for briefcases, suitcases, etc.

boxModels = ['static.prop.box01', 'static.prop.box02', 'static.prop.box03']

blueprints for boxes

benchModels = ['static.prop.bench01', 'static.prop.bench02', 'static.prop.bench03']

blueprints for benches

barrelModels = ['static.prop.barrel']

blueprints for barrels

atmModels = ['static.prop.atm']

blueprints for ATMs

kioskModels = ['static.prop.kiosk_01']

blueprints for kiosks

ironplateModels = ['static.prop.ironplank']

blueprints for iron plates

trafficwarningModels = ['static.prop.trafficwarning']

blueprints for traffic warning signs

walkerModels = ['walker.pedestrian.0001', 'walker.pedestrian.0002',
'walker.pedestrian.0003', 'walker.pedestrian.0004', 'walker.pedestrian.0005',
'walker.pedestrian.0006', 'walker.pedestrian.0007', 'walker.pedestrian.0008',
'walker.pedestrian.0009', 'walker.pedestrian.0010', 'walker.pedestrian.0011',
'walker.pedestrian.0012', 'walker.pedestrian.0013', 'walker.pedestrian.0014']

blueprints for pedestrians

scenic.simulators.carla.misc

Module with auxiliary functions.

1.12. Scenic Internals 269

Scenic

Summary of Module Members

Functions

compute_distance Euclidean distance between 3D points
compute_magnitude_angle Compute relative angle and distance between a tar-

get_location and a current_location
distance_vehicle Returns the 2D distance from a waypoint to a vehicle
draw_waypoints Draw a list of waypoints at a certain height given in z.
get_speed Compute speed of a vehicle in Km/h.
is_within_distance Check if a target object is within a certain distance from

a reference object.
is_within_distance_ahead Check if a target object is within a certain distance in

front of a reference object.
positive Return the given number if positive, else 0
vector Returns the unit vector from location_1 to location_2

Member Details

draw_waypoints(world, waypoints, z=0.5)
Draw a list of waypoints at a certain height given in z.

param world
carla.world object

param waypoints
list or iterable container with the waypoints to draw

param z
height in meters

get_speed(vehicle)
Compute speed of a vehicle in Km/h.

param vehicle
the vehicle for which speed is calculated

return
speed as a float in Km/h

is_within_distance_ahead(target_transform, current_transform, max_distance)
Check if a target object is within a certain distance in front of a reference object.

Parameters

• target_transform – location of the target object

• current_transform – location of the reference object

• orientation – orientation of the reference object

• max_distance – maximum allowed distance

Returns
True if target object is within max_distance ahead of the reference object

270 Chapter 1. Table of Contents

Scenic

is_within_distance(target_location, current_location, orientation, max_distance, d_angle_th_up,
d_angle_th_low=0)

Check if a target object is within a certain distance from a reference object. A vehicle in front would be something
around 0 deg, while one behind around 180 deg.

param target_location
location of the target object

param current_location
location of the reference object

param orientation
orientation of the reference object

param max_distance
maximum allowed distance

param d_angle_th_up
upper thereshold for angle

param d_angle_th_low
low thereshold for angle (optional, default is 0)

return
True if target object is within max_distance ahead of the reference object

compute_magnitude_angle(target_location, current_location, orientation)
Compute relative angle and distance between a target_location and a current_location

param target_location
location of the target object

param current_location
location of the reference object

param orientation
orientation of the reference object

return
a tuple composed by the distance to the object and the angle between both objects

distance_vehicle(waypoint, vehicle_transform)

Returns the 2D distance from a waypoint to a vehicle

param waypoint
actual waypoint

param vehicle_transform
transform of the target vehicle

vector(location_1, location_2)
Returns the unit vector from location_1 to location_2

param location_1, location_2
carla.Location objects

compute_distance(location_1, location_2)
Euclidean distance between 3D points

param location_1, location_2
3D points

1.12. Scenic Internals 271

Scenic

positive(num)

Return the given number if positive, else 0

param num
value to check

scenic.simulators.carla.model

Scenic world model for traffic scenarios in CARLA.

The model currently supports vehicles, pedestrians, and props. It implements the basic Car and Pedestrian classes
from the scenic.domains.driving domain, while also providing convenience classes for specific types of objects
like bicycles, traffic cones, etc. Vehicles and pedestrians support the basic actions and behaviors from the driv-
ing domain; several more are automatically imported from scenic.simulators.carla.actions and scenic.
simulators.carla.behaviors.

The model defines several global parameters, whose default values can be overridden in scenarios using the param
statement or on the command line using the --param option:

Global Parameters

• carla_map (str) – Name of the CARLA map to use, e.g. ‘Town01’. Can also be set to None, in
which case CARLA will attempt to create a world from the map file used in the scenario (which
must be an .xodr file).

• timestep (float) – Timestep to use for simulations (i.e., how frequently Scenic interrupts CARLA
to run behaviors, check requirements, etc.), in seconds. Default is 0.1 seconds.

• weather (str or dict) – Weather to use for the simulation. Can be either a string identifying one
of the CARLA weather presets (e.g. ‘ClearSunset’) or a dictionary specifying all the weather
parameters (see carla.WeatherParameters). Default is a uniform distribution over all the weather
presets.

• address (str) – IP address at which to connect to CARLA. Default is localhost (127.0.0.1).

• port (int) – Port on which to connect to CARLA. Default is 2000.

• timeout (float) – Maximum time to wait when attempting to connect to CARLA, in seconds.
Default is 10.

• render (int) – Whether or not to have CARLA create a window showing the simulations from
the point of view of the ego object: 1 for yes, 0 for no. Default 1.

• record (str) – If nonempty, folder in which to save CARLA record files for replaying the simu-
lations.

Summary of Module Members

272 Chapter 1. Table of Contents

https://carla.readthedocs.io/en/latest/python_api/#carlaweatherparameters

Scenic

Functions

freezeTrafficLights Freezes all traffic lights in the scene.
getClosestTrafficLightStatus

getTrafficLightStatus

setAllIntersectionTrafficLightsStatus

setClosestTrafficLightStatus

setTrafficLightStatus

unfreezeTrafficLights Unfreezes all traffic lights in the scene.
withinDistanceToRedYellowTrafficLight

withinDistanceToTrafficLight

Classes

ATM

Advertisement

Barrel

Barrier

Bench

Bicycle

Box

BusStop

Car A car.
CarlaActor Abstract class for CARLA objects.
Case

Chair

Cone

Container

CreasedBox

continues on next page

1.12. Scenic Internals 273

Scenic

Table 1 – continued from previous page
Debris

Garbage

Gnome

IronPlate

Kiosk

Mailbox

Motorcycle

NPCCar

Pedestrian A pedestrian.
PlantPot

Prop Abstract class for props, i.e. non-moving objects.
Table

TrafficWarning

Trash

Truck

Vehicle Abstract class for steerable vehicles.
VendingMachine

Member Details

class CarlaActor <specifiers>
Bases: DrivingObject

Abstract class for CARLA objects.

Properties

• carlaActor (dynamic) – Set during simulations to the carla.Actor representing this object.

• blueprint (str) – Identifier of the CARLA blueprint specifying the type of object.

• rolename (str) – Can be used to differentiate specific actors during runtime. Default value
None.

• physics (bool) – Whether physics is enabled for this object in CARLA. Default true.

class Vehicle <specifiers>
Bases: Vehicle, CarlaActor, Steers

Abstract class for steerable vehicles.

274 Chapter 1. Table of Contents

Scenic

class Car <specifiers>
Bases: Vehicle

A car.

The default blueprint (see CarlaActor) is a uniform distribution over the blueprints listed in scenic.
simulators.carla.blueprints.carModels.

class Pedestrian <specifiers>
Bases: Pedestrian, CarlaActor, Walks

A pedestrian.

The default blueprint (see CarlaActor) is a uniform distribution over the blueprints listed in scenic.
simulators.carla.blueprints.walkerModels.

class Prop <specifiers>
Bases: CarlaActor

Abstract class for props, i.e. non-moving objects.

Properties

• heading (float) – Default value overridden to be uniformly random.

• physics (bool) – Default value overridden to be false.

freezeTrafficLights()

Freezes all traffic lights in the scene.

Frozen traffic lights can be modified by the user but the time will not update them until unfrozen.

unfreezeTrafficLights()

Unfreezes all traffic lights in the scene.

_getClosestTrafficLight(vehicle, distance=100)
Returns the closest traffic light affecting ‘vehicle’, up to a maximum of ‘distance’

scenic.simulators.carla.simulator

Simulator interface for CARLA.

Summary of Module Members

Classes

CarlaSimulation

CarlaSimulator Implementation of Simulator for CARLA.

1.12. Scenic Internals 275

Scenic

Member Details

class CarlaSimulator(carla_map, map_path, address='127.0.0.1', port=2000, timeout=10, render=True,
record='', timestep=0.1, traffic_manager_port=None)

Bases: DrivingSimulator

Implementation of Simulator for CARLA.

scenic.simulators.gta

Scenic world model for Grand Theft Auto V (GTAV).

Importing scenes generated using this model into GTA V requires a GTA V plugin, which you can find here.

center_detection This file contains helper functions
img_modf This file has basic image modification functions
interface Python supporting code for the GTA model.
map

messages

model World model for GTA.

scenic.simulators.gta.center_detection

This file contains helper functions

Summary of Module Members

Functions

compute_bb

compute_gradient_sobel

compute_midpoints

find_center Find which edge x lies in
generate_circle

generate_connected_edges

generate_neighbors

transform_center

276 Chapter 1. Table of Contents

https://github.com/xyyue/scenic2gta

Scenic

Classes

EdgeData

Member Details

find_center(x, theta, collected_edges, all_edges, num_samples, bw_image)
Find which edge x lies in

class EdgeData(init_theta, tangent, opp_loc, mid_loc)
Bases: NamedTuple

Parameters

• init_theta (float) –

• tangent (float) –

• opp_loc (Tuple[float, float]) –

• mid_loc (Tuple[float, float]) –

init_theta: float

Alias for field number 0

tangent: float

Alias for field number 1

opp_loc: Tuple[float, float]

Alias for field number 2

mid_loc: Tuple[float, float]

Alias for field number 3

_asdict()

Return a new dict which maps field names to their values.

classmethod _make(iterable)
Make a new EdgeData object from a sequence or iterable

_replace(**kwds)
Return a new EdgeData object replacing specified fields with new values

scenic.simulators.gta.img_modf

This file has basic image modification functions

1.12. Scenic Internals 277

https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

Summary of Module Members

Functions

convert_black_white

get_edges

Member Details

scenic.simulators.gta.interface

Python supporting code for the GTA model.

Summary of Module Members

Classes

CarModel A model of car in GTA.
GTA

Map Represents roads and obstacles in GTA, extracted from
a map image.

MapWorkspace Workspace whose rendering is handled by a Map

Member Details

class Map(imagePath, Ax, Ay, Bx, By)
Represents roads and obstacles in GTA, extracted from a map image.

This code handles images from the GTA V Interactive Map, rendered with the “Road” setting.

Parameters

• imagePath (str) – path to image file

• Ax (float) – width of one pixel in GTA coordinates

• Ay (float) – height of one pixel in GTA coordinates

• Bx (float) – GTA X-coordinate of bottom-left corner of image

• By (float) – GTA Y-coordinate of bottom-left corner of image

class MapWorkspace(mappy, region)
Bases: Workspace

Workspace whose rendering is handled by a Map

278 Chapter 1. Table of Contents

https://gta-5-map.com/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

class CarModel(name, width, length, viewAngle=1.5707963267948966)
A model of car in GTA.

Attributes

• name (str) – name of model in GTA

• width (float) – width of this model of car

• length (float) – length of this model of car

• viewAngle (float) – view angle in radians (default is 90 degrees)

Class Attributes
models – dict mapping model names to the corresponding CarModel

Parameters

• name (str) –

• width (float) –

• length (float) –

• viewAngle (float) –

scenic.simulators.gta.map

Summary of Module Members

Functions

setLocalMap

Member Details

scenic.simulators.gta.messages

Summary of Module Members

Functions

frame2numpy

obj_dict

1.12. Scenic Internals 279

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

Classes

Commands

Config

Dataset

Formal_Config

Formal_Configs

Scenario

Start

Stop

Vehicle

Member Details

scenic.simulators.gta.model

World model for GTA.

Summary of Module Members

Module Attributes

roadDirection Vector field representing the nominal traffic direction at
a point on the road

road Region representing the roads in the GTA map.
curb Region representing the curbs in the GTA map.

Functions

createPlatoonAt Create a platoon starting from the given car.

280 Chapter 1. Table of Contents

Scenic

Classes

Bus Convenience subclass for buses.
Car Scenic class for cars.
Compact Convenience subclass for compact cars.
EgoCar Convenience subclass with defaults for ego cars.

Member Details

roadDirection

Vector field representing the nominal traffic direction at a point on the road

road

Region representing the roads in the GTA map.

curb

Region representing the curbs in the GTA map.

class Car <specifiers>
Bases: Object2D

Scenic class for cars.

Properties

• position – The default position is uniformly random over the road .

• heading – The default heading is aligned with roadDirection, plus an offset given by
roadDeviation.

• roadDeviation (float) – Relative heading with respect to the road direction at the Car’s
position. Used by the default value for heading.

• model (CarModel) – Model of the car.

• color (Color or RGB tuple) – Color of the car.

class EgoCar <specifiers>
Bases: Car

Convenience subclass with defaults for ego cars.

class Bus <specifiers>
Bases: Car

Convenience subclass for buses.

class Compact <specifiers>
Bases: Car

Convenience subclass for compact cars.

createPlatoonAt(car, numCars, model=None, dist=Range(2.0, 8.0), shift=Range(-0.5, 0.5), wiggle=0)
Create a platoon starting from the given car.

1.12. Scenic Internals 281

Scenic

scenic.simulators.lgsvl

Interface to the LGSVL driving simulator.

This interface has been tested with LGSVL version 2020.06. It supports dynamic scenarios involving vehicles and
pedestrians.

The interface implements the scenic.domains.driving abstract domain, so any object types, behaviors, utility
functions, etc. from that domain may be used freely.

actions Actions for agents in the LGSVL model.
behaviors Behaviors for dynamic agents in LGSVL.
model Scenic world model for the LGSVL Simulator.
simulator Dynamic simulator interface for LGSVL.
utils Common LGSVL interface.

scenic.simulators.lgsvl.actions

Actions for agents in the LGSVL model.

Summary of Module Members

Classes

CancelWaypointsAction

FollowWaypointsAction

SetDestinationAction

TrackWaypointsAction

Member Details

scenic.simulators.lgsvl.behaviors

Behaviors for dynamic agents in LGSVL.

282 Chapter 1. Table of Contents

https://www.lgsvlsimulator.com/

Scenic

scenic.simulators.lgsvl.model

Scenic world model for the LGSVL Simulator.

Summary of Module Members

Functions

LGSVLSimulator

Classes

ApolloCar

Bus

Car alias of EgoCar
EgoCar

LGSVLObject

NPCCar

Pedestrian

Vehicle

Waypoint

Member Details

scenic.simulators.lgsvl.simulator

Dynamic simulator interface for LGSVL.

Summary of Module Members

Classes

LGSVLSimulation Subclass of Simulation for LGSVL.
LGSVLSimulator A connection to an instance of LGSVL.

1.12. Scenic Internals 283

Scenic

Member Details

class LGSVLSimulator(sceneID, address='localhost', port=8181, alwaysReload=False)
Bases: Simulator

A connection to an instance of LGSVL.

See the SVL documentation for details on how to set the parameters below.

Uses a default timestep of 0.1 seconds.

Parameters

• sceneID (str) – Identifier for the map (“scene”) to load in SVL.

• address (str) – Address where SVL is running.

• port (int) – Port on which to connect to SVL.

• alwaysReload (bool) – Whether to force reloading the map upon connecting, even if the
simulator already has the desired map loaded.

class LGSVLSimulation(scene, client, *, timestep, **kwargs)
Bases: Simulation

Subclass of Simulation for LGSVL.

initApolloFor(obj, lgsvlObj)
Initialize Apollo for an ego vehicle.

Uses LG’s interface which injects packets into Dreamview.

scenic.simulators.lgsvl.utils

Common LGSVL interface.

Summary of Module Members

Functions

gpsToScenicPosition Convert GPS positions to Scenic positions.
lgsvlToScenicAngularSpeed

lgsvlToScenicElevation Convert LGSVL positions to Scenic elevations.
lgsvlToScenicPosition Convert LGSVL positions to Scenic positions.
lgsvlToScenicRotation Convert LGSVL rotations to Scenic headings.
scenicToLGSVLPosition

scenicToLGSVLRotation

284 Chapter 1. Table of Contents

https://www.svlsimulator.com/docs/python-api/python-api
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Scenic

Member Details

lgsvlToScenicPosition(pos)
Convert LGSVL positions to Scenic positions.

gpsToScenicPosition(northing, easting)
Convert GPS positions to Scenic positions.

lgsvlToScenicElevation(pos)
Convert LGSVL positions to Scenic elevations.

lgsvlToScenicRotation(rot)
Convert LGSVL rotations to Scenic headings.

Drops all but the Y component.

scenic.simulators.newtonian

Simple Newtonian physics simulator.

This simulator allows dynamic scenarios to be tested without installing an external simulator. It is currently very
simplistic (e.g. not modeling collisions).

The simulator provides two world models: a generic one, and a more specialized model supporting traffic scenarios
using the scenic.domains.driving abstract domain.

driving_model Scenic world model for traffic scenarios in the Newto-
nian simulator.

model Scenic world model for the Newtonian simulator.
simulator Newtonian simulator implementation.

scenic.simulators.newtonian.driving_model

Scenic world model for traffic scenarios in the Newtonian simulator.

This model implements the basic Car class from the scenic.domains.driving domain. Vehicles support the basic
actions and behaviors from the driving domain.

A path to a map file for the scenario should be provided as the map global parameter; see the driving domain’s docu-
mentation for details.

Summary of Module Members

1.12. Scenic Internals 285

Scenic

Classes

Car

Debris Abstract class for debris scattered randomly in the
workspace.

NewtonianActor

Pedestrian

Vehicle

Member Details

class Debris <specifiers>
Bases: Object2D

Abstract class for debris scattered randomly in the workspace.

scenic.simulators.newtonian.model

Scenic world model for the Newtonian simulator.

This is a completely generic model that does not assume the scenario takes place in a road network (unlike scenic.
simulators.newtonian.driving_model).

scenic.simulators.newtonian.simulator

Newtonian simulator implementation.

Summary of Module Members

Classes

NewtonianSimulation Implementation of Simulation for the Newtonian sim-
ulator.

NewtonianSimulator Implementation of Simulator for the Newtonian simu-
lator.

286 Chapter 1. Table of Contents

Scenic

Member Details

class NewtonianSimulator(network=None, render=False)
Bases: DrivingSimulator

Implementation of Simulator for the Newtonian simulator.

Parameters

• network (Network) – road network to display in the background, if any.

• render (bool) – whether to render the simulation in a window.

Changed in version 3.0: The timestep argument is removed: it can be specified when calling simulate instead.
The default timestep for the Newtonian simulator when not otherwise specified is still 0.1 seconds.

class NewtonianSimulation(scene, network, render, timestep, **kwargs)
Bases: DrivingSimulation

Implementation of Simulation for the Newtonian simulator.

scenic.simulators.utils

Various utilities useful across multiple simulators.

colors A basic color type.

scenic.simulators.utils.colors

A basic color type.

This used for example to represent car colors in the abstract driving domain, as well as in the interfaces to GTA and
Webots.

Summary of Module Members

Classes

Color A color as an RGB tuple.
ColorMutator Mutator that adds Gaussian HSL noise to the color

property.
NoisyColorDistribution A distribution given by HSL noise around a base color.

1.12. Scenic Internals 287

https://docs.python.org/3/library/functions.html#bool

Scenic

Member Details

class Color(r, g, b)
Bases: Color

A color as an RGB tuple.

static uniformColor()

Return a uniformly random color.

static defaultCarColor()

Default color distribution for cars.

The distribution starts with a base distribution over 9 discrete colors, then adds Gaussian HSL noise. The
base distribution uses color popularity statistics from a 2012 DuPont survey.

class NoisyColorDistribution(baseColor, hueNoise, satNoise, lightNoise)
Bases: Distribution

A distribution given by HSL noise around a base color.

Parameters

• baseColor (RGB tuple) – base color

• hueNoise (float) – noise to add to base hue

• satNoise (float) – noise to add to base saturation

• lightNoise (float) – noise to add to base lightness

class ColorMutator

Bases: Mutator

Mutator that adds Gaussian HSL noise to the color property.

scenic.simulators.webots

Scenic world models for the Webots robotics simulator.

This module contains common code for working with Webots, e.g. parsing WBT files, as well as a generic dynamic
simulator interface and world model for Webots. More detailed world models for particular types of scenarios are in
submodules.

actions Actions for dynamic agents in Webots simulations.
guideways World model for road intersection scenarios in Webots.
model Generic Scenic world model for the Webots simulator.
road World model and associated code for traffic scenarios in

Webots.
simulator Interface to Webots for dynamic simulations.
utils Various utilities for working with Webots scenarios.
WBTLexer

WBTParser

WBTVisitor

world_parser Parser for WBT files using ANTLR.

288 Chapter 1. Table of Contents

https://web.archive.org/web/20121229065631/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

scenic.simulators.webots.actions

Actions for dynamic agents in Webots simulations.

Summary of Module Members

Classes

ApplyForceAction Apply a given force to the object.
OffsetAction Move an object by the given offset relative to its current

heading.
WriteFileAction Pickle the given data and write the result to a file.

Member Details

class OffsetAction(offset)
Bases: Action

Move an object by the given offset relative to its current heading.

class ApplyForceAction(force, relative=False)
Bases: Action

Apply a given force to the object.

class WriteFileAction(path, data)
Bases: Action

Pickle the given data and write the result to a file.

For use in communication with external controllers or other code.

scenic.simulators.webots.guideways

World model for road intersection scenarios in Webots.

This is a more specialized version of the scenic.simulators.webots.road model which also includes guideway informa-
tion from the Intelligent Intersections Toolkit.

interface

intersection

model

1.12. Scenic Internals 289

https://github.com/ucbtrans/intelligent_intersection

Scenic

scenic.simulators.webots.guideways.interface

Summary of Module Members

Functions

localize

projectionAt

toWebots

Classes

Bordered

ConflictZone

Crosswalk

Guideway

Intersection

IntersectionWorkspace

Member Details

scenic.simulators.webots.guideways.intersection

Summary of Module Members

Functions

setLocalIntersection

290 Chapter 1. Table of Contents

Scenic

Member Details

scenic.simulators.webots.guideways.model

Summary of Module Members

Classes

Car

Marker

Member Details

scenic.simulators.webots.model

Generic Scenic world model for the Webots simulator.

This model provides a general type of object WebotsObject corresponding to a node in the Webots scene tree, as well
as a few more specialized objects.

Scenarios using this model cannot be launched directly from the command line using the --simulate option. In-
stead, Webots should be started first, with a .wbt file that includes nodes for all the objects in the scenario (see the
WebotsObject documentation for how to specify which objects correspond to which nodes). A supervisor node can
then invoke Scenic to compile the scenario and run dynamic simulations: see scenic.simulators.webots.simulator for
details.

Summary of Module Members

Functions

is2DMode

Classes

Ground Special kind of object representing a (possibly irregular)
ground surface.

Hill Terrain shaped like a Gaussian.
Terrain Abstract class for objects added together to make a

Ground .
WebotsObject Abstract class for Webots objects.

1.12. Scenic Internals 291

Scenic

Member Details

class WebotsObject <specifiers>
Bases: Object

Abstract class for Webots objects.

There several ways to specify which Webots node this object corresponds to:

• Set the webotsName property to the DEF name of the Webots node, which must already exist in the world
loaded into Webots.

• Set the webotsType property to a prefix like ‘ROCK’: the interface will then search for nodes called
‘ROCK_0’, ‘ROCK_1’, etc. Again the nodes must already exist in the world loaded into Webots.

• Set the webotsAdhoc property to a dictionary of parameters. This will cause Scenic to dynamically create
an Object in Webots, according to the parameters in the dictionary. This is currently the only way to create
objects in Webots that do not correspond to an existing node. The parameters that can be contained in
the dictionary are:

– physics: Whether or not physics should be enabled for this object. Default value is True.

Properties

• elevation (float or None; dynamic) – default None (see above).

• requireVisible (bool) – Default value False (overriding the default from Object).

• webotsAdhoc (None | dict) – None implies this object is not Adhoc. A dictionary implies
this is an object that Scenic should create in Webots.. If a dictionary, provides parameters
for how to instantiate the adhoc object. See scenic.simulators.webots.model for more
details.

• webotsName (str) – ‘DEF’ name of the Webots node to use for this object.

• webotsType (str) – If webotsName is not set, the first available node with ‘DEF’ name
consisting of this string followed by ‘_0’, ‘_1’, etc. will be used for this object.

• webotsObject – Is set at runtime to a handle to the Webots node for the object, for use with
the Supervisor API. Primarily for internal use.

• controller (str or None) – name of the Webots controller to use for this object, if any (instead
of a Scenic behavior).

• resetController (bool) – Whether to restart the controller for each simulation (default True).

• positionOffset (Vector) – Offset to add when computing the object’s position in Webots;
for objects whose Webots translation field is not aligned with the center of the object.

• rotationOffset (tuple[float, float, float]) – Offset to add when computing the object’s orien-
tation in Webots; for objects whose front is not aligned with the Webots North axis.

• density (float) – Density of this object in kg/m^3. The corresponding Webots object must
have the density field.

class Ground <specifiers>
Bases: WebotsObject

Special kind of object representing a (possibly irregular) ground surface.

Implemented using an ElevationGrid node in Webots.

Attributes

292 Chapter 1. Table of Contents

https://www.cyberbotics.com/doc/reference/supervisor?tab-language=python
https://www.cyberbotics.com/doc/reference/elevationgrid

Scenic

• allowCollisions (bool) – default value True (overriding default from Object).

• webotsName (str) – default value ‘Ground’

class Terrain <specifiers>
Bases: Object

Abstract class for objects added together to make a Ground .

This is not a WebotsObject since it doesn’t actually correspond to a Webots node. Only the overall Ground has
a node.

class Hill <specifiers>
Bases: Terrain

Terrain shaped like a Gaussian.

Attributes

• height (float) – height of the hill (default 1).

• spread (float) – standard deviation as a fraction of the hill’s size (default 3).

scenic.simulators.webots.road

World model and associated code for traffic scenarios in Webots.

This model handles Webots world files generated from Open Street Map data using the Webots OSM importer.

car_models Car models built into Webots.
interface Python library supporting the main Scenic module.
model Scenic world model for traffic scenarios in Webots.
world Stub to allow changing the Webots world without chang-

ing the model.

scenic.simulators.webots.road.car_models

Car models built into Webots.

Summary of Module Members

Classes

CarModel

1.12. Scenic Internals 293

https://docs.python.org/3/library/constants.html#True

Scenic

Member Details

class CarModel(name: str, width: float, length: float, height: float)

Parameters

• name (str) –

• width (float) –

• length (float) –

• height (float) –

scenic.simulators.webots.road.interface

Python library supporting the main Scenic module.

Summary of Module Members

Functions

polygonWithPoints

regionWithPolygons

scenicToWebotsPosition Convert a Scenic position to a Webots position.
scenicToWebotsRotation Convert a Scenic heading to a Webots rotation vector.
webotsToScenicPosition Convert a Webots position to a Scenic position.
webotsToScenicRotation Convert a Webots rotation vector to a Scenic heading.

Classes

Crossroad OSM crossroads
OSMObject Objects with OSM id tags
PedestrianCrossing PedestrianCrossing nodes
Road OSM roads
WebotsWorkspace

Member Details

class OSMObject(attrs)
Objects with OSM id tags

class Road(attrs, driveOnLeft=False)
Bases: OSMObject

OSM roads

294 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

class Crossroad(attrs)
Bases: OSMObject

OSM crossroads

class PedestrianCrossing(attrs)
PedestrianCrossing nodes

webotsToScenicPosition(pos)
Convert a Webots position to a Scenic position. Drops the Webots Y coordinate.

Deprecated since version 2.1.0: Use WebotsCoordinateSystem instead.

scenicToWebotsPosition(pos, y=0, coordinateSystem='ENU')
Convert a Scenic position to a Webots position.

Deprecated since version 2.1.0: Use WebotsCoordinateSystem instead.

webotsToScenicRotation(rot, tolerance2D=None)
Convert a Webots rotation vector to a Scenic heading. Assumes the object lies in the Webots X-Z plane, with a
rotation axis close to the Y axis. If tolerance2D is given, returns None if the orientation of the object is not
sufficiently close to being 2D.

Deprecated since version 2.1.0: Use WebotsCoordinateSystem instead.

scenicToWebotsRotation(heading)
Convert a Scenic heading to a Webots rotation vector.

Deprecated since version 2.1.0: Use WebotsCoordinateSystem instead.

scenic.simulators.webots.road.model

Scenic world model for traffic scenarios in Webots.

1.12. Scenic Internals 295

Scenic

Summary of Module Members

Classes

BmwX5

Bus

Car

CitroenCZero

LincolnMKZ

Motorcycle

OilBarrel

Pedestrian

RangeRoverSportSVR

SmallCar

SolidBox

ToyotaPrius

Tractor

TrafficCone

Truck

WebotsObject

WorkBarrier

296 Chapter 1. Table of Contents

Scenic

Member Details

scenic.simulators.webots.road.world

Stub to allow changing the Webots world without changing the model.

Summary of Module Members

Module Attributes

worldPath Path to the WBT file to load the Webots world from

Functions

setLocalWorld Select a WBT file relative to the given module.

Member Details

worldPath = '../tests/simulators/webots/road/simple.wbt'

Path to the WBT file to load the Webots world from

setLocalWorld(module, relpath)
Select a WBT file relative to the given module.

This function is intended to be used with __file__ as the module.

scenic.simulators.webots.simulator

Interface to Webots for dynamic simulations.

This interface is intended to be instantiated from inside the controller script of a Webots Robot node with the
supervisor field set to true. Such a script can create a WebotsSimulator (passing in a reference to the supervi-
sor node) and then call its simulate method as usual to run a simulation. For an example, see examples/webots/
generic/controllers/scenic_supervisor.py.

Scenarios written for this interface should use our generic Webots world model scenic.simulators.webots.model or a
model derived from it. Objects which are instances of WebotsObject will be matched to Webots nodes; see the model
documentation for details.

1.12. Scenic Internals 297

https://www.cyberbotics.com/doc/reference/robot

Scenic

Summary of Module Members

Functions

getFieldSafe Get field from webots object.
isPhysicsEnabled Whether or not physics is enabled for this

WebotsObject

Classes

WebotsSimulation Simulation object for Webots.
WebotsSimulator Simulator object for Webots.

Member Details

class WebotsSimulator(supervisor)
Bases: Simulator

Simulator object for Webots.

Parameters
supervisor – Supervisor node handle from the Webots Python API.

class WebotsSimulation(scene, supervisor,
coordinateSystem=<scenic.simulators.webots.utils.WebotsCoordinateSystem object>,
*, timestep, **kwargs)

Bases: Simulation

Simulation object for Webots.

Attributes
supervisor – Webots supervisor node used for the simulation. This is exposed for the use
of scenarios which need to call Webots APIs directly; e.g. simulation().supervisor.
setLabel(...).

getFieldSafe(webotsObject, fieldName)
Get field from webots object. Return null if no such field exists.

Needed to workaround this issue (https://github.com/cyberbotics/webots/issues/5646)

Parameters

• webotsObject – webots object

• fieldName – name of the field to look for

Returns
Field|None – Field object if the field with the given name exists. None otherwise.

isPhysicsEnabled(webotsObject)
Whether or not physics is enabled for this WebotsObject

298 Chapter 1. Table of Contents

https://github.com/cyberbotics/webots/issues/5646

Scenic

scenic.simulators.webots.utils

Various utilities for working with Webots scenarios.

Summary of Module Members

Module Attributes

ENU The ENU coordinate system (the Webots default).
NUE The NUE coordinate system.
EUN The EUN coordinate system.

Classes

WebotsCoordinateSystem A Webots coordinate system into which Scenic positions
can be converted.

Member Details

class WebotsCoordinateSystem(system='ENU')
A Webots coordinate system into which Scenic positions can be converted.

See the Webots documentation of WorldInfo.coordinateSystem for a discussion of the possible coordinate sys-
tems. Since Webots R2022a, the default coordinate axis convention is ENU (X-Y-Z=East-North-Up), which is
the same as Scenic’s.

positionToScenic(pos)
Convert a Webots position to a Scenic position.

positionFromScenic(pos)
Convert a Scenic position to a Webots position.

ENU = <scenic.simulators.webots.utils.WebotsCoordinateSystem object>

The ENU coordinate system (the Webots default).

NUE = <scenic.simulators.webots.utils.WebotsCoordinateSystem object>

The NUE coordinate system.

EUN = <scenic.simulators.webots.utils.WebotsCoordinateSystem object>

The EUN coordinate system.

1.12. Scenic Internals 299

https://cyberbotics.com/doc/reference/worldinfo

Scenic

scenic.simulators.webots.WBTLexer

Summary of Module Members

Functions

serializedATN

Classes

WBTLexer

Member Details

scenic.simulators.webots.WBTParser

Summary of Module Members

Functions

serializedATN

Classes

WBTParser

Member Details

scenic.simulators.webots.WBTVisitor

Summary of Module Members

Classes

WBTVisitor

300 Chapter 1. Table of Contents

Scenic

Member Details

scenic.simulators.webots.world_parser

Parser for WBT files using ANTLR.

The ANTLR parser itself, consisting of the WBTLexer.py, WBTParser.py, and WBTVisitor.py files, is autogenerated
from WBT.g4.

Summary of Module Members

Functions

findNodeTypesIn Find all nodes of the given types in a world
parse Parse a world from a WBT file

Classes

ErrorReporter ANTLR listener for reporting parse errors
Evaluator Constructs an object representing the given value from

the parse tree
Node A generic VRML node

Member Details

class Node(nodeType, attrs)
A generic VRML node

class ErrorReporter

Bases: ErrorListener

ANTLR listener for reporting parse errors

class Evaluator(nodeClasses)
Bases: WBTVisitor

Constructs an object representing the given value from the parse tree

parse(path)
Parse a world from a WBT file

findNodeTypesIn(types, world, nodeClasses={})
Find all nodes of the given types in a world

1.12. Scenic Internals 301

Scenic

scenic.simulators.xplane

Scenic world model for the X-Plane flight simulator.

See the VerifAI distribution for examples of how to use Scenic with X-Plane.

model Scenic world model for the X-Plane simulator.

scenic.simulators.xplane.model

Scenic world model for the X-Plane simulator.

At the moment this is extremely simple, since the current interface does not allow changing the type of aircraft, adding
other objects, etc.

Summary of Module Members

Classes

Plane Placeholder object for the plane.

Member Details

class Plane <specifiers>
Bases: Object

Placeholder object for the plane.

scenic.syntax

The Scenic compiler and associated support code.

ast

compiler

parser

pygment Pygments lexer and style for Scenic.
relations Extracting relations (for later pruning) from the syntax

of requirements.
translator Translator turning Scenic programs into Scenario ob-

jects.
veneer Python implementations of Scenic language constructs.

302 Chapter 1. Table of Contents

https://github.com/BerkeleyLearnVerify/VerifAI

Scenic

scenic.syntax.ast

Summary of Module Members

Classes

AST Scenic AST base class
Abort

Above

Additive

AheadOf

AltitudeFromOp

Always

AngleFromOp

ApparentHeadingOp

ApparentlyFacingSpecifier

AtSpecifier

Back Represents position of back of operator
BackLeft Represents position of back left of operator
BackRight Represents position of back right of operator
BehaviorDef

Behind

Below

BeyondSpecifier

Bottom Represents position of bottom of operator
BottomBackLeft Represents position of bottom back left of opera-

tor
BottomBackRight Represents position of bottom back right of oper-

ator
BottomFrontLeft Represents position of bottom front left of oper-

ator
BottomFrontRight Represents position of bottom front right of op-

erator
CanSeeOp

ContainedInSpecifier

continues on next page

1.12. Scenic Internals 303

Scenic

Table 2 – continued from previous page
DegOp

DirectionOfSpecifier

DistanceFromOp

DistancePastOp

Do

DoChoose

DoFor

DoShuffle

DoUntil

Dynamic

Ego ego tracked assign target
Eventually

FacingAwayFromSpecifier

FacingDirectlyAwayFromSpecifier

FacingDirectlyTowardSpecifier

FacingSpecifier

FacingTowardSpecifier

FieldAtOp

Final

FollowOp

FollowingSpecifier

Front Represents position of front of operator
FrontLeft Represents position of front left of operator
FrontRight Represents position of front right of operator
ImpliesOp

InSpecifier

InitialScenario

continues on next page

304 Chapter 1. Table of Contents

Scenic

Table 2 – continued from previous page
InterruptWhenHandler

Invariant

Left Represents position of left of operator
LeftOf

Model

MonitorDef

Mutate

New

Next

NotVisibleFromOp

NotVisibleOp

NotVisibleSpecifier

OffsetAlongOp

OffsetAlongSpecifier

OffsetBySpecifier

OnSpecifier

Override

Param param statements
PositionOfOp

Precondition

PropertyDef

Record

RecordFinal

RecordInitial

RelativeHeadingOp

RelativePositionOp

continues on next page

1.12. Scenic Internals 305

Scenic

Table 2 – continued from previous page
RelativeToOp

Require

RequireMonitor

Right Represents position of right of operator
RightOf

ScenarioDef

Seconds

Simulator

Steps

Take

Terminate

TerminateAfter

TerminateSimulation

TerminateSimulationWhen

TerminateWhen

Top Represents position of top of operator
TopBackLeft Represents position of top back left of operator
TopBackRight Represents position of top back right of operator
TopFrontLeft Represents position of top front left of operator
TopFrontRight Represents position of top front right of operator
TrackedAssign

TryInterrupt Scenic AST node that represents try-interrupt statements
UntilOp

VectorOp

VisibleFromOp

VisibleOp

VisibleSpecifier

Wait

WithSpecifier

continues on next page

306 Chapter 1. Table of Contents

Scenic

Table 2 – continued from previous page
Workspace workspace tracked assign target
parameter represents a parameter that is defined with param state-

ments

Member Details

class AST(*args, **kwargs)
Bases: AST

Scenic AST base class

Parameters

• args (any) –

• kwargs (any) –

class TryInterrupt(body, interrupt_when_handlers, except_handlers, orelse, finalbody, *args, **kwargs)
Bases: AST

Scenic AST node that represents try-interrupt statements

Parameters

• body (List[stmt]) –

• interrupt_when_handlers (List[InterruptWhenHandler]) –

• except_handlers (List[ExceptHandler]) –

• orelse (List[stmt]) –

• finalbody (List[AST]) –

• args (any) –

• kwargs (any) –

class Ego(*args, **kwargs)
Bases: AST

ego tracked assign target

Parameters

• args (any) –

• kwargs (any) –

class Workspace(*args, **kwargs)
Bases: AST

workspace tracked assign target

Parameters

• args (any) –

• kwargs (any) –

1.12. Scenic Internals 307

https://docs.python.org/3/library/ast.html#ast.AST
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/ast.html#ast.ExceptHandler
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

Scenic

class Param(elts, *args, **kwargs)
Bases: AST

param statements

Parameters

• elts (List[parameter]) –

• args (any) –

• kwargs (any) –

class parameter(identifier, value, *args, **kwargs)
Bases: AST

represents a parameter that is defined with param statements

Parameters

• identifier (str) –

• value (AST) –

• args (any) –

• kwargs (any) –

class Front(*args, **kwargs)
Bases: AST

Represents position of front of operator

Parameters

• args (any) –

• kwargs (any) –

class Back(*args, **kwargs)
Bases: AST

Represents position of back of operator

Parameters

• args (any) –

• kwargs (any) –

class Left(*args, **kwargs)
Bases: AST

Represents position of left of operator

Parameters

• args (any) –

• kwargs (any) –

class Right(*args, **kwargs)
Bases: AST

Represents position of right of operator

Parameters

308 Chapter 1. Table of Contents

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

Scenic

• args (any) –

• kwargs (any) –

class Top(*args, **kwargs)
Bases: AST

Represents position of top of operator

Parameters

• args (any) –

• kwargs (any) –

class Bottom(*args, **kwargs)
Bases: AST

Represents position of bottom of operator

Parameters

• args (any) –

• kwargs (any) –

class FrontLeft(*args, **kwargs)
Bases: AST

Represents position of front left of operator

Parameters

• args (any) –

• kwargs (any) –

class FrontRight(*args, **kwargs)
Bases: AST

Represents position of front right of operator

Parameters

• args (any) –

• kwargs (any) –

class BackLeft(*args, **kwargs)
Bases: AST

Represents position of back left of operator

Parameters

• args (any) –

• kwargs (any) –

class BackRight(*args, **kwargs)
Bases: AST

Represents position of back right of operator

Parameters

• args (any) –

1.12. Scenic Internals 309

Scenic

• kwargs (any) –

class TopFrontLeft(*args, **kwargs)
Bases: AST

Represents position of top front left of operator

Parameters

• args (any) –

• kwargs (any) –

class TopFrontRight(*args, **kwargs)
Bases: AST

Represents position of top front right of operator

Parameters

• args (any) –

• kwargs (any) –

class TopBackLeft(*args, **kwargs)
Bases: AST

Represents position of top back left of operator

Parameters

• args (any) –

• kwargs (any) –

class TopBackRight(*args, **kwargs)
Bases: AST

Represents position of top back right of operator

Parameters

• args (any) –

• kwargs (any) –

class BottomFrontLeft(*args, **kwargs)
Bases: AST

Represents position of bottom front left of operator

Parameters

• args (any) –

• kwargs (any) –

class BottomFrontRight(*args, **kwargs)
Bases: AST

Represents position of bottom front right of operator

Parameters

• args (any) –

• kwargs (any) –

310 Chapter 1. Table of Contents

Scenic

class BottomBackLeft(*args, **kwargs)
Bases: AST

Represents position of bottom back left of operator

Parameters

• args (any) –

• kwargs (any) –

class BottomBackRight(*args, **kwargs)
Bases: AST

Represents position of bottom back right of operator

Parameters

• args (any) –

• kwargs (any) –

scenic.syntax.compiler

Summary of Module Members

Functions

compileScenicAST Compiles Scenic AST to Python AST
unquote

Classes

AttributeFinder Utility class for finding all referenced attributes of a
given name.

Context An enumeration.
LocalFinder Utility class for finding all local variables of a code

block.
PropositionTransformer

ScenicToPythonTransformer

Transformer Subclass of ast.NodeTransformer with a method for
raising syntax errors.

1.12. Scenic Internals 311

https://docs.python.org/3/library/ast.html#ast.NodeTransformer

Scenic

Member Details

compileScenicAST(scenicAST, *, filename='<unknown>', inBehavior=False, inMonitor=False,
inCompose=False, inSetup=False, inInterruptBlock=False)

Compiles Scenic AST to Python AST

Parameters

• scenicAST (AST) –

• filename (str) –

• inBehavior (bool) –

• inMonitor (bool) –

• inCompose (bool) –

• inSetup (bool) –

• inInterruptBlock (bool) –

Return type
Tuple[Union[AST, List[AST]], List[AST]]

class AttributeFinder(target)
Bases: NodeVisitor

Utility class for finding all referenced attributes of a given name.

class LocalFinder

Bases: NodeVisitor

Utility class for finding all local variables of a code block.

class Transformer(filename)
Bases: NodeTransformer

Subclass of ast.NodeTransformer with a method for raising syntax errors.

class Context(value)
Bases: IntFlag

An enumeration.

scenic.syntax.parser

Summary of Module Members

Functions

parse_file Parse a file.
parse_string Parse a string.

312 Chapter 1. Table of Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/ast.html#ast.NodeVisitor
https://docs.python.org/3/library/ast.html#ast.NodeVisitor
https://docs.python.org/3/library/ast.html#ast.NodeTransformer
https://docs.python.org/3/library/ast.html#ast.NodeTransformer
https://docs.python.org/3/library/enum.html#enum.IntFlag

Scenic

Classes

Parser

ScenicParser

Target An enumeration.

Member Details

parse_file(path, py_version=None, token_stream_factory=None, verbose=False)
Parse a file.

Parameters

• path (str) –

• py_version (Optional[tuple]) –

• token_stream_factory (Optional[Callable[[Callable[[], str]],
Iterator[TokenInfo]]]) –

• verbose (bool) –

Return type
Module

parse_string(source, mode, py_version=None, token_stream_factory=None, verbose=False,
filename='<unknown>')

Parse a string.

Parameters

• source (str) –

• mode (Union[Literal['eval'], ~typing.Literal['exec']]) –

• py_version (Optional[tuple]) –

• token_stream_factory (Optional[Callable[[Callable[[], str]],
Iterator[TokenInfo]]]) –

• verbose (bool) –

• filename (str) –

Return type
Any

class Target(value)
Bases: Enum

An enumeration.

1.12. Scenic Internals 313

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/ast.html#ast.Module
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/enum.html#enum.Enum

Scenic

scenic.syntax.pygment

Pygments lexer and style for Scenic.

These work with the Pygments syntax highlighter. The module actually defines several lexers used for the Scenic
documentation; the main ScenicLexer and its associated style ScenicStyle are exported by pyproject.toml as
plugins to Pygments. This means that if you have the scenic package installed, the Pygments command-line tool and
Python API will automatically recognize Scenic files. For example, to highlight a Scenic program as a self-contained
HTML or LaTeX file:

$ pygmentize -f html -Ofull,style=scenic prog.scenic > out.html
$ pygmentize -f latex -Ofull,style=scenic prog.scenic > out.tex

If highlighting multiple pieces of code, remove the full option to avoid having the requisite CSS/preamble material
duplicated in all your outputs; you can run pygmentize -S scenic -f html (or latex) to generate that material
separately.

Summary of Module Members

Classes

BetterPythonLexer Python lexer with better highlighting of function calls,
parameters, etc.

PegenLexer Lexer for Pegen grammars.
PythonSnippetLexer Variant PythonLexer for code snippets rather than com-

plete programs.
ScenicGrammarLexer Lexer for the grammar notation used in the Scenic docs.
ScenicLexer Lexer for Scenic code.
ScenicPropertyLexer Silly lexer to color property names consistently with the

real lexer.
ScenicRequirementLexer Further variant lexer for requirements at the top level.
ScenicSnippetLexer Variant ScenicLexer for code snippets rather than com-

plete programs.
ScenicSpecifierLexer Further variant lexer for specifiers at the top level.
ScenicStyle A style providing specialized highlighting for the Scenic

language.

Member Details

class BetterPythonLexer(*args, **kwds)
Bases: PythonLexer

Python lexer with better highlighting of function calls, parameters, etc.

OK, ‘better’ is a matter of opinion; but it provides more informative tokens. These tokens will not cause errors
under any Pygments style, but require the style to be aware of them in order to actually get better highlighting:
use the ScenicStyle below for best results.

Adapted from the PythonLexer and the MagicPython grammar by MagicStack Inc., available at https://github.
com/MagicStack/MagicPython.

314 Chapter 1. Table of Contents

https://pygments.org/
https://github.com/MagicStack/MagicPython
https://github.com/MagicStack/MagicPython

Scenic

class ScenicLexer(*args, **kwds)
Bases: BetterPythonLexer

Lexer for Scenic code.

class ScenicSnippetLexer(*args, **kwds)
Bases: ScenicLexer

Variant ScenicLexer for code snippets rather than complete programs.

Specifically, this lexer formats syntactic variables of the form “{name}” as “name” italicized.

class PythonSnippetLexer(*args, **kwds)
Bases: BetterPythonLexer

Variant PythonLexer for code snippets rather than complete programs.

Specifically, this lexer formats syntactic variables of the form “{name}” as “name” italicized.

class ScenicSpecifierLexer(*args, **kwds)
Bases: ScenicSnippetLexer

Further variant lexer for specifiers at the top level.

class ScenicRequirementLexer(*args, **kwds)
Bases: ScenicSnippetLexer

Further variant lexer for requirements at the top level.

class ScenicPropertyLexer(*args, **kwds)
Bases: RegexLexer

Silly lexer to color property names consistently with the real lexer.

class ScenicGrammarLexer(*args, **kwds)
Bases: RegexLexer

Lexer for the grammar notation used in the Scenic docs.

class ScenicStyle

Bases: Style

A style providing specialized highlighting for the Scenic language.

The color scheme is a loose hybrid of that used in the Scenic papers and the ‘Mariana’ color scheme from Sublime
Text. The chosen colors all have a contrast ratio of at least 4.5:1 against the background color, per the W3C’s
Web Content Accessibility Guidelines.

class PegenLexer(*args, **kwds)
Bases: BetterPythonLexer

Lexer for Pegen grammars.

1.12. Scenic Internals 315

Scenic

scenic.syntax.relations

Extracting relations (for later pruning) from the syntax of requirements.

Summary of Module Members

Functions

inferDistanceRelations Infer bounds on distances from a requirement.
inferRelationsFrom Infer relations between objects implied by a requirement.
inferRelativeHeadingRelations Infer bounds on relative headings from a requirement.

Classes

BoundRelation Abstract relation bounding something about another ob-
ject.

DistanceRelation Relation bounding another object's distance from this
one.

RelativeHeadingRelation Relation bounding another object's relative heading with
respect to this one.

RequirementMatcher

Member Details

inferRelationsFrom(reqNode, namespace, ego, line)
Infer relations between objects implied by a requirement.

inferRelativeHeadingRelations(matcher, reqNode, ego, line)
Infer bounds on relative headings from a requirement.

inferDistanceRelations(matcher, reqNode, ego, line)
Infer bounds on distances from a requirement.

class BoundRelation(target, lower, upper)
Abstract relation bounding something about another object.

class RelativeHeadingRelation(target, lower, upper)
Bases: BoundRelation

Relation bounding another object’s relative heading with respect to this one.

class DistanceRelation(target, lower, upper)
Bases: BoundRelation

Relation bounding another object’s distance from this one.

316 Chapter 1. Table of Contents

Scenic

scenic.syntax.translator

Translator turning Scenic programs into Scenario objects.

The top-level interface to Scenic is provided by two functions:

• scenarioFromString – compile a string of Scenic code;

• scenarioFromFile – compile a Scenic file.

These output a Scenario object, from which scenes can be generated. See the documentation for Scenario for details.

When imported, this module hooks the Python import system in order to implement the import statement. This is
only for the compiler’s own use: it is not allowed to import a Scenic module from Python, and attempting to do so will
fail with a ModuleNotFoundError.

Scenic is compiled in two main steps: translating the code into Python, and executing the resulting Python module
to generate a Scenario object encoding the objects, distributions, etc. in the scenario. For details, see the function
compileStream below.

Summary of Module Members

Functions

astToSource

compileStream Compile a stream of Scenic code and execute it in a
namespace.

compileTranslatedTree

constructScenarioFrom Build a Scenario object from an executed Scenic module.
dump

executeCodeIn Execute the final translated Python code in the given
namespace.

gatherBehaviorNamespacesFrom Gather any global namespaces which could be referred
to by behaviors.

purgeModulesUnsafeToCache Uncache loaded modules which should not be kept after
compilation.

scenarioFromFile Compile a Scenic file into a Scenario.
scenarioFromString Compile a string of Scenic code into a Scenario.
scenic_path_hook

storeScenarioStateIn Post-process an executed Scenic module, extracting state
from the veneer.

topLevelNamespace Creates an environment like that of a Python script being
run directly.

1.12. Scenic Internals 317

https://docs.python.org/3/library/exceptions.html#ModuleNotFoundError

Scenic

Classes

CompileOptions Internal class for capturing options used when compiling
a scenario.

ScenicFileFinder

ScenicLoader

Member Details

class CompileOptions(mode2D=False, modelOverride=None, paramOverrides=<factory>, scenario=None)
Internal class for capturing options used when compiling a scenario.

Parameters

• mode2D (bool) –

• modelOverride (Optional[str]) –

• paramOverrides (dict) –

• scenario (Optional[str]) –

mode2D: bool = False

Whether or not the scenario uses 2D compatibility mode.

modelOverride: Optional[str] = None

Overridden world model, if any.

paramOverrides: dict

Overridden global parameters.

scenario: Optional[str] = None

Selected modular scenario, if any.

property hash

Deterministic hash saved in serialized scenes to catch option mismatches.

scenarioFromString(string, params={}, model=None, scenario=None, *, filename='<string>', mode2D=False,
**kwargs)

Compile a string of Scenic code into a Scenario.

The optional filename is used for error messages. Other arguments are as in scenarioFromFile.

scenarioFromFile(path, params={}, model=None, scenario=None, *, mode2D=False, **kwargs)
Compile a Scenic file into a Scenario.

Parameters

• path (str) – Path to a Scenic file.

• params (dict) – Global parameters to override, as a dictionary mapping parameter names
to their desired values.

• model (str) – Scenic module to use as world model.

• scenario (str) – If there are multiple modular scenarios in the file, which one to compile;
if not specified, a scenario called ‘Main’ is used if it exists.

318 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Scenic

• mode2D (bool) – Whether to compile this scenario in 2D compatibility mode.

Returns
A Scenario object representing the Scenic scenario.

Note for Scenic developers: this function accepts additional keyword arguments which are intended for internal
use and debugging only. See _scenarioFromStream for details.

topLevelNamespace(path=None)
Creates an environment like that of a Python script being run directly.

Specifically, __name__ is ‘__main__’, __file__ is the path used to invoke the script (not necessarily its absolute
path), and the parent directory is added to the path so that ‘import blobbo’ will import blobbo from that directory
if it exists there.

purgeModulesUnsafeToCache(oldModules)
Uncache loaded modules which should not be kept after compilation.

Keeping Scenic modules in sys.modules after compilation will cause subsequent attempts at compiling the
same module to reuse the compiled scenario: this is usually not what is desired, since compilation can depend
on external state (in particular overridden global parameters, used e.g. to specify the map for driving domain
scenarios).

Parameters
oldModules – List of names of modules loaded before compilation. These will be skipped.

compileStream(stream, namespace, compileOptions, filename)
Compile a stream of Scenic code and execute it in a namespace.

The compilation procedure consists of the following main steps:

1. Parse the Scenic code into a Scenic AST using the parser generated by pegen from scenic.gram.

2. Compile the Scenic AST into a Python AST with the desired semantics. This is done by the compiler,
scenic.syntax.compiler.

3. Compile and execute the Python AST.

4. Extract the global state (e.g. objects). This is done by the storeScenarioStateIn function.

executeCodeIn(code, namespace)
Execute the final translated Python code in the given namespace.

storeScenarioStateIn(namespace, requirementSyntax, astHash, options)
Post-process an executed Scenic module, extracting state from the veneer.

gatherBehaviorNamespacesFrom(behaviors)
Gather any global namespaces which could be referred to by behaviors.

We’ll need to rebind any sampled values in them at runtime.

constructScenarioFrom(namespace, scenarioName=None)
Build a Scenario object from an executed Scenic module.

_scenarioFromStream(stream, compileOptions, filename, *, scenario=None, path=None, _cacheImports=False)
Compile a stream of Scenic code into a Scenario.

This method is not meant to be called directly by users of Scenic. Use the top-level functions scenarioFromFile
and scenarioFromString instead.

These functions also accept the following keyword arguments, which are intended for internal use and debugging
only. They should be considered unstable and are subject to modification or removal at any time.

1.12. Scenic Internals 319

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/sys.html#sys.modules

Scenic

Parameters
_cacheImports (bool) – Whether to cache any imported Scenic modules. The default behavior
is to not do this, so that subsequent attempts to import such modules will cause them to be
recompiled. If it is safe to cache Scenic modules across multiple compilations, set this argument
to True. Then importing a Scenic module will have the same behavior as importing a Python
module. See purgeModulesUnsafeToCache for a more detailed discussion of the internals
behind this.

scenic.syntax.veneer

Python implementations of Scenic language constructs.

This module is automatically imported by all Scenic programs. In addition to defining the built-in functions, operators,
specifiers, etc., it also stores global state such as the list of all created Scenic objects.

Summary of Module Members

Functions

Above The above X by Y polymorphic specifier.
Ahead The ahead of X by Y polymorphic specifier.
AltitudeFrom The altitude from <vector> to <vector> oper-

ator.
AltitudeTo The angle to <vector> operator (using the position

of ego as the reference).
Always

AngleFrom The angle from <vector> to <vector> operator.
AngleTo The angle to <vector> operator (using the position

of ego as the reference).
ApparentHeading The apparent heading of <oriented point>

[from <vector>] operator.
ApparentlyFacing The apparently facing <heading> [from

<vector>] specifier.
At The at <vector> specifier.
AtomicProposition

Back The back of <object> operator.
BackLeft The back left of <object> operator.
BackRight The back right of <object> operator.
Behind The behind X by Y polymorphic specifier.
Below The below X by Y polymorphic specifier.
Beyond The beyond X by Y from Z polymorphic specifier.
Bottom The bottom of <object> operator.
BottomBackLeft The bottom back left of <object> operator.
BottomBackRight The bottom back right of <object> operator.
BottomFrontLeft The bottom front left of <object> operator.
BottomFrontRight The bottom front right of <object> operator.
CanSee The X can see Y polymorphic operator.
ContainedIn The contained in <region> specifier.

continues on next page

320 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#bool

Scenic

Table 3 – continued from previous page
DistanceFrom The distance from X to Y polymorphic operator.
DistancePast The distance past <vector> of <oriented

point> operator.
Eventually

Facing The facing X polymorphic specifier.
FacingAwayFrom The facing away from <vector> specifier.
FacingDirectlyAwayFrom The facing directly away from <vector> speci-

fier.
FacingDirectlyToward The facing directly toward <vector> specifier.
FacingToward The facing toward <vector> specifier.
FieldAt The <vector field> at <vector> operator.
Follow The follow <field> from <vector> for

<number> operator.
Following The following F from X for D specifier.
Front The front of <object> operator.
FrontLeft The front left of <object> operator.
FrontRight The front right of <object> operator.
Implies

In The in <region> specifier.
Left The left of <object> operator.
LeftSpec The left of X by Y polymorphic specifier.
Next

NotVisible The not visible <region> operator.
NotVisibleFrom The not visible from <point> specifier.
NotVisibleFromOp The <region> not visible from <point> opera-

tor.
NotVisibleSpec The not visible specifier (equivalent to not

visible from ego).
OffsetAlong The X offset along H by Y polymorphic operator.
OffsetAlongSpec The offset along X by Y polymorphic specifier.
OffsetBy The offset by <vector> specifier.
On The on X specifier.
PropositionAnd

PropositionNot

PropositionOr

RelativeHeading The relative heading of <heading> [from
<heading>] operator.

RelativePosition The relative position of <vector> [from
<vector>] operator.

RelativeTo The X relative to Y polymorphic operator.
Right The right of <object> operator.
RightSpec The right of X by Y polymorphic specifier.
Top The top of <object> operator.
TopBackLeft The top back left of <object> operator.
TopBackRight The top back right of <object> operator.

continues on next page

1.12. Scenic Internals 321

Scenic

Table 3 – continued from previous page
TopFrontLeft The top front left of <object> operator.
TopFrontRight The top front right of <object> operator.
Until

Visible The visible <region> operator.
VisibleFrom The visible from <point> specifier.
VisibleFromOp The <region> visible from <point> operator.
VisibleSpec The visible specifier (equivalent to visible from

ego).
With The with <property> <value> specifier.
activate Activate the veneer when beginning to compile a Scenic

module.
alwaysProvidesOrientation Whether a Region or distribution over Regions always

provides an orientation.
beginSimulation

callWithStarArgs

deactivate Deactivate the veneer after compiling a Scenic module.
directionalSpecHelper

ego Function implementing loads and stores to the 'ego'
pseudo-variable.

endScenario

endSimulation

executeInBehavior

executeInGuard

executeInRequirement

executeInScenario

filter

finishScenarioSetup

float

globalParameters

in_initial_scenario

instantiateSimulator

int

isActive Are we in the middle of compiling a Scenic module?
continues on next page

322 Chapter 1. Table of Contents

Scenic

Table 3 – continued from previous page
len

localPath Convert a path relative to the calling Scenic file into an
absolute path.

makeRequirement

model

mutate Function implementing the mutate statement.
new

override

param Function implementing the param statement.
prepareScenario

projectVectorHelper

range

record

record_final

record_initial

registerDynamicScenarioClass

registerExternalParameter Register a parameter whose value is given by an external
sampler.

registerInstance Add a Scenic instance to the global list of created objects.
registerObject Add a Scenic object to the global list of created objects.
require Function implementing the require statement.
require_always Function implementing the 'require always' statement.
require_eventually Function implementing the 'require eventually' state-

ment.
require_monitor

resample The built-in resample function.
round

simulation Get the currently-running Simulation.
simulationInProgress

simulator

startScenario

str

continues on next page

1.12. Scenic Internals 323

Scenic

Table 3 – continued from previous page
terminate_after

terminate_simulation_when Function implementing the 'terminate simulation when'
statement.

terminate_when Function implementing the 'terminate when' statement.
verbosePrint Built-in function printing a message only in verbose

mode.
workspace Function implementing loads and stores to the

'workspace' pseudo-variable.
wrapStarredValue

Classes

Modifier

ParameterTableProxy

Member Details

ego(obj=None)
Function implementing loads and stores to the ‘ego’ pseudo-variable.

The translator calls this with no arguments for loads, and with the source value for stores.

workspace(workspace=None)
Function implementing loads and stores to the ‘workspace’ pseudo-variable.

See ego.

require(reqID, req, line, name, prob=1)
Function implementing the require statement.

resample(dist)
The built-in resample function.

param(params)
Function implementing the param statement.

mutate(*objects, scale=1)
Function implementing the mutate statement.

verbosePrint(*objects, level=1, indent=True, sep=' ', end='\n', file=sys.stdout, flush=False)
Built-in function printing a message only in verbose mode.

Scenic’s verbosity may be set using the -v command-line option. The simplest way to use this function is with
code like verbosePrint('hello world!') or verbosePrint('details here', level=3); the other
keyword arguments are probably only useful when replacing more complex uses of the Python print function.

Parameters

• objects – Object(s) to print (str will be called to make them strings).

324 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/stdtypes.html#str

Scenic

• level (int) – Minimum verbosity level at which to print. Default is 1.

• indent (bool) – Whether to indent the message to align with messages generated by Scenic
(default true).

• sep – As in print.

• end – As in print.

• file – As in print.

• flush – As in print.

localPath(relpath)
Convert a path relative to the calling Scenic file into an absolute path.

For example, localPath('resource.dat') evaluates to the absolute path of a file called resource.dat
located in the same directory as the Scenic file where this expression appears. Note that the path is returned as
a pathlib.Path object.

simulation()

Get the currently-running Simulation.

May only be called from code that runs at simulation time, e.g. inside dynamic behaviors and compose blocks
of scenarios.

terminate_when(reqID, req, line, name)
Function implementing the ‘terminate when’ statement.

terminate_simulation_when(reqID, req, line, name)
Function implementing the ‘terminate simulation when’ statement.

Visible(region)
The visible <region> operator.

NotVisible(region)
The not visible <region> operator.

Front(X)
The front of <object> operator.

Back(X)
The back of <object> operator.

Left(X)
The left of <object> operator.

Right(X)
The right of <object> operator.

FrontLeft(X)
The front left of <object> operator.

FrontRight(X)
The front right of <object> operator.

BackLeft(X)
The back left of <object> operator.

BackRight(X)
The back right of <object> operator.

1.12. Scenic Internals 325

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Scenic

Top(X)
The top of <object> operator.

Bottom(X)
The bottom of <object> operator.

TopFrontLeft(X)
The top front left of <object> operator.

TopFrontRight(X)
The top front right of <object> operator.

TopBackLeft(X)
The top back left of <object> operator.

TopBackRight(X)
The top back right of <object> operator.

BottomFrontLeft(X)
The bottom front left of <object> operator.

BottomFrontRight(X)
The bottom front right of <object> operator.

BottomBackLeft(X)
The bottom back left of <object> operator.

BottomBackRight(X)
The bottom back right of <object> operator.

RelativeHeading(X, Y=None)
The relative heading of <heading> [from <heading>] operator.

If the from <heading> is omitted, the heading of ego is used.

ApparentHeading(X, Y=None)
The apparent heading of <oriented point> [from <vector>] operator.

If the from <vector> is omitted, the position of ego is used.

RelativePosition(X, Y=None)
The relative position of <vector> [from <vector>] operator.

If the from <vector> is omitted, the position of ego is used.

DistanceFrom(X, Y=None)
The distance from X to Y polymorphic operator.

Allowed forms:

distance from <vector> [to <vector>]
distance from <region> [to <vector>]
distance from <vector> to <region>

If the to <vector> is omitted, the position of ego is used.

DistancePast(X, Y=None)
The distance past <vector> of <oriented point> operator.

If the of {oriented point} is omitted, the ego object is used.

326 Chapter 1. Table of Contents

Scenic

Follow(F, X, D)

The follow <field> from <vector> for <number> operator.

AngleTo(X)
The angle to <vector> operator (using the position of ego as the reference).

AngleFrom(X=None, Y=None)
The angle from <vector> to <vector> operator.

AltitudeTo(X)
The angle to <vector> operator (using the position of ego as the reference).

AltitudeFrom(X=None, Y=None)
The altitude from <vector> to <vector> operator.

FieldAt(X, Y)
The <vector field> at <vector> operator.

RelativeTo(X, Y)
The X relative to Y polymorphic operator.

Allowed forms:

<value> relative to <value> # with at least one a field, the other a field or␣
→˓heading
<vector> relative to <oriented point> # and vice versa
<vector> relative to <vector>
<heading> relative to <heading>
<orientation> relative to <orientation>

Return type
Union[Vector, float, Orientation]

OffsetAlong(X, H, Y)
The X offset along H by Y polymorphic operator.

Allowed forms:

<vector> offset along <heading> by <vector>
<vector> offset along <field> by <vector>

CanSee(X, Y)
The X can see Y polymorphic operator.

Allowed forms:

<point> can see <vector>
<point> can see <point>

VisibleFromOp(region, base)
The <region> visible from <point> operator.

NotVisibleFromOp(region, base)
The <region> not visible from <point> operator.

1.12. Scenic Internals 327

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float

Scenic

class Vector(x, y, z=0)
Bases: Samplable, Sequence

A 3D vector, whose coordinates can be distributions.

sphericalCoordinates()

Returns this vector in spherical coordinates (rho, theta, phi)

rotatedBy(angleOrOrientation)
Return a vector equal to this one rotated counterclockwise by angle/orientation.

Return type
Vector

angleWith(other)
Compute the signed angle between self and other.

The angle is positive if other is counterclockwise of self (considering the smallest possible rotation to align
them).

Return type
float

class Orientation(rotation)
An orientation in 3D space.

classmethod fromQuaternion(quaternion)
Create an Orientation from a quaternion (of the form (x,y,z,w))

Return type
Orientation

classmethod fromEuler(yaw, pitch, roll)
Create an Orientation from yaw, pitch, and roll angles (in radians).

Return type
Orientation

property yaw: float

Yaw in the global coordinate system.

property pitch: float

Pitch in the global coordinate system.

property roll: float

Roll in the global coordinate system.

property eulerAngles: Tuple[float, float, float]

Global intrinsic Euler angles yaw, pitch, roll.

localAnglesFor(orientation)
Get local Euler angles for an orientation w.r.t. this orientation.

That is, considering self as the parent orientation, find the Euler angles expressing the given orientation.

Return type
Tuple[float, float, float]

328 Chapter 1. Table of Contents

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

globalToLocalAngles(yaw, pitch, roll)
Convert global Euler angles to local angles w.r.t. this orientation.

Equivalent to localAnglesFor but takes Euler angles as input.

Return type
Tuple[float, float, float]

class VectorField(name, value, minSteps=4, defaultStepSize=5)
A vector field, providing an orientation at every point.

Parameters

• name (str) – name for debugging.

• value – function computing the heading at the given Vector.

• minSteps (int) – Minimum number of steps for followFrom ; default 4.

• defaultStepSize (float) – Default step size for followFrom ; default 5. This is an upper
bound: more steps will be taken as needed to ensure that no single step is longer than this
value, but if the distance to travel is small then the steps may be smaller.

followFrom(pos, dist, steps=None, stepSize=None)
Follow the field from a point for a given distance.

Uses the forward Euler approximation, covering the given distance with equal-size steps. The number of
steps can be given manually, or computed automatically from a desired step size.

Parameters

• pos (Vector) – point to start from.

• dist (float) – distance to travel.

• steps (int) – number of steps to take, or None to compute the number of steps based on
the distance (default None).

• stepSize (float) – length used to compute how many steps to take, or None to use the
field’s default step size.

static forUnionOf(regions, tolerance=0)
Creates a PiecewiseVectorField from the union of the given regions.

If none of the regions have an orientation, returns None instead.

class PolygonalVectorField(name, cells, headingFunction=None, defaultHeading=None)
Bases: VectorField

A piecewise-constant vector field defined over polygonal cells.

Parameters

• name (str) – name for debugging.

• cells – a sequence of cells, with each cell being a pair consisting of a Shapely geometry
and a heading. If the heading is None, we call the given headingFunction for points in the
cell instead.

• headingFunction – function computing the heading for points in cells without specified
headings, if any (default None).

• defaultHeading – heading for points not contained in any cell (default None, meaning
reject such points).

1.12. Scenic Internals 329

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Scenic

class Shape(dimensions, scale)
Bases: ABC

An abstract base class for Scenic shapes.

Represents a physical shape in Scenic. Does not encode position or orientation, which are handled by the Region
class. Does contain dimension information, which is used as a default value by any Object with this shape and
can be overwritten.

If dimensions and scale are both specified the dimensions are first set by dimensions, and then scaled by scale.

Parameters

• dimensions – The raw (before scaling) dimensions of the shape.

• scale – Scales all the dimensions of the shape by a multiplicative factor.

property containsCenter

Whether or not this object contains its central point

class MeshShape(mesh, dimensions=None, scale=1, initial_rotation=None)
Bases: Shape

A Shape subclass defined by a trimesh.base.Trimesh object.

The mesh passed must be a trimesh.base.Trimesh object that represents a well defined volume (i.e. the
is_volume property must be true), meaning the mesh must be watertight, have consistent winding and have
outward facing normals.

Parameters

• mesh – A mesh object.

• dimensions – The raw (before scaling) dimensions of the shape. If dimensions and scale
are both specified the dimensions are first set by dimensions, and then scaled by scale.

• scale – Scales all the dimensions of the shape by a multiplicative factor. If dimensions and
scale are both specified the dimensions are first set by dimensions, and then scaled by scale.

• initial_rotation – A 3-tuple containing the yaw, pitch, and roll respectively to apply
when loading the mesh. Note the initial_rotation must be fixed.

classmethod fromFile(path, filetype=None, compressed=None, binary=False, **kwargs)
Load a mesh shape from a file, attempting to infer filetype and compression.

For example: “foo.obj.bz2” is assumed to be a compressed .obj file. “foo.obj” is assumed to be an un-
compressed .obj file. “foo” is an unknown filetype, so unless a filetype is provided an exception will be
raised.

Parameters

• path (str) – Path to the file to import.

• filetype (str) – Filetype of file to be imported. This will be inferred if not provided.
The filetype must be one compatible with trimesh.load.

• compressed (bool) – Whether or not this file is compressed (with bz2). This will be
inferred if not provided.

• binary (bool) – Whether or not to open the file as a binary file.

• kwargs – Additional arguments to the MeshShape initializer.

330 Chapter 1. Table of Contents

https://docs.python.org/3/library/abc.html#abc.ABC
https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh
https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://trimsh.org/trimesh.html#trimesh.load
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Scenic

class BoxShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)
Bases: MeshShape

A box shape with all dimensions 1 by default.

class CylinderShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None, sections=24)
Bases: MeshShape

A cylinder shape with all dimensions 1 by default.

class ConeShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)
Bases: MeshShape

A cone shape with all dimensions 1 by default.

class SpheroidShape(dimensions=(1, 1, 1), scale=1, initial_rotation=None)
Bases: MeshShape

A spheroid shape with all dimensions 1 by default.

class MeshVolumeRegion(*args, **kwargs)
Bases: MeshRegion

A region representing the volume of a mesh.

The mesh passed must be a trimesh.base.Trimesh object that represents a well defined volume (i.e. the
is_volume property must be true), meaning the mesh must be watertight, have consistent winding and have
outward facing normals.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False). The
mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon, and then
rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note that
scaling and rotation transformations may not behave as expected, since they are performed around the origin.

Parameters

• mesh – The base mesh for this region.

• name – An optional name to help with debugging.

• dimensions – An optional 3-tuple, with the values representing width, length, height re-
spectively. The mesh will be scaled such that the bounding box for the mesh has these di-
mensions.

• position – An optional position, which determines where the center of the region will be.

• rotation – An optional Orientation object which determines the rotation of the object in
space.

• orientation – An optional vector field describing the preferred orientation at every point
in the region.

• tolerance – Tolerance for internal computations.

• centerMesh – Whether or not to center the mesh after copying and before transformations.

• onDirection – The direction to use if an object being placed on this region doesn’t specify
one.

• engine – Which engine to use for mesh operations. Either “blender” or “scad”.

1.12. Scenic Internals 331

https://trimsh.org/trimesh.base.html#trimesh.base.Trimesh

Scenic

intersects(other, triedReversed=False)
Check if this region intersects another.

This function handles intersect calculations for MeshVolumeRegion with: * MeshVolumeRegion *
MeshSurfaceRegion * PolygonalFootprintRegion

containsPoint(point)
Check if this region’s volume contains a point.

containsObject(obj)
Check if this region’s volume contains an Object.

intersect(other, triedReversed=False)
Get a Region representing the intersection of this region with another.

This function handles intersection computation for MeshVolumeRegion with: * MeshVolumeRegion *
PolygonalFootprintRegion * PolygonalRegion * PathRegion * PolylineRegion

union(other, triedReversed=False)
Get a Region representing the union of this region with another.

This function handles union computation for MeshVolumeRegion with:

• MeshVolumeRegion

difference(other, debug=False)
Get a Region representing the difference of this region with another.

This function handles union computation for MeshVolumeRegion with: * MeshVolumeRegion *
PolygonalFootprintRegion

distanceTo(point)
Get the minimum distance from this region to the specified point.

getSurfaceRegion()

Return a region equivalent to this one, except as a MeshSurfaceRegion

getVolumeRegion()

Returns this object, as it is already a MeshVolumeRegion

class MeshSurfaceRegion(*args, **kwargs)
Bases: MeshRegion

A region representing the surface of a mesh.

The mesh is first placed so the origin is at the center of the bounding box (unless centerMesh is False). The
mesh is scaled to dimensions, translated so the center of the bounding box of the mesh is at positon, and then
rotated to rotation.

Meshes are centered by default (since centerMesh is true by default). If you disable this operation, do note that
scaling and rotation transformations may not behave as expected, since they are performed around the origin.

If an orientation is not passed to this mesh, a default orientation is provided which provides an orientation that
aligns an object’s z axis with the normal vector of the face containing that point, and has a yaw aligned with a
yaw of 0 in the global coordinate system.

Parameters

• mesh – The base mesh for this region.

• name – An optional name to help with debugging.

332 Chapter 1. Table of Contents

Scenic

• dimensions – An optional 3-tuple, with the values representing width, length, height re-
spectively. The mesh will be scaled such that the bounding box for the mesh has these di-
mensions.

• position – An optional position, which determines where the center of the region will be.

• rotation – An optional Orientation object which determines the rotation of the object in
space.

• orientation – An optional vector field describing the preferred orientation at every point
in the region.

• tolerance – Tolerance for internal computations.

• centerMesh – Whether or not to center the mesh after copying and before transformations.

• onDirection – The direction to use if an object being placed on this region doesn’t specify
one.

intersects(other, triedReversed=False)
Check if this region’s surface intersects another.

This function handles intersection computation for MeshSurfaceRegion with: * MeshSurfaceRegion
* PolygonalFootprintRegion

containsPoint(point)
Check if this region’s surface contains a point.

distanceTo(point)
Get the minimum distance from this object to the specified point.

getFlatOrientation(pos)
Get a flat orientation at a point in the region.

Given a point on the surface of the mesh, returns an orientation that aligns an instance’s z axis with the
normal vector of the face containing that point. Since there are infinitely many such orientations, the
orientation returned has yaw aligned with a global yaw of 0.

If pos is not within self.tolerance of the surface of the mesh, a RejectionException is raised.

getVolumeRegion()

Return a region equivalent to this one, except as a MeshVolumeRegion

getSurfaceRegion()

Returns this object, as it is already a MeshSurfaceRegion

class BoxRegion(*args, **kwargs)
Bases: MeshVolumeRegion

Region in the shape of a rectangular cuboid, i.e. a box.

By default the unit box centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh parameter which is excluded.

class SpheroidRegion(*args, **kwargs)
Bases: MeshVolumeRegion

Region in the shape of a spheroid.

By default the unit sphere centered at the origin and aligned with the axes is used.

Parameters are the same as MeshVolumeRegion, with the exception of the mesh parameter which is excluded.

1.12. Scenic Internals 333

Scenic

class PathRegion(points=None, polylines=None, tolerance=1e-08, name=None)
Bases: Region

A region composed of multiple polylines in 3D space.

One of points or polylines should be provided.

Parameters

• points – A list of points defining a single polyline.

• polylines – A list of list of points, defining multiple polylines.

• tolerance – Tolerance used internally.

class Region(name, *dependencies, orientation=None)
Bases: Samplable, ABC

An abstract base class for Scenic Regions

abstract uniformPointInner()

Do the actual random sampling. Implemented by subclasses.

abstract containsPoint(point)
Check if the Region contains a point. Implemented by subclasses.

Return type
bool

abstract containsObject(obj)
Check if the Region contains an Object

Return type
bool

abstract containsRegionInner(reg, tolerance)
Check if the Region contains a Region

Return type
bool

abstract distanceTo(point)
Distance to this region from a given point.

Return type
float

abstract projectVector(point, onDirection)
Returns point projected onto this region along onDirection.

abstract property AABB

Axis-aligned bounding box for this Region.

intersects(other)
Check if this Region intersects another.

Return type
bool

intersect(other, triedReversed=False)
Get a Region representing the intersection of this one with another.

If both regions have a preferred orientation, the one of self is inherited by the intersection.

334 Chapter 1. Table of Contents

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Scenic

Return type
Region

union(other, triedReversed=False)
Get a Region representing the union of this one with another.

Not supported by all region types.

Return type
Region

difference(other)
Get a Region representing the difference of this one and another.

Not supported by all region types.

Return type
Region

static uniformPointIn(region)
Get a uniform Distribution over points in a Region.

orient(vec)
Orient the given vector along the region’s orientation, if any.

class PointSetRegion(name, points, kdTree=None, orientation=None, tolerance=1e-06)
Bases: Region

Region consisting of a set of discrete points.

No Object can be contained in a PointSetRegion, since the latter is discrete. (This may not be true for
subclasses, e.g. GridRegion.)

Parameters

• name (str) – name for debugging

• points (arraylike) – set of points comprising the region

• kdTree (scipy.spatial.KDTree, optional) – k-D tree for the points (one will be computed
if none is provided)

• orientation (VectorField ; optional) – preferred orientation for the region

• tolerance (float; optional) – distance tolerance for checking whether a point lies in
the region

class RectangularRegion(position, heading, width, length, name=None)
Bases: PolygonalRegion

A rectangular region with a possibly-random position, heading, and size.

Parameters

• position (Vector) – center of the rectangle.

• heading (float) – the heading of the length axis of the rectangle.

• width (float) – width of the rectangle.

• length (float) – length of the rectangle.

• name (str; optional) – name for debugging.

1.12. Scenic Internals 335

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

class CircularRegion(center, radius, resolution=32, name=None)
Bases: PolygonalRegion

A circular region with a possibly-random center and radius.

Parameters

• center (Vector) – center of the disc.

• radius (float) – radius of the disc.

• resolution (int; optional) – number of vertices to use when approximating this region
as a polygon.

• name (str; optional) – name for debugging.

class SectorRegion(center, radius, heading, angle, resolution=32, name=None)
Bases: PolygonalRegion

A sector of a CircularRegion.

This region consists of a sector of a disc, i.e. the part of a disc subtended by a given arc.

Parameters

• center (Vector) – center of the corresponding disc.

• radius (float) – radius of the disc.

• heading (float) – heading of the centerline of the sector.

• angle (float) – angle subtended by the sector.

• resolution (int; optional) – number of vertices to use when approximating this region
as a polygon.

• name (str; optional) – name for debugging.

class PolygonalRegion(points=None, polygon=None, z=0, orientation=None, name=None, additionalDeps=[])
Bases: Region

Region given by one or more polygons (possibly with holes) at a fixed z coordinate.

The region may be specified by giving either a sequence of points defining the boundary of the polygon, or a
collection of shapely polygons (a Polygon or MultiPolygon).

Parameters

• points – sequence of points making up the boundary of the polygon (or None if using the
polygon argument instead).

• polygon – shapely polygon or collection of polygons (or None if using the points argument
instead).

• z – The z coordinate the polygon is located at.

• orientation (VectorField ; optional) – preferred orientation to use.

• name (str; optional) – name for debugging.

property boundary: PolylineRegion

Get the boundary of this region as a PolylineRegion.

336 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Scenic

class PolylineRegion(points=None, polyline=None, orientation=True, name=None)
Bases: Region

Region given by one or more polylines (chain of line segments).

The region may be specified by giving either a sequence of points or shapely polylines (a LineString or
MultiLineString).

Parameters

• points – sequence of points making up the polyline (or None if using the polyline argument
instead).

• polyline – shapely polyline or collection of polylines (or None if using the points argu-
ment instead).

• orientation (optional) – preferred orientation to use, or True to use an orientation
aligned with the direction of the polyline (the default).

• name (str; optional) – name for debugging.

property start

Get an OrientedPoint at the start of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if there is one (the default orientation
pointing along the polyline).

property end

Get an OrientedPoint at the end of the polyline.

The OP’s orientation will be aligned with the orientation of the region, if there is one (the default orientation
pointing along the polyline).

signedDistanceTo(point)
Compute the signed distance of the PolylineRegion to a point.

The distance is positive if the point is left of the nearest segment, and negative otherwise.

Return type
float

pointAlongBy(distance, normalized=False)
Find the point a given distance along the polyline from its start.

If normalized is true, then distance should be between 0 and 1, and is interpreted as a fraction of the
length of the polyline. So for example pointAlongBy(0.5, normalized=True) returns the polyline’s
midpoint.

Return type
Vector

class Workspace(region=<AllRegion everywhere>)
Bases: Region

A workspace describing the fixed world of a scenario.

Parameters
region (Region) – The region defining the extent of the workspace (default everywhere).

show3D(viewer)
Render a schematic of the workspace (in 3D) for debugging

1.12. Scenic Internals 337

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float

Scenic

show2D(plt)
Render a schematic of the workspace (in 2D) for debugging

zoomAround(plt, objects, expansion=1)
Zoom the schematic around the specified objects

scenicToSchematicCoords(coords)
Convert Scenic coordinates to those used for schematic rendering.

class Mutator

An object controlling how the mutate statement affects an Object.

A Mutator can be assigned to the mutator property of an Object to control the effect of the mutate statement.
When mutation is enabled for such an object using that statement, the mutator’s appliedTo method is called to
compute a mutated version. The appliedTo method can also decide whether to apply mutators inherited from
superclasses.

appliedTo(obj)
Return a mutated copy of the given object. Implemented by subclasses.

The mutator may inspect the mutationScale attribute of the given object to scale its effect according to
the scale given in mutate O by S.

Returns
A pair consisting of the mutated copy of the object (which is most easily created using
_copyWith) together with a Boolean indicating whether the mutator inherited from the su-
perclass (if any) should also be applied.

class Range(low, high)
Bases: Distribution

Uniform distribution over a range

class DiscreteRange(low, high, weights=None, emptyMessage='empty DiscreteRange')
Bases: Distribution

Distribution over a range of integers.

class Options(opts)
Bases: MultiplexerDistribution

Distribution over a finite list of options.

Specified by a dict giving probabilities; otherwise uniform over a given iterable.

Uniform(*opts)
Uniform distribution over a finite list of options.

Implemented as an instance of Options when the set of options is known statically, and an instance of
UniformDistribution otherwise.

Discrete

alias of Options

class Normal(mean, stddev)
Bases: Distribution

Normal distribution

338 Chapter 1. Table of Contents

Scenic

class TruncatedNormal(mean, stddev, low, high)
Bases: Normal

Truncated normal distribution.

class VerifaiParameter(domain)
Bases: ExternalParameter

An external parameter sampled using one of VerifAI’s samplers.

static withPrior(dist, buckets=None)
Creates a VerifaiParameter using the given distribution as a prior.

Since the VerifAI cross-entropy sampler currently only supports piecewise-constant distributions, if the
prior is not of that form it may be approximated. For most built-in distributions, the approximation is exact:
for a particular distribution, check its bucket method.

class VerifaiRange(low, high, buckets=None, weights=None)
Bases: VerifaiParameter

A Range (real interval) sampled by VerifAI.

_defaultValueType

alias of float

class VerifaiDiscreteRange(low, high, weights=None)
Bases: VerifaiParameter

A DiscreteRange (integer interval) sampled by VerifAI.

_defaultValueType

alias of float

class VerifaiOptions(opts)
Bases: Options

An Options (discrete set) sampled by VerifAI.

class Point <specifiers>
Bases: Constructible

The Scenic base class Point.

The default mutator for Point adds Gaussian noise to position with a standard deviation given by the
positionStdDev property.

Properties

• position (Vector; dynamic) – Position of the point. Default value is the origin (0,0,0).

• width (float) – Default value 0 (only provided for compatibility with operators that expect
an Object).

• length (float) – Default value 0.

• height (float) – Default value 0.

• baseOffset (Vector) – Only provided for compatibility with the on region specifier. Default
value is (0,0,0).

• contactTolerance (float) – Only provided for compatibility with the specifiers that expect
an Object. Default value 0.

1.12. Scenic Internals 339

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Scenic

• onDirection (Vector) – The direction used to determine where to place this Point on a
region, when using the modifying on specifier. See the on region page for more details.
Default value is None, indicating the direction will be inferred from the region this object is
being placed on.

• visibleDistance (float) – Distance used to determine the visible range of this object. Default
value 50.

• viewRayDensity (float) – By default determines the number of rays used during visibility
checks. This value is the density of rays per degree of visible range in one dimension. The
total number of rays sent will be this value squared per square degree of this object’s view
angles. This value determines the default value for viewRayCount, so if viewRayCount is
overwritten this value is ignored. Default value 5.

• viewRayCount (None | tuple[float, float]) – The total number of horizontal and vertical
view angles to be sent, or None if this value should be computed automatically. Default
value None.

• viewRayDistanceScaling (bool) – Whether or not the number of rays should scale with the
distance to the object. Ignored if viewRayCount is passed. Default value False.

• mutationScale (float) – Overall scale of mutations, as set by the mutate statement. Default
value 0 (mutations disabled).

• positionStdDev (tuple[float, float, float]) – Standard deviation of Gaussian noise for each
dimension (x,y,z) to be added to this object’s position when mutation is enabled with scale
1. Default value (1,1,0), mutating only the x,y values of the point.

property visibleRegion

The visible region of this object.

The visible region of a Point is a sphere centered at its position with radius visibleDistance.

canSee(other, occludingObjects=(), debug=False)
Whether or not this Point can see other.

Parameters

• other – A Point, OrientedPoint, or Object to check for visibility.

• occludingObjects – A list of objects that can occlude visibility.

Return type
bool

class OrientedPoint <specifiers>
Bases: Point

The Scenic class OrientedPoint.

The default mutator for OrientedPoint adds Gaussian noise to yaw while leaving pitch and roll unchanged,
using the three standard deviations (for yaw/pitch/roll respectively) given by the orientationStdDev property.
It then also applies the mutator for Point.

The default mutator for OrientedPoint adds Gaussian noise to yaw, pitch and roll according to
orientationStdDev. By default the standard deviations for pitch and roll are zero so that, by default,
only yaw is mutated.

Properties

• yaw (float; dynamic) – Yaw of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

340 Chapter 1. Table of Contents

https://docs.python.org/3/library/functions.html#bool

Scenic

• pitch (float; dynamic) – Pitch of the OrientedPoint in radians in the local coordinate
system provided by parentOrientation. Default value 0.

• roll (float; dynamic) – Roll of the OrientedPoint in radians in the local coordinate system
provided by parentOrientation. Default value 0.

• parentOrientation (Orientation) – The local coordinate system that the
OrientedPoint’s yaw, pitch, and roll are interpreted in. Default value is the
global coordinate system, where an object is flat in the XY plane, facing North.

• orientation (Orientation; dynamic; final) – The orientation of the OrientedPoint
relative to the global coordinate system. Derived from the yaw, pitch, roll, and
parentOrientation of this OrientedPoint and non-overridable.

• heading (float; dynamic; final) – Yaw value of this OrientedPoint in the global coordinate
system. Derived from orientation and non-overridable.

• viewAngles (tuple[float,float]) – Horizontal and vertical view angles of this
OrientedPoint in radians. Horizontal view angle can be up to 2 and vertical view
angle can be up to . Values greater than these will be truncated. Default value is (2,)

• orientationStdDev (tuple[float,float,float]) – Standard deviation of Gaussian noise to add
to this object’s Euler angles (yaw, pitch, roll) when mutation is enabled with scale 1. Default
value (5°, 0, 0), mutating only the yaw of this OrientedPoint.

property visibleRegion

The visible region of this object.

The visible region of an OrientedPoint restricts that of Point (a sphere with radius visibleDistance)
based on the value of viewAngles. In general, it is a capped rectangular pyramid subtending an angle of
viewAngles[0] horizontally and viewAngles[1] vertically, as long as those angles are less than /2; larger
angles yield various kinds of wrap-around regions. See ViewRegion for details.

canSee(other, occludingObjects=(), debug=False)
Whether or not this OrientedPoint can see other.

Parameters

• other – A Point, OrientedPoint, or Object to check for visibility.

• occludingObjects – A list of objects that can occlude visibility.

Return type
bool

distancePast(vec)
Distance past a given point, assuming we’ve been moving in a straight line.

class Object <specifiers>
Bases: OrientedPoint

The Scenic class Object.

This is the default base class for Scenic classes.

Properties

• width (float) – Width of the object, i.e. extent along its X axis. Default value of 1 inherited
from the object’s shape.

• length (float) – Length of the object, i.e. extent along its Y axis. Default value of 1 inherited
from the object’s shape.

1.12. Scenic Internals 341

https://docs.python.org/3/library/functions.html#bool

Scenic

• height (float) – Height of the object, i.e. extent along its Z axis. Default value of 1 inherited
from the object’s shape.

• shape (Shape) – The shape of the object, which must be an instance of Shape. The default
shape is a box, with default unit dimensions.

• allowCollisions (bool) – Whether the object is allowed to intersect other objects. Default
value False.

• regionContainedIn (Region or None) – A Region the object is required to be contained
in. If None, the object need only be contained in the scenario’s workspace.

• baseOffset (Vector) – An offset from the position of the Object to the base of the object,
used by the on region specifier. Default value is (0, 0, -self.height/2), placing the
base of the Object at the bottom center of the Object’s bounding box.

• contactTolerance (float) – The maximum distance this object can be away from a surface
to be considered on the surface. Objects are placed at half this distance away from a point
when the on region specifier or a directional specifier like (left | right) of Object [by scalar]
is used. Default value 1e-4.

• sideComponentThresholds (DimensionLimits) – Used to determine the various sides
of an object (when using the default implementation). The three interior 2-tuples rep-
resent the maximum and minimum bounds for each dimension’s (x,y,z) surface. See
defaultSideSurface for details. Default value ((-0.5, 0.5), (-0.5, 0.5), (-0.
5, 0.5)).

• cameraOffset (Vector) – Position of the camera for the can see operator, relative to the
object’s position. Default (0, 0, 0).

• requireVisible (bool) – Whether the object is required to be visible from the ego object.
Default value False.

• occluding (bool) – Whether or not this object can occlude other objects. Default value True.

• showVisibleRegion (bool) – Whether or not to display the visible region in the Scenic in-
ternal visualizer.

• color (tuple[float, float, float, float] or tuple[float, float, float] or None) – An optional color
(with optional alpha) property that is used by the internal visualizer, or possibly simulators.
All values should be between 0 and 1. Default value None

• velocity (Vector; dynamic) – Velocity in dynamic simulations. Default value is the velocity
determined by speed and orientation.

• speed (float; dynamic) – Speed in dynamic simulations. Default value 0.

• angularVelocity (Vector; dynamic)

• angularSpeed (float; dynamic) – Angular speed in dynamic simulations. Default value 0.

• behavior – Behavior for dynamic agents, if any (see Dynamic Scenarios). Default value
None.

• lastActions – Tuple of actions taken by this agent in the last time step (or None if the object
is not an agent or this is the first time step).

startDynamicSimulation()

Hook called when the object is created in a dynamic simulation.

Does nothing by default; provided for objects to do simulator-specific initialization as needed.

Changed in version 3.0: This method is called on objects created in the middle of dynamic simulations, not
only objects present in the initial scene.

342 Chapter 1. Table of Contents

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Scenic

containsPoint(point)
Whether or not the space this object occupies contains a point

distanceTo(point)
The minimal distance from the space this object occupies to a given point

intersects(other)
Whether or not this object intersects another object

property visibleRegion

The visible region of this object.

The visible region of an Object is the same as that of an OrientedPoint (see OrientedPoint.
visibleRegion) except that it is offset by the value of cameraOffset (which is the zero vector by default).

canSee(other, occludingObjects=(), debug=False)
Whether or not this Object can see other.

Parameters

• other – A Point, OrientedPoint, or Object to check for visibility.

• occludingObjects – A list of objects that can occlude visibility.

Return type
bool

property corners

A tuple containing the corners of this object’s bounding box

property occupiedSpace

A region representing the space this object occupies

property _isConvex

Whether this object’s shape is convex

property boundingBox

A region representing this object’s bounding box

property inradius

A lower bound on the inradius of this object

property surface

A region containing the entire surface of this object

property onSurface

The surface used by the on specifier.

This region is used to sample position when another object is placed on this object. By default the top
surface of this object (topSurface), but can be overwritten by subclasses.

property topSurface

A region containing the top surface of this object

For how this surface is computed, see defaultSideSurface.

property rightSurface

A region containing the right surface of this object

For how this surface is computed, see defaultSideSurface.

1.12. Scenic Internals 343

https://docs.python.org/3/library/functions.html#bool

Scenic

property leftSurface

A region containing the left surface of this object

For how this surface is computed, see defaultSideSurface.

property frontSurface

A region containing the front surface of this object

For how this surface is computed, see defaultSideSurface.

property backSurface

A region containing the back surface of this object

For how this surface is computed, see defaultSideSurface.

property bottomSurface

A region containing the bottom surface of this object

For how this surface is computed, see defaultSideSurface.

property _isPlanarBox

Whether this object is a box aligned with the XY plane.

With(prop, val)
The with <property> <value> specifier.

Specifies the given property, with no dependencies.

At(pos)
The at <vector> specifier.

Specifies position, with no dependencies.

In(region)
The in <region> specifier.

Specifies position, and optionally, parentOrientation if the given region has a preferred orientation, with
no dependencies.

ContainedIn(region)
The contained in <region> specifier.

Specifies position, regionContainedIn, and optionally, parentOrientation if the given region has a pre-
ferred orientation, with no dependencies.

On(thing)
The on X specifier.

Specifies position, and optionally, parentOrientation if the given region has a preferred orientation. De-
pends on onDirection, baseOffset, and contactTolerance.

Note that while on can be used with Region, Object and Vector, it cannot be used with a distribution containing
anything other than Region.

May be used to modify an already-specified position property.

Allowed forms:
on <region> on <object> on <vector>

344 Chapter 1. Table of Contents

Scenic

Beyond(pos, offset, fromPt=None)
The beyond X by Y from Z polymorphic specifier.

Specifies position, and optionally parentOrientation, with no dependencies.

Allowed forms:

beyond <vector> by <number> [from <vector>]
beyond <vector> by <vector> [from <vector>]

If the from <vector> is omitted, the position of ego is used.

VisibleFrom(base)
The visible from <point> specifier.

Specifies _observingEntity and position, with no dependencies.

NotVisibleFrom(base)
The not visible from <point> specifier.

Specifies _nonObservingEntity and position, depending on regionContainedIn.

See VisibleFrom .

VisibleSpec()

The visible specifier (equivalent to visible from ego).

Specifies _observingEntity and position, with no dependencies.

NotVisibleSpec()

The not visible specifier (equivalent to not visible from ego).

Specifies _nonObservingEntity and position, depending on regionContainedIn.

OffsetBy(offset)
The offset by <vector> specifier.

Specifies position, and optionally parentOrientation, with no dependencies.

OffsetAlongSpec(direction, offset)
The offset along X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, with no dependencies.

Allowed forms:

offset along <heading> by <vector>
offset along <field> by <vector>

Facing(heading)
The facing X polymorphic specifier.

Specifies yaw, pitch, and roll, depending on parentOrientation, and depending on the form:

facing <number> # no further dependencies;
facing <field> # depends on 'position'

ApparentlyFacing(heading, fromPt=None)
The apparently facing <heading> [from <vector>] specifier.

Specifies yaw, depending on position and parentOrientation.

1.12. Scenic Internals 345

Scenic

If the from <vector> is omitted, the position of ego is used.

FacingToward(pos)
The facing toward <vector> specifier.

Specifies yaw, depending on position and parentOrientation.

FacingDirectlyToward(pos)
The facing directly toward <vector> specifier.

Specifies yaw and pitch, depends on position and parentOrientation.

FacingAwayFrom(pos)
The facing away from <vector> specifier.

Specifies yaw, depending on position and parentOrientation.

FacingDirectlyAwayFrom(pos)
The facing directly away from <vector> specifier.

Specifies yaw and pitch, depending on position and parentOrientation.

LeftSpec(pos, dist=None)
The left of X by Y polymorphic specifier.

Specifies position, and optionally, parentOrientation, depending on width.

Allowed forms:

left of <oriented point> [by <scalar/vector>]
left of <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

RightSpec(pos, dist=None)
The right of X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, depending on width.

Allowed forms:

right of <oriented point> [by <scalar/vector>]
right of <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, zero is used.

Ahead(pos, dist=None)
The ahead of X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, depending on length.

Allowed forms:

ahead of <oriented point> [by <scalar/vector>]
ahead of <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

346 Chapter 1. Table of Contents

Scenic

Behind(pos, dist=None)
The behind X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, depending on length.

Allowed forms:

behind <oriented point> [by <scalar/vector>]
behind <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

Above(pos, dist=None)
The above X by Y polymorphic specifier.

Specifies position, and optionally parentOrientation, depending on height.

Allowed forms:

above <oriented point> [by <scalar/vector>]
above <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

Below(pos, dist=None)
The below X by Y polymorphic specifier.

Specifies :prop`position`, and optionally parentOrientation, depending on height.

Allowed forms:

below <oriented point> [by <scalar/vector>]
below <vector> [by <scalar/vector>]

If the by <scalar/vector> is omitted, the object’s contact tolerance is used.

Following(field, dist, fromPt=None)
The following F from X for D specifier.

Specifies position, and optionally parentOrientation, with no dependencies.

Allowed forms:

following <field> [from <vector>] for <number>

If the from <vector> is omitted, the position of ego is used.

exception GuardViolation(behavior, lineno)
Bases: Exception

Abstract exception raised when a guard of a behavior is violated.

This will never be raised directly; either of the subclasses PreconditionViolation or InvariantViolation
will be used, as appropriate.

exception PreconditionViolation(behavior, lineno)
Bases: GuardViolation

Exception raised when a precondition is violated

Raised when a precondition is violated when invoking a behavior or when a precondition encounters a
RejectionException, so that rejections count as precondition violations.

1.12. Scenic Internals 347

https://docs.python.org/3/library/exceptions.html#Exception

Scenic

exception InvariantViolation(behavior, lineno)
Bases: GuardViolation

Exception raised when an invariant is violated

Raised when an invariant is violated when invoking/resuming a behavior or when an invariant encounters a
RejectionException, so that rejections count as invariant violations.

exception RejectionException

Bases: Exception

Exception used to signal that the sample currently being generated must be rejected.

_scenic_default

alias of PropertyDefault

class Behavior(*args, **kwargs)
Bases: Invocable, Samplable

Dynamic behaviors of agents.

Behavior statements are translated into definitions of subclasses of this class.

class Monitor(*args, **kwargs)
Bases: Behavior

Monitors for dynamic simulations.

Monitor statements are translated into definitions of subclasses of this class.

class BlockConclusion(value)
Bases: Enum

An enumeration.

class Modifier(name, value, terminator)
Bases: NamedTuple

Parameters

• name (str) –

• value (Any) –

• terminator (Optional[str]) –

name: str

Alias for field number 0

value: Any

Alias for field number 1

terminator: Optional[str]

Alias for field number 2

_asdict()

Return a new dict which maps field names to their values.

classmethod _make(iterable)
Make a new Modifier object from a sequence or iterable

348 Chapter 1. Table of Contents

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Scenic

_replace(**kwds)
Return a new Modifier object replacing specified fields with new values

class DynamicScenario(*args, **kwargs)
Bases: Invocable

Internal class for scenarios which can execute during dynamic simulations.

Provides additional information complementing Scenario, which originally only supported static scenarios.
The two classes should probably eventually be merged.

classmethod _requiresArguments()

Whether this scenario cannot be instantiated without arguments.

_bindTo(scene)
Bind this scenario to a sampled scene when starting a new simulation.

_prepare(delayPreconditionCheck=False)
Prepare the scenario for execution, executing its setup block.

_start()

Start the scenario, starting its compose block, behaviors, and monitors.

_step()

Execute the (already-started) scenario for one time step.

Returns
None if the scenario will continue executing; otherwise a string describing why it has termi-
nated.

_stop(reason, quiet=False)
Stop the scenario’s execution, for the given reason.

_addRequirement(ty, reqID, req, line, name, prob)
Save a requirement defined at compile-time for later processing.

_addDynamicRequirement(ty, req, line, name)
Add a requirement defined during a dynamic simulation.

_addMonitor(monitor)
Add a monitor during a dynamic simulation.

Summary of Module Members

Functions

buildParser

1.12. Scenic Internals 349

https://docs.python.org/3/library/constants.html#None

Scenic

Member Details

The scenic module itself provides the top-level API for using Scenic: see Using Scenic Programmatically.

1.13 Scenic Libraries

One of the strengths of Scenic is its ability to reuse functions, classes, and behaviors across many scenarios, simplifying
the process of writing complex scenarios. This page describes the libraries built into Scenic to facilitate scenario writing
by end users.

1.13.1 Simulator Interfaces

Many of the simulator interfaces provide utility functions which are useful when writing scenarios for particular sim-
ulators. See the documentation for each simulator on the Supported Simulators page, as well as the corresponding
module under scenic.simulators.

1.13.2 Abstract Domains

To enable cross-platform scenarios which are not specific to one simulator, Scenic defines abstract domains which
provide APIs for particular application domains like driving scenarios. An abstract domain defines a protocol which
can be implemented by various simulator interfaces so that scenarios written for that domain can be executed in those
simulators. For example, a scenario written for our driving domain can be run in both LGSVL and CARLA.

A domain provides a Scenic world model which defines Scenic classes for the various types of objects that occur in
its scenarios. The model also provides a simulator-agnostic way to access the geometry of the simulated world, by
defining regions, vector fields, and other objects as appropriate (for example, the driving domain provides a Network
class abstracting a road network). For domains which support dynamic scenarios, the model will also define a set of
simulator-agnostic actions for dynamic agents to use.

Driving Domain

The driving domain, scenic.domains.driving, is designed to support scenarios taking place on or near roads. It
defines generic classes for cars and pedestrians, and provides a representation of a road network that can be loaded from
standard map formats (e.g. OpenDRIVE). The domain supports dynamic scenarios, providing actions for agents which
can drive and walk as well as implementations of common behaviors like lane following and collision avoidance. See
the documentation of the scenic.domains.driving module for further details.

1.14 Supported Simulators

Scenic is designed to be easily interfaced to any simulator (see Interfacing to New Simulators). On this page we list
interfaces that we and others have developed; if you have a new interface, let us know and we’ll list it here!

Supported Simulators:

• Built-in Newtonian Simulator

• CARLA

350 Chapter 1. Table of Contents

https://www.asam.net/standards/detail/opendrive/

Scenic

• Grand Theft Auto V

• LGSVL

• Webots

• X-Plane

1.14.1 Built-in Newtonian Simulator

To enable debugging of dynamic scenarios without having to install an external simulator, Scenic includes a simple
Newtonian physics simulator. The simulator supports scenarios written using the cross-platform Driving Domain, and
can render top-down views showing the positions of objects relative to the road network. See the documentation of the
scenic.simulators.newtonian module for details.

1.14.2 CARLA

Our interface to the CARLA simulator enables using Scenic to describe autonomous driving scenarios. The interface
supports dynamic scenarios written using the CARLA world model (scenic.simulators.carla.model) as well as
scenarios using the cross-platform Driving Domain. To use the interface, please follow these instructions:

1. Install the latest version of CARLA (we’ve tested versions 0.9.9 through 0.9.14) from the CARLA Release Page.
Note that CARLA currently only supports Linux and Windows.

2. Install Scenic in your Python virtual environment as instructed in Getting Started with Scenic.

3. Within the same virtual environment, install CARLA’s Python API. How to do this depends on the CARLA
version and whether you built it from source:

0.9.12+

Run the following command, replacing X.Y.Z with the version of CARLA you installed:

python -m pip install carla==X.Y.Z

Older Versions

For older versions of CARLA, you’ll need to install its Python API from the provided .egg file. If
your system has the easy_install command, you can run:

easy_install /PATH_TO_CARLA_FOLDER/PythonAPI/carla/dist/carla-0.9.9-py3.7-
→˓linux-x86_64.egg

The exact name of the .egg file may vary depending on the version of CARLA you installed; make
sure to use the file for Python 3, not 2. You may get an error message saying Could not find
suitable distribution, which you can ignore.

The easy_install command is deprecated and may not exist if you have a newer version of Python.
In that case, you can try setting your PYTHONPATH environment variable to include the egg with a
command like:

export PYTHONPATH=/PATH_TO_CARLA_FOLDER/PythonAPI/carla/dist/carla-0.9.9-
→˓py3.7-linux-x86_64.egg

Built from Source

If you built CARLA from source, the process is more involved: see the detailed instructions here.

1.14. Supported Simulators 351

https://carla.org/
https://github.com/carla-simulator/carla/releases
https://carla.readthedocs.io/en/latest/start_quickstart/#install-client-library

Scenic

You can check that the carla package was correctly installed by running python -c 'import carla': if it prints
No module named 'carla', the installation didn’t work. We suggest upgrading to a newer version of CARLA so
that you can use pip to install the Python API.

To start CARLA, run the command ./CarlaUE4.sh in your CARLA folder. Once CARLA is running, you can run
dynamic Scenic scenarios following the instructions in the dynamics tutorial.

1.14.3 Grand Theft Auto V

The interface to Grand Theft Auto V, used in our PLDI paper, allows Scenic to position cars within the game as well
as to control the time of day and weather conditions. Many examples using the interface (including all scenarios from
the paper) can be found in examples/gta. See the paper and scenic.simulators.gta for documentation.

Importing scenes into GTA V and capturing rendered images requires a GTA V plugin, which you can find here.

1.14.4 LGSVL

We have developed an interface to the LGSVL simulator for autonomous driving, used in our ITSC 2020 paper. The
interface supports dynamic scenarios written using the LGSVL world model (scenic.simulators.lgsvl.model)
as well as scenarios using the cross-platform Driving Domain.

To use the interface, first install the simulator from the LGSVL Simulator website. Then, within the Python virtual
environment where you installed Scenic, install LGSVL’s Python API package from source.

An example of how to run a dynamic Scenic scenario in LGSVL is given in Dynamic Scenarios.

1.14.5 Webots

We have several interfaces to the Webots robotics simulator, for different use cases. Our main interface provides a
generic world model that can be used with any Webots world and supports dynamic scenarios. See the examples/
webots folder for example Scenic scenarios and Webots worlds using this interface, and scenic.simulators.
webots for documentation.

Scenic also includes more specialized world models for use with Webots:

• A general model for traffic scenarios, used in our VerifAI paper. Examples using this model can be found in the
VerifAI repository; see also the documentation of scenic.simulators.webots.road .

Note: The last model above, and the example .wbt files for it, was written for the R2018 version of Webots. Relatively
minor changes would be required to make it work with the newer open source versions of Webots. We may get around
to porting them eventually; we’d also gladly accept a pull request!

1.14.6 X-Plane

Our interface to the X-Plane flight simulator enables using Scenic to describe aircraft taxiing scenarios. This interface
is part of the VerifAI toolkit; documentation and examples can be found in the VerifAI repository.

352 Chapter 1. Table of Contents

https://www.rockstargames.com/V/
https://arxiv.org/abs/1809.09310
https://github.com/xyyue/scenic2gta
https://www.lgsvlsimulator.com/
https://github.com/lgsvl/PythonAPI
https://cyberbotics.com/
https://doi.org/10.1007/978-3-030-25540-4_25
https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/cyberbotics/webots
https://www.x-plane.com
https://github.com/BerkeleyLearnVerify/VerifAI

Scenic

1.15 Interfacing to New Simulators

To interface Scenic to a new simulator, there are two steps: using the Scenic API to compile scenarios, generate scenes,
and orchestrate dynamic simulations, and writing a Scenic library defining the virtual world provided by the simulator.

1.15.1 Using the Scenic API

Scenic’s Python API is covered in more detail in our Using Scenic Programmatically page; we summarize the main
steps here.

Compiling a Scenic scenario is easy: just call the scenic.scenarioFromFile function with the path to a Scenic
file (there’s also a variant scenic.scenarioFromString which works on strings). This returns a Scenario object
representing the scenario; to sample a scene from it, call its generate method. Scenes are represented by Scene
objects, from which you can extract the objects and their properties as well as the values of the global parameters (see
the Scene documentation for details).

Supporting dynamic scenarios requires additionally implementing a subclass of Simulator which communicates pe-
riodically with your simulator to implement the actions taken by dynamic agents and read back the state of the simula-
tion. See the scenic.simulators.carla.simulator and scenic.simulators.lgsvl.simulator modules for
examples.

1.15.2 Defining a World Model

To make writing scenarios for your simulator easier, you should write a Scenic library specifying all the relevant
information about the simulated world. This world model could include:

• Scenic classes (subclasses of Object) corresponding to types of objects in the simulator;

• instances of Region corresponding to locations of interest (e.g. one for each road);

• a workspace specifying legal locations for objects (and optionally providing methods for schematically rendering
scenes);

• a set of actions which can be taken by dynamic agents during simulations;

• any other information or utility functions that might be useful in scenarios.

Then any Scenic programs for your simulator can import this world model and make use of the information within.

Each of the simulators natively supported by Scenic has a corresponding model.scenic file containing its world
model. See the Supported Simulators page for links to the module under scenic.simulators for each simulator,
where the world model can be found. For an example, see the scenic.simulators.lgsvl model, which specializes
the simulator-agnostic model provided by the Driving Domain (in scenic.domains.driving.model).

1.16 Publications Using Scenic

1.16.1 Main Papers

The main paper on Scenic 2.x is:

Scenic: A Language for Scenario Specification and Data Generation.
Fremont, Kim, Dreossi, Ghosh, Yue, Sangiovanni-Vincentelli, and Seshia.
Machine Learning, 2022. [available here]
(see also the full version with appendices)

1.15. Interfacing to New Simulators 353

https://doi.org/10.1007/s10994-021-06120-5
https://arxiv.org/abs/2010.06580

Scenic

Our journal paper extends the earlier conference paper on Scenic 1.0:

Scenic: A Language for Scenario Specification and Scene Generation.
Fremont, Dreossi, Ghosh, Yue, Sangiovanni-Vincentelli, and Seshia.
PLDI 2019. [full version]

An expanded version of this paper appears as Chapters 5 and 8 of this thesis:

Algorithmic Improvisation. [thesis]
Daniel J. Fremont.
Ph.D. dissertation, 2019 (University of California, Berkeley; Group in Logic and the Methodology of
Science).

Scenic is also integrated into the VerifAI toolkit, which is described in another paper:

VerifAI: A Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Systems.
Dreossi*, Fremont*, Ghosh*, Kim, Ravanbakhsh, Vazquez-Chanlatte, and Seshia.
CAV 2019.

* Equal contribution.

1.16.2 Case Studies

We have also used Scenic in several industrial case studies:

Formal Analysis and Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI.
Fremont, Chiu, Margineantu, Osipychev, and Seshia.
CAV 2020.

Formal Scenario-Based Testing of Autonomous Vehicles: From Simulation to the Real World.
Fremont, Kim, Pant, Seshia, Acharya, Bruso, Wells, Lemke, Lu, and Mehta.
ITSC 2020.
[See also this white paper and associated blog post]

1.16.3 Other Papers Building on Scenic

A Programmatic and Semantic Approach to Explaining and Debugging Neural Network Based Object
Detectors.
Kim, Gopinath, Pasareanu, and Seshia.
CVPR 2020.

1.17 Credits

If you use Scenic, we request that you cite our 2022 journal paper and/or our original PLDI 2019 paper.

Scenic is primarily maintained by Daniel J. Fremont.

The Scenic project was started at UC Berkeley in Sanjit Seshia’s research group.

The language was initially developed by Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto
L. Sangiovanni-Vincentelli, and Sanjit A. Seshia.

Edward Kim assisted in developing the library for dynamic driving scenarios and putting together this documentation.

354 Chapter 1. Table of Contents

https://arxiv.org/abs/1809.09310
https://people.ucsc.edu/~dfremont/papers/thesis.pdf
https://github.com/BerkeleyLearnVerify/VerifAI
https://doi.org/10.1007/978-3-030-25540-4_25
https://people.eecs.berkeley.edu/~sseshia/pubs/b2hd-fremont-cav20.html
https://people.eecs.berkeley.edu/~sseshia/pubs/b2hd-fremont-itsc20.html
https://gomentumstation.net/wp-content/uploads/2020/03/AAA-UCB-LG-AV-Testing-Project-Whitepaper-Final-2020-7-15.pdf
https://gomentumstation.net/blog-2020-03-26/
https://people.eecs.berkeley.edu/~sseshia/pubs/b2hd-kim-cvpr20.html
https://doi.org/10.1007/s10994-021-06120-5
https://people.eecs.berkeley.edu/~sseshia/pubs/b2hd-fremont-pldi19.html

Scenic

Eric Vin, Matthew Rhea, and Ellen Kalvan developed Scenic’s support for 3D geometry. Shun Kashiwa developed the
auto-generated parser for Scenic 3.0 and its support for temporal requirements.

The Scenic tool and example scenarios have benefitted from additional code contributions from:

• Johnathan Chiu

• Greg Crow

• Francis Indaheng

• Ellen Kalvan

• Martin Jansa (LG Electronics, Inc.)

• Kevin Li

• Guillermo López

• Shalin Mehta

• Joel Moriana

• Gaurav Rao

• Matthew Rhea

• Ameesh Shah

• Jay Shenoy

• Eric Vin

• Kesav Viswanadha

• Wilson Wu

Finally, many other people provided helpful advice and discussions, including:

• Ankush Desai

• Alastair Donaldson

• Andrew Gordon

• Steve Lemke

• Jonathan Ragan-Kelley

• Sriram Rajamani

• German Ros

• Marcell Vazquez-Chanlatte

1.17. Credits 355

Scenic

356 Chapter 1. Table of Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• glossary

357

Scenic

358 Chapter 2. Indices and Tables

CHAPTER

THREE

LICENSE

Scenic is distributed under the 3-Clause BSD License.

359

https://opensource.org/licenses/BSD-3-Clause

Scenic

360 Chapter 3. License

BIBLIOGRAPHY

[F22] Fremont et al., Scenic: A Language for Scenario Specification and Data Generation, Machine Learning, 2022.
[Online]

[F19] Fremont et al., Scenic: A Language for Scenario Specification and Scene Generation, PLDI 2019.

[B10] Bauer et al., Comparing LTL Semantics for Runtime Verification. Journal of Logic and Computation, 2010.
[Online]

361

https://doi.org/10.1007/s10994-021-06120-5
https://doi.org/10.1093/logcom/exn075

Scenic

362 Bibliography

PYTHON MODULE INDEX

s
scenic.core, 157
scenic.core.distributions, 158
scenic.core.dynamics, 163
scenic.core.errors, 166
scenic.core.external_params, 169
scenic.core.geometry, 172
scenic.core.lazy_eval, 174
scenic.core.object_types, 177
scenic.core.propositions, 185
scenic.core.pruning, 186
scenic.core.regions, 188
scenic.core.requirements, 201
scenic.core.sample_checking, 203
scenic.core.scenarios, 203
scenic.core.serialization, 207
scenic.core.shapes, 210
scenic.core.simulators, 211
scenic.core.specifiers, 219
scenic.core.type_support, 220
scenic.core.utils, 224
scenic.core.vectors, 225
scenic.core.visibility, 228
scenic.core.workspaces, 230
scenic.domains, 231
scenic.domains.driving, 231
scenic.domains.driving.actions, 232
scenic.domains.driving.behaviors, 235
scenic.domains.driving.controllers, 236
scenic.domains.driving.model, 238
scenic.domains.driving.roads, 242
scenic.domains.driving.simulators, 260
scenic.domains.driving.workspace, 261
scenic.formats, 261
scenic.formats.opendrive, 261
scenic.formats.opendrive.workspace, 262
scenic.formats.opendrive.xodr_parser, 262
scenic.simulators, 264
scenic.simulators.carla, 265
scenic.simulators.carla.actions, 265
scenic.simulators.carla.behaviors, 266
scenic.simulators.carla.blueprints, 266

scenic.simulators.carla.misc, 269
scenic.simulators.carla.model, 272
scenic.simulators.carla.simulator, 275
scenic.simulators.gta, 276
scenic.simulators.gta.center_detection, 276
scenic.simulators.gta.img_modf, 277
scenic.simulators.gta.interface, 278
scenic.simulators.gta.map, 279
scenic.simulators.gta.messages, 279
scenic.simulators.gta.model, 280
scenic.simulators.lgsvl, 282
scenic.simulators.lgsvl.actions, 282
scenic.simulators.lgsvl.behaviors, 282
scenic.simulators.lgsvl.model, 283
scenic.simulators.lgsvl.simulator, 283
scenic.simulators.lgsvl.utils, 284
scenic.simulators.newtonian, 285
scenic.simulators.newtonian.driving_model,

285
scenic.simulators.newtonian.model, 286
scenic.simulators.newtonian.simulator, 286
scenic.simulators.utils, 287
scenic.simulators.utils.colors, 287
scenic.simulators.webots, 288
scenic.simulators.webots.actions, 289
scenic.simulators.webots.guideways, 289
scenic.simulators.webots.guideways.interface,

290
scenic.simulators.webots.guideways.intersection,

290
scenic.simulators.webots.guideways.model, 291
scenic.simulators.webots.model, 291
scenic.simulators.webots.road, 293
scenic.simulators.webots.road.car_models, 293
scenic.simulators.webots.road.interface, 294
scenic.simulators.webots.road.model, 295
scenic.simulators.webots.road.world, 297
scenic.simulators.webots.simulator, 297
scenic.simulators.webots.utils, 299
scenic.simulators.webots.WBTLexer, 300
scenic.simulators.webots.WBTParser, 300
scenic.simulators.webots.WBTVisitor, 300

363

Scenic

scenic.simulators.webots.world_parser, 301
scenic.simulators.xplane, 302
scenic.simulators.xplane.model, 302
scenic.syntax, 302
scenic.syntax.ast, 303
scenic.syntax.compiler, 311
scenic.syntax.parser, 312
scenic.syntax.pygment, 314
scenic.syntax.relations, 316
scenic.syntax.translator, 317
scenic.syntax.veneer, 320

364 Python Module Index

INDEX

Symbols
_3DClass (Object2D attribute), 184
_3DClass (OrientedPoint2D attribute), 184
_3DClass (Point2D attribute), 184
_addDynamicRequirement() (DynamicScenario

method), 165, 349
_addMonitor() (DynamicScenario method), 165, 349
_addRequirement() (DynamicScenario method), 165,

349
_asdict() (EdgeData method), 277
_asdict() (Modifier method), 348
_bindTo() (DynamicScenario method), 165, 349
_copyWith() (Constructible method), 178
_crossing (DrivingObject property), 240
_defaultValueType (Distribution attribute), 161
_defaultValueType (VectorDistribution attribute), 225
_defaultValueType (VerifaiDiscreteRange attribute),

172, 339
_defaultValueType (VerifaiRange attribute), 172, 339
_deterministic (Distribution attribute), 161
_element (DrivingObject property), 240
_fasterLane (LaneSection attribute), 252
_getClosestTrafficLight() (in module

scenic.simulators.carla.model), 275
_intersection (DrivingObject property), 240
_invokeInner() (Invocable method), 165
_isConvex (Object property), 183, 343
_isPlanarBox (Object property), 183, 344
_lane (DrivingObject property), 240
_laneGroup (DrivingObject property), 240
_laneSection (DrivingObject property), 240
_laneToLeft (LaneSection attribute), 252
_laneToRight (LaneSection attribute), 252
_make() (EdgeData class method), 277
_make() (Modifier class method), 348
_opposite (LaneGroup attribute), 249
_prepare() (DynamicScenario method), 165, 349
_replace() (EdgeData method), 277
_replace() (Modifier method), 348
_requiresArguments() (DynamicScenario class

method), 165, 349
_road (DrivingObject property), 240

_scenarioFromStream() (in module
scenic.syntax.translator), 319

_scenic_default (in module scenic.syntax.veneer), 348
_shoulder (LaneGroup attribute), 249
_sidewalk (LaneGroup attribute), 249
_slowerLane (LaneSection attribute), 252
_start() (DynamicScenario method), 165, 349
_step() (DynamicScenario method), 165, 349
_stop() (DynamicScenario method), 165, 349
_withProperties() (Constructible class method), 178
_withSpecifiers() (Constructible class method), 178
-S

command line option, 91
--2d

command line option, 91
--count

command line option, 91
--full-backtrace

command line option, 92
--model

command line option, 90
--param

command line option, 90
--pdb

command line option, 92
--pdb-on-reject

command line option, 92
--scenario

command line option, 91
--seed

command line option, 91
--show-params

command line option, 92
--show-records

command line option, 92
--simulate

command line option, 91
--time

command line option, 91
--verbosity

command line option, 91
--version

365

Scenic

command line option, 91
-b

command line option, 92
-m

command line option, 90
-p

command line option, 90
-s

command line option, 91
-v

command line option, 91

A
AABB (Region property), 191, 334
Above() (in module scenic.syntax.veneer), 347
Action (class in scenic.core.simulators), 217
actionsAreCompatible() (Simulation method), 215
addCodec() (Serializer class method), 209
adjacentLanes (LaneSection attribute), 252
advertisementModels (in module

scenic.simulators.carla.blueprints), 268
Ahead() (in module scenic.syntax.veneer), 346
AllRegion (class in scenic.core.regions), 192
allRoads (Network attribute), 257
AltitudeFrom() (in module scenic.syntax.veneer), 327
AltitudeTo() (in module scenic.syntax.veneer), 327
alwaysGlobalOrientation() (in module

scenic.core.vectors), 226
AngleFrom() (in module scenic.syntax.veneer), 327
AngleTo() (in module scenic.syntax.veneer), 327
angleWith() (Vector method), 227, 328
ApparentHeading() (in module scenic.syntax.veneer),

326
ApparentlyFacing() (in module scenic.syntax.veneer),

345
appliedTo() (Mutator method), 178, 338
ApplyForceAction (class in

scenic.simulators.webots.actions), 289
applyTo() (Action method), 217
approxBoundFootprint() (PolygonalFootprintRegion

method), 197
AST (class in scenic.syntax.ast), 307
ASTParseError, 168
At() (in module scenic.syntax.veneer), 344
atmModels (in module

scenic.simulators.carla.blueprints), 269
AttributeDistribution (class in

scenic.core.distributions), 162
AttributeFinder (class in scenic.syntax.compiler), 312
AutopilotBehavior() (in module

scenic.simulators.carla.behaviors), 266

B
Back (class in scenic.syntax.ast), 308

Back() (in module scenic.syntax.veneer), 325
BackLeft (class in scenic.syntax.ast), 309
BackLeft() (in module scenic.syntax.veneer), 325
BackRight (class in scenic.syntax.ast), 309
BackRight() (in module scenic.syntax.veneer), 325
backSurface (Object property), 183, 344
backwardLanes (Road attribute), 247
barrelModels (in module

scenic.simulators.carla.blueprints), 269
barrierModels (in module

scenic.simulators.carla.blueprints), 268
BasicChecker (class in scenic.core.sample_checking),

203
Behavior (class in scenic.core.dynamics), 165
Behavior (class in scenic.syntax.veneer), 348
Behind() (in module scenic.syntax.veneer), 346
Below() (in module scenic.syntax.veneer), 347
benchModels (in module

scenic.simulators.carla.blueprints), 269
BetterPythonLexer (class in scenic.syntax.pygment),

314
Beyond() (in module scenic.syntax.veneer), 344
bicycleModels (in module

scenic.simulators.carla.blueprints), 267
BlockConclusion (class in scenic.core.dynamics), 166
BlockConclusion (class in scenic.syntax.veneer), 348
Bottom (class in scenic.syntax.ast), 309
Bottom() (in module scenic.syntax.veneer), 326
BottomBackLeft (class in scenic.syntax.ast), 310
BottomBackLeft() (in module scenic.syntax.veneer),

326
BottomBackRight (class in scenic.syntax.ast), 311
BottomBackRight() (in module scenic.syntax.veneer),

326
BottomFrontLeft (class in scenic.syntax.ast), 310
BottomFrontLeft() (in module scenic.syntax.veneer),

326
BottomFrontRight (class in scenic.syntax.ast), 310
BottomFrontRight() (in module scenic.syntax.veneer),

326
bottomSurface (Object property), 183, 344
boundary (PolygonalRegion property), 198, 336
boundFootprint() (PolygonalFootprintRegion

method), 197
boundingBox (Object property), 183, 343
boundingPolygon (MeshRegion property), 194
BoundRelation (class in scenic.syntax.relations), 316
boxModels (in module

scenic.simulators.carla.blueprints), 269
BoxRegion (class in scenic.core.regions), 196
BoxRegion (class in scenic.syntax.veneer), 333
BoxShape (class in scenic.core.shapes), 211
BoxShape (class in scenic.syntax.veneer), 330
bucket() (Distribution method), 161

366 Index

Scenic

Bus (class in scenic.simulators.gta.model), 281
busStopModels (in module

scenic.simulators.carla.blueprints), 268

C
cached() (in module scenic.core.utils), 224
cached_method() (in module scenic.core.utils), 224
callBeginningScenicTrace() (in module

scenic.core.errors), 169
canBeTakenBy() (Action method), 217
canCoerce() (in module scenic.core.type_support), 222
canCoerceType() (in module

scenic.core.type_support), 222
canSee() (in module scenic.core.visibility), 229
CanSee() (in module scenic.syntax.veneer), 327
canSee() (Object method), 182, 343
canSee() (OrientedPoint method), 181, 341
canSee() (Point method), 180, 340
canUnpackDistributions() (in module

scenic.core.distributions), 159
Car (class in scenic.domains.driving.model), 241
Car (class in scenic.simulators.carla.model), 274
Car (class in scenic.simulators.gta.model), 281
CarlaActor (class in scenic.simulators.carla.model),

274
CarlaSimulator (class in

scenic.simulators.carla.simulator), 276
CarModel (class in scenic.simulators.gta.interface), 278
CarModel (class in scenic.simulators.webots.road.car_models),

294
carModels (in module

scenic.simulators.carla.blueprints), 267
caseModels (in module

scenic.simulators.carla.blueprints), 269
chairModels (in module

scenic.simulators.carla.blueprints), 268
check_constrains_sampling() (PropositionNode

method), 185
children (PropositionNode property), 186
CircularRegion (class in scenic.core.regions), 198
CircularRegion (class in scenic.syntax.veneer), 335
circumcircle (MeshRegion property), 194
clone() (Distribution method), 161
Clothoid (class in scenic.formats.opendrive.xodr_parser),

264
coerce() (in module scenic.core.type_support), 222
coerceToAny() (in module scenic.core.type_support),

222
CoercionFailure, 222
Color (class in scenic.simulators.utils.colors), 288
ColorMutator (class in scenic.simulators.utils.colors),

288
command line option

-S, 91

--2d, 91
--count, 91
--full-backtrace, 92
--model, 90
--param, 90
--pdb, 92
--pdb-on-reject, 92
--scenario, 91
--seed, 91
--show-params, 92
--show-records, 92
--simulate, 91
--time, 91
--verbosity, 91
--version, 91
-b, 92
-m, 90
-p, 90
-s, 91
-v, 91

Compact (class in scenic.simulators.gta.model), 281
CompileOptions (class in scenic.syntax.translator), 318
compileScenicAST() (in module

scenic.syntax.compiler), 312
compileStream() (in module scenic.syntax.translator),

319
compute_distance() (in module

scenic.simulators.carla.misc), 271
compute_magnitude_angle() (in module

scenic.simulators.carla.misc), 271
conditionOn() (Scenario method), 205
conditionTo() (Samplable method), 160
coneModels (in module

scenic.simulators.carla.blueprints), 268
ConeShape (class in scenic.core.shapes), 211
ConeShape (class in scenic.syntax.veneer), 331
conflictingManeuvers (Maneuver property), 244
connectingLane (Maneuver attribute), 244
connectingRoads (Network attribute), 257
ConstantSamplable (class in scenic.core.distributions),

160
Constructible (class in scenic.core.object_types), 178
constructScenarioFrom() (in module

scenic.syntax.translator), 319
ContainedIn() (in module scenic.syntax.veneer), 344
containerModels (in module

scenic.simulators.carla.blueprints), 268
containsCenter (Shape property), 210, 330
containsObject() (MeshVolumeRegion method), 194,

332
containsObject() (PolygonalFootprintRegion

method), 197
containsObject() (Region method), 191, 334

Index 367

Scenic

containsPoint() (MeshSurfaceRegion method), 196,
333

containsPoint() (MeshVolumeRegion method), 194,
332

containsPoint() (Object method), 182, 343
containsPoint() (PolygonalFootprintRegion method),

197
containsPoint() (Region method), 191, 334
containsRegionInner() (Region method), 191, 334
Context (class in scenic.syntax.compiler), 312
convertToFootprint() (in module

scenic.core.regions), 200
corners (Object property), 183, 343
country (Signal attribute), 256
creasedboxModels (in module

scenic.simulators.carla.blueprints), 269
createObjectInSimulator() (Simulation method),

215
createPlatoonAt() (in module

scenic.simulators.gta.model), 281
createSimulation() (Simulator method), 214
crossing (DrivingObject property), 240
crossingAt() (Network method), 259
crossingAt() (Road method), 248
CrossingBehavior() (in module

scenic.simulators.carla.behaviors), 266
crossings (Network attribute), 257
crossings (Road attribute), 247
Crossroad (class in scenic.simulators.webots.road.interface),

294
Cubic (class in scenic.formats.opendrive.xodr_parser),

264
curb (in module scenic.domains.driving.model), 239
curb (in module scenic.simulators.gta.model), 281
curb (LaneGroup attribute), 249
currentPropValue() (in module scenic.core.pruning),

187
currentRealTime (Simulation property), 217
currentState() (Simulation method), 217
Curve (class in scenic.formats.opendrive.xodr_parser),

263
CylinderShape (class in scenic.core.shapes), 211
CylinderShape (class in scenic.syntax.veneer), 331

D
Debris (class in scenic.simulators.newtonian.driving_model),

286
debrisModels (in module

scenic.simulators.carla.blueprints), 268
defaultCarColor() (Color static method), 288
DefaultIdentityDict (class in scenic.core.utils), 224
defaultSideSurface() (in module

scenic.core.object_types), 183
DelayedArgument (class in scenic.core.lazy_eval), 176

dependencies() (in module scenic.core.lazy_eval), 176
destroy() (Simulation method), 217
destroy() (Simulator method), 214
difference() (MeshVolumeRegion method), 195, 332
difference() (PolygonalFootprintRegion method), 197
difference() (Region method), 192, 335
DimensionLimits (in module scenic.core.object_types),

178
Discrete (in module scenic.syntax.veneer), 338
DiscreteRange (class in scenic.core.distributions), 163
DiscreteRange (class in scenic.syntax.veneer), 338
displayScenicException() (in module

scenic.core.errors), 169
distance_vehicle() (in module

scenic.simulators.carla.misc), 271
DistanceFrom() (in module scenic.syntax.veneer), 326
DistancePast() (in module scenic.syntax.veneer), 326
distancePast() (OrientedPoint method), 181, 341
DistanceRelation (class in scenic.syntax.relations),

316
distanceTo() (MeshSurfaceRegion method), 196, 333
distanceTo() (MeshVolumeRegion method), 195, 332
distanceTo() (Object method), 182, 343
distanceTo() (PolygonalFootprintRegion method), 197
distanceTo() (Region method), 191, 334
distanceToClosest() (DrivingObject method), 240
Distribution (class in scenic.core.distributions), 160
distributionFunction() (in module

scenic.core.distributions), 162
distributionMethod() (in module

scenic.core.distributions), 162
DivergenceError, 212
draw_waypoints() (in module

scenic.simulators.carla.misc), 270
driveOnLeft (Network attribute), 257
DrivingObject (class in

scenic.domains.driving.model), 239
DrivingSimulation (class in

scenic.domains.driving.simulators), 260
DrivingSimulator (class in

scenic.domains.driving.simulators), 260
DrivingWorkspace (class in

scenic.domains.driving.workspace), 261
DummySimulation (class in scenic.core.simulators), 217
DummySimulator (class in scenic.core.simulators), 217
dumpAsScenicCode() (in module

scenic.core.serialization), 208
dumpAsScenicCode() (Scene method), 204
DynamicScenario (class in scenic.core.dynamics), 165
DynamicScenario (class in scenic.syntax.veneer), 349

E
EdgeData (class in scenic.simulators.gta.center_detection),

277

368 Index

Scenic

Ego (class in scenic.syntax.ast), 307
ego() (in module scenic.syntax.veneer), 324
EgoCar (class in scenic.simulators.gta.model), 281
element (DrivingObject property), 240
elementAt() (Network method), 258
elements (Network attribute), 257
EmptyRegion (class in scenic.core.regions), 192
end (PolylineRegion property), 199, 337
endLane (Maneuver attribute), 244
EndScenarioAction (class in scenic.core.simulators),

218
EndSimulationAction (class in

scenic.core.simulators), 218
ENU (in module scenic.simulators.webots.utils), 299
environment variable

PYTHONPATH, 90
PYTHONWARNINGS, 91

ErrorReporter (class in
scenic.simulators.webots.world_parser),
301

eulerAngles (Orientation property), 226, 328
EUN (in module scenic.simulators.webots.utils), 299
evaluateIn() (LazilyEvaluable method), 175
evaluateIn() (Samplable method), 160
evaluateInner() (LazilyEvaluable method), 175
evaluateRequiringEqualTypes() (in module

scenic.core.type_support), 223
Evaluator (class in scenic.simulators.webots.world_parser),

301
everywhere (in module scenic.core.regions), 192
executeActions() (Simulation method), 216
executeCodeIn() (in module scenic.syntax.translator),

319
ExternalParameter (class in

scenic.core.external_params), 171
ExternalSampler (class in

scenic.core.external_params), 171

F
Facing() (in module scenic.syntax.veneer), 345
FacingAwayFrom() (in module scenic.syntax.veneer),

346
FacingDirectlyAwayFrom() (in module

scenic.syntax.veneer), 346
FacingDirectlyToward() (in module

scenic.syntax.veneer), 346
FacingToward() (in module scenic.syntax.veneer), 346
falsifiedByInner() (SamplingRequirement method),

202
fasterLane (LaneSection property), 252
feasibleRHPolygon() (in module

scenic.core.pruning), 188
FieldAt() (in module scenic.syntax.veneer), 327

find_center() (in module
scenic.simulators.gta.center_detection), 277

findNodeTypesIn() (in module
scenic.simulators.webots.world_parser),
301

findPointIn() (Network method), 258
flatten() (PropositionNode method), 186
flowFrom() (LinearElement method), 245
Follow() (in module scenic.syntax.veneer), 326
followFrom() (VectorField method), 227, 329
Following() (in module scenic.syntax.veneer), 347
FollowLaneBehavior() (in module

scenic.domains.driving.behaviors), 236
FollowTrajectoryBehavior() (in module

scenic.domains.driving.behaviors), 236
forParameters() (ExternalSampler static method), 171
forUnionOf() (VectorField static method), 227, 329
forwardLanes (Road attribute), 247
freezeTrafficLights() (in module

scenic.simulators.carla.model), 275
fromEuler() (Orientation class method), 226, 328
fromFile() (MeshRegion class method), 193
fromFile() (MeshShape class method), 211, 330
fromFile() (Network class method), 257
fromOpenDrive() (Network class method), 258
fromQuaternion() (Orientation class method), 226,

328
Front (class in scenic.syntax.ast), 308
Front() (in module scenic.syntax.veneer), 325
FrontLeft (class in scenic.syntax.ast), 309
FrontLeft() (in module scenic.syntax.veneer), 325
FrontRight (class in scenic.syntax.ast), 309
FrontRight() (in module scenic.syntax.veneer), 325
frontSurface (Object property), 183, 344
FunctionDistribution (class in

scenic.core.distributions), 162

G
garbageModels (in module

scenic.simulators.carla.blueprints), 268
gatherBehaviorNamespacesFrom() (in module

scenic.syntax.translator), 319
generate() (Scenario method), 204
generateBatch() (Scenario method), 205
get_speed() (in module scenic.simulators.carla.misc),

270
getAllGlobals() (in module scenic.core.requirements),

202
getFieldSafe() (in module

scenic.simulators.webots.simulator), 298
getFlatOrientation() (MeshSurfaceRegion method),

196, 333
getLaneChangingControllers() (DrivingSimulation

method), 261

Index 369

Scenic

getLaneFollowingControllers() (DrivingSimula-
tion method), 260

getProperties() (Simulation method), 216
getReplay() (Simulation method), 217
getSurfaceRegion() (MeshSurfaceRegion method),

196, 333
getSurfaceRegion() (MeshVolumeRegion method),

195, 332
getText() (in module scenic.core.errors), 169
getTurningControllers() (DrivingSimulation

method), 261
getValuesFor() (Specifier method), 219
getVolumeRegion() (MeshSurfaceRegion method),

196, 333
getVolumeRegion() (MeshVolumeRegion method),

195, 332
globalToLocalAngles() (Orientation method), 226,

328
gnomeModels (in module

scenic.simulators.carla.blueprints), 269
gpsToScenicPosition() (in module

scenic.simulators.lgsvl.utils), 285
GridRegion (class in scenic.core.regions), 200
Ground (class in scenic.simulators.webots.model), 292
group (LaneSection attribute), 252
GuardViolation, 166, 347
guessTypeFromLanes() (ManeuverType static method),

243

H
hash (CompileOptions property), 318
Heading (class in scenic.core.type_support), 222
hiddenFolders (in module scenic.core.errors), 168
Hill (class in scenic.simulators.webots.model), 293

I
id (NetworkElement attribute), 244
In() (in module scenic.syntax.veneer), 344
InconsistentScenarioError, 168
inferDistanceRelations() (in module

scenic.syntax.relations), 316
inferRelationsFrom() (in module

scenic.syntax.relations), 316
inferRelativeHeadingRelations() (in module

scenic.syntax.relations), 316
inferType() (AttributeDistribution static method), 162
inferType() (OperatorDistribution static method), 162
init_theta (EdgeData attribute), 277
initApolloFor() (LGSVLSimulation method), 284
inradius (Object property), 183, 343
intersect() (MeshVolumeRegion method), 195, 332
intersect() (PolygonalFootprintRegion method), 197
intersect() (Region method), 191, 334

Intersection (class in scenic.domains.driving.roads),
254

intersection (DrivingObject property), 240
intersection (in module

scenic.domains.driving.model), 239
intersection (Maneuver attribute), 244
intersectionAt() (Network method), 259
intersections (Network attribute), 257
intersects() (MeshSurfaceRegion method), 196, 333
intersects() (MeshVolumeRegion method), 194, 331
intersects() (Object method), 182, 343
intersects() (Region method), 191, 334
Interval (in module scenic.core.object_types), 178
InvalidScenarioError, 168
InvariantViolation, 166, 347
Invocable (class in scenic.core.dynamics), 164
ironplateModels (in module

scenic.simulators.carla.blueprints), 269
is3Way (Intersection property), 255
is4Way (Intersection property), 255
is_temporal (PropositionNode attribute), 185
is_typing_generic() (in module

scenic.core.type_support), 224
is_within_distance() (in module

scenic.simulators.carla.misc), 270
is_within_distance_ahead() (in module

scenic.simulators.carla.misc), 270
isA() (in module scenic.core.type_support), 222
isForward (LaneSection attribute), 252
isFunctionCall() (in module scenic.core.pruning),

187
isLazy() (in module scenic.core.lazy_eval), 176
isMethodCall() (in module scenic.core.pruning), 187
isPhysicsEnabled() (in module

scenic.simulators.webots.simulator), 298
isPrimitive (Distribution property), 161
isSignalized (Intersection property), 255
isTrafficLight (Signal property), 256

K
kioskModels (in module

scenic.simulators.carla.blueprints), 269

L
Lane (class in scenic.domains.driving.roads), 249
lane (DrivingObject property), 239
lane (LaneSection attribute), 252
laneAt() (LaneGroup method), 249
laneAt() (Network method), 259
laneAt() (Road method), 247
laneAt() (RoadSection method), 251
LaneChangeBehavior() (in module

scenic.domains.driving.behaviors), 236
LaneGroup (class in scenic.domains.driving.roads), 248

370 Index

Scenic

laneGroup (DrivingObject property), 240
laneGroupAt() (Network method), 259
laneGroupAt() (Road method), 248
laneGroups (Network attribute), 257
laneGroups (Road attribute), 247
lanes (LaneGroup attribute), 249
lanes (Network attribute), 257
lanes (Road attribute), 247
LaneSection (class in scenic.domains.driving.roads),

251
laneSection (DrivingObject property), 240
laneSectionAt() (Network method), 259
laneSectionAt() (Road method), 247
laneSections (Network attribute), 257
laneToLeft (LaneSection property), 252
laneToRight (LaneSection property), 252
LazilyEvaluable (class in scenic.core.lazy_eval), 175
Left (class in scenic.syntax.ast), 308
Left() (in module scenic.syntax.veneer), 325
LEFT_TURN (ManeuverType attribute), 243
LeftSpec() (in module scenic.syntax.veneer), 346
leftSurface (Object property), 183, 343
LGSVLSimulation (class in

scenic.simulators.lgsvl.simulator), 284
LGSVLSimulator (class in

scenic.simulators.lgsvl.simulator), 284
lgsvlToScenicElevation() (in module

scenic.simulators.lgsvl.utils), 285
lgsvlToScenicPosition() (in module

scenic.simulators.lgsvl.utils), 285
lgsvlToScenicRotation() (in module

scenic.simulators.lgsvl.utils), 285
Line (class in scenic.formats.opendrive.xodr_parser),

264
LinearElement (class in scenic.domains.driving.roads),

245
localAnglesFor() (Orientation method), 226, 328
LocalFinder (class in scenic.syntax.compiler), 312
localPath() (in module scenic.syntax.veneer), 325

M
mailboxModels (in module

scenic.simulators.carla.blueprints), 268
makeContext() (LazilyEvaluable static method), 175
makeDelayedFunctionCall() (in module

scenic.core.lazy_eval), 176
Maneuver (class in scenic.domains.driving.roads), 243
maneuversAt() (Intersection method), 255
ManeuverType (class in scenic.domains.driving.roads),

243
Map (class in scenic.simulators.gta.interface), 278
MapWorkspace (class in scenic.simulators.gta.interface),

278
matchInRegion() (in module scenic.core.pruning), 187

matchPolygonalField() (in module
scenic.core.pruning), 187

maxDistanceBetween() (in module
scenic.core.pruning), 188

MeshRegion (class in scenic.core.regions), 192
MeshShape (class in scenic.core.shapes), 210
MeshShape (class in scenic.syntax.veneer), 330
MeshSurfaceRegion (class in scenic.core.regions), 195
MeshSurfaceRegion (class in scenic.syntax.veneer),

332
MeshVolumeRegion (class in scenic.core.regions), 194
MeshVolumeRegion (class in scenic.syntax.veneer), 331
MethodDistribution (class in

scenic.core.distributions), 162
mid_loc (EdgeData attribute), 277
mode2D (CompileOptions attribute), 318
modelOverride (CompileOptions attribute), 318
Modifier (class in scenic.syntax.veneer), 348
ModifyingSpecifier (class in scenic.core.specifiers),

219
module

scenic.core, 157
scenic.core.distributions, 158
scenic.core.dynamics, 163
scenic.core.errors, 166
scenic.core.external_params, 169
scenic.core.geometry, 172
scenic.core.lazy_eval, 174
scenic.core.object_types, 177
scenic.core.propositions, 185
scenic.core.pruning, 186
scenic.core.regions, 188
scenic.core.requirements, 201
scenic.core.sample_checking, 203
scenic.core.scenarios, 203
scenic.core.serialization, 207
scenic.core.shapes, 210
scenic.core.simulators, 211
scenic.core.specifiers, 219
scenic.core.type_support, 220
scenic.core.utils, 224
scenic.core.vectors, 225
scenic.core.visibility, 228
scenic.core.workspaces, 230
scenic.domains, 231
scenic.domains.driving, 231
scenic.domains.driving.actions, 232
scenic.domains.driving.behaviors, 235
scenic.domains.driving.controllers, 236
scenic.domains.driving.model, 238
scenic.domains.driving.roads, 242
scenic.domains.driving.simulators, 260
scenic.domains.driving.workspace, 261
scenic.formats, 261

Index 371

Scenic

scenic.formats.opendrive, 261
scenic.formats.opendrive.workspace, 262
scenic.formats.opendrive.xodr_parser, 262
scenic.simulators, 264
scenic.simulators.carla, 265
scenic.simulators.carla.actions, 265
scenic.simulators.carla.behaviors, 266
scenic.simulators.carla.blueprints, 266
scenic.simulators.carla.misc, 269
scenic.simulators.carla.model, 272
scenic.simulators.carla.simulator, 275
scenic.simulators.gta, 276
scenic.simulators.gta.center_detection,

276
scenic.simulators.gta.img_modf, 277
scenic.simulators.gta.interface, 278
scenic.simulators.gta.map, 279
scenic.simulators.gta.messages, 279
scenic.simulators.gta.model, 280
scenic.simulators.lgsvl, 282
scenic.simulators.lgsvl.actions, 282
scenic.simulators.lgsvl.behaviors, 282
scenic.simulators.lgsvl.model, 283
scenic.simulators.lgsvl.simulator, 283
scenic.simulators.lgsvl.utils, 284
scenic.simulators.newtonian, 285
scenic.simulators.newtonian.driving_model,

285
scenic.simulators.newtonian.model, 286
scenic.simulators.newtonian.simulator,

286
scenic.simulators.utils, 287
scenic.simulators.utils.colors, 287
scenic.simulators.webots, 288
scenic.simulators.webots.actions, 289
scenic.simulators.webots.guideways, 289
scenic.simulators.webots.guideways.interface,

290
scenic.simulators.webots.guideways.intersection,

290
scenic.simulators.webots.guideways.model,

291
scenic.simulators.webots.model, 291
scenic.simulators.webots.road, 293
scenic.simulators.webots.road.car_models,

293
scenic.simulators.webots.road.interface,

294
scenic.simulators.webots.road.model, 295
scenic.simulators.webots.road.world, 297
scenic.simulators.webots.simulator, 297
scenic.simulators.webots.utils, 299
scenic.simulators.webots.WBTLexer, 300
scenic.simulators.webots.WBTParser, 300

scenic.simulators.webots.WBTVisitor, 300
scenic.simulators.webots.world_parser,

301
scenic.simulators.xplane, 302
scenic.simulators.xplane.model, 302
scenic.syntax, 302
scenic.syntax.ast, 303
scenic.syntax.compiler, 311
scenic.syntax.parser, 312
scenic.syntax.pygment, 314
scenic.syntax.relations, 316
scenic.syntax.translator, 317
scenic.syntax.veneer, 320

Monitor (class in scenic.core.dynamics), 165
Monitor (class in scenic.syntax.veneer), 348
MonitorRequirement (class in

scenic.core.requirements), 202
monotonicDistributionFunction() (in module

scenic.core.distributions), 162
motorcycleModels (in module

scenic.simulators.carla.blueprints), 268
MultiplexerDistribution (class in

scenic.core.distributions), 163
mutate() (in module scenic.syntax.veneer), 324
Mutator (class in scenic.core.object_types), 178
Mutator (class in scenic.syntax.veneer), 338

N
name (Modifier attribute), 348
name (NetworkElement attribute), 244
needsLazyEvaluation() (in module

scenic.core.lazy_eval), 176
needsSampling() (in module scenic.core.lazy_eval),

176
Network (class in scenic.domains.driving.roads), 256
network (in module scenic.domains.driving.model), 239
network (NetworkElement attribute), 244
Network.DigestMismatchError, 257
NetworkElement (class in

scenic.domains.driving.roads), 244
NewtonianSimulation (class in

scenic.simulators.newtonian.simulator), 287
NewtonianSimulator (class in

scenic.simulators.newtonian.simulator), 287
nextSample() (ExternalSampler method), 171
Node (class in scenic.simulators.webots.world_parser),

301
NoisyColorDistribution (class in

scenic.simulators.utils.colors), 288
nominalDirectionsAt() (Network method), 260
nominalDirectionsAt() (NetworkElement method),

245
Normal (class in scenic.core.distributions), 163
Normal (class in scenic.syntax.veneer), 338

372 Index

Scenic

NotVisible() (in module scenic.syntax.veneer), 325
NotVisibleFrom() (in module scenic.syntax.veneer),

345
NotVisibleFromOp() (in module scenic.syntax.veneer),

327
NotVisibleSpec() (in module scenic.syntax.veneer),

345
nowhere (in module scenic.core.regions), 192
NPCCar (class in scenic.domains.driving.model), 241
NUE (in module scenic.simulators.webots.utils), 299

O
Object (class in scenic.core.object_types), 181
Object (class in scenic.syntax.veneer), 341
Object2D (class in scenic.core.object_types), 184
occupiedSpace (Object property), 183, 343
OffsetAction (class in scenic.domains.driving.actions),

233
OffsetAction (class in

scenic.simulators.webots.actions), 289
OffsetAlong() (in module scenic.syntax.veneer), 327
OffsetAlongSpec() (in module scenic.syntax.veneer),

345
OffsetBy() (in module scenic.syntax.veneer), 345
oldBlueprintNames (in module

scenic.simulators.carla.blueprints), 267
On() (in module scenic.syntax.veneer), 344
onSurface (Object property), 183, 343
openDriveID (Signal attribute), 256
OperatorDistribution (class in

scenic.core.distributions), 162
opp_loc (EdgeData attribute), 277
opposite (LaneGroup property), 249
oppositeLaneGroup (DrivingObject property), 240
Options (class in scenic.core.distributions), 163
Options (class in scenic.syntax.veneer), 338
orient() (Region method), 192, 335
Orientation (class in scenic.core.vectors), 226
Orientation (class in scenic.syntax.veneer), 328
OrientationMutator (class in

scenic.core.object_types), 179
OrientedPoint (class in scenic.core.object_types), 180
OrientedPoint (class in scenic.syntax.veneer), 340
OrientedPoint2D (class in scenic.core.object_types),

184
OSMObject (class in scenic.simulators.webots.road.interface),

294

P
Param (class in scenic.syntax.ast), 307
param() (in module scenic.syntax.veneer), 324
ParamCubic (class in scenic.formats.opendrive.xodr_parser),

264
parameter (class in scenic.syntax.ast), 308

paramOverrides (CompileOptions attribute), 318
parse() (in module scenic.simulators.webots.world_parser),

301
parse_file() (in module scenic.syntax.parser), 313
parse_string() (in module scenic.syntax.parser), 313
ParseCompileError, 168
PathRegion (class in scenic.core.regions), 197
PathRegion (class in scenic.syntax.veneer), 333
Pedestrian (class in scenic.domains.driving.model),

241
Pedestrian (class in scenic.simulators.carla.model),

275
PedestrianCrossing (class in

scenic.domains.driving.roads), 253
PedestrianCrossing (class in

scenic.simulators.webots.road.interface),
295

PegenLexer (class in scenic.syntax.pygment), 315
pickledExt (Network attribute), 257
PIDLateralController (class in

scenic.domains.driving.controllers), 237
PIDLongitudinalController (class in

scenic.domains.driving.controllers), 237
PiecewiseVectorField (class in scenic.core.vectors),

228
pitch (Orientation property), 226, 328
Plane (class in scenic.simulators.xplane.model), 302
plantpotModels (in module

scenic.simulators.carla.blueprints), 268
Point (class in scenic.core.object_types), 179
Point (class in scenic.syntax.veneer), 339
Point2D (class in scenic.core.object_types), 184
point_at() (Curve method), 263
pointAlongBy() (PolylineRegion method), 199, 337
PointInRegionDistribution (class in

scenic.core.regions), 192
PointSetRegion (class in scenic.core.regions), 200
PointSetRegion (class in scenic.syntax.veneer), 335
Poly3 (class in scenic.formats.opendrive.xodr_parser),

263
PolygonalFootprintRegion (class in

scenic.core.regions), 196
PolygonalRegion (class in scenic.core.regions), 198
PolygonalRegion (class in scenic.syntax.veneer), 336
PolygonalVectorField (class in scenic.core.vectors),

228
PolygonalVectorField (class in scenic.syntax.veneer),

329
PolylineRegion (class in scenic.core.regions), 199
PolylineRegion (class in scenic.syntax.veneer), 336
positionFromScenic() (WebotsCoordinateSystem

method), 299
PositionMutator (class in scenic.core.object_types),

178

Index 373

Scenic

positionToScenic() (WebotsCoordinateSystem
method), 299

positive() (in module scenic.simulators.carla.misc),
271

postMortemDebugging (in module scenic.core.errors),
168

postMortemRejections (in module scenic.core.errors),
168

PreconditionViolation, 166, 347
projectVector() (MeshRegion method), 193
projectVector() (Region method), 191, 334
Prop (class in scenic.simulators.carla.model), 275
PropertyDefault (class in scenic.core.specifiers), 219
PropositionNode (class in scenic.core.propositions),

185
prune() (in module scenic.core.pruning), 187
pruneContainment() (in module scenic.core.pruning),

188
pruneRelativeHeading() (in module

scenic.core.pruning), 188
purgeModulesUnsafeToCache() (in module

scenic.syntax.translator), 319
PythonCompileError, 168
PYTHONPATH, 90
PythonSnippetLexer (class in scenic.syntax.pygment),

315
PYTHONWARNINGS, 91

R
RandomControlFlowError, 160
Range (class in scenic.core.distributions), 163
Range (class in scenic.syntax.veneer), 338
RectangularRegion (class in scenic.core.regions), 198
RectangularRegion (class in scenic.syntax.veneer),

335
Region (class in scenic.core.regions), 191
Region (class in scenic.syntax.veneer), 334
regionFromShapelyObject() (in module

scenic.core.regions), 192
RegulatedControlAction (class in

scenic.domains.driving.actions), 234
RejectionException, 159, 348
RejectSimulationException, 212
rel_to_abs() (Curve method), 264
RelativeHeading() (in module scenic.syntax.veneer),

326
relativeHeadingRange() (in module

scenic.core.pruning), 188
RelativeHeadingRelation (class in

scenic.syntax.relations), 316
RelativePosition() (in module scenic.syntax.veneer),

326
RelativeTo() (in module scenic.syntax.veneer), 327
replay() (Simulator method), 214

replayFormatVersion() (Serializer class method),
209

ReplayMode (class in scenic.core.simulators), 217
require() (in module scenic.syntax.veneer), 324
requiredProperties() (in module

scenic.core.lazy_eval), 176
RequirementType (class in scenic.core.requirements),

202
resample() (in module scenic.syntax.veneer), 324
resetExternalSampler() (Scenario method), 205
resolveFor() (PropertyDefault method), 219
reverseManeuvers (Maneuver property), 244
Right (class in scenic.syntax.ast), 308
Right() (in module scenic.syntax.veneer), 325
RIGHT_TURN (ManeuverType attribute), 243
RightSpec() (in module scenic.syntax.veneer), 346
rightSurface (Object property), 183, 343
Road (class in scenic.domains.driving.roads), 246
Road (class in scenic.simulators.webots.road.interface),

294
road (DrivingObject property), 240
road (in module scenic.domains.driving.model), 239
road (in module scenic.simulators.gta.model), 281
road (LaneGroup attribute), 249
road (LaneSection attribute), 252
roadAt() (Network method), 259
roadDirection (in module

scenic.domains.driving.model), 239
roadDirection (in module

scenic.simulators.gta.model), 281
roadDirection (Network attribute), 257
RoadLink (class in scenic.formats.opendrive.xodr_parser),

264
roadOrShoulder (in module

scenic.domains.driving.model), 239
roads (Network attribute), 257
RoadSection (class in scenic.domains.driving.roads),

250
roadSections (Network attribute), 257
roll (Orientation property), 226, 328
rotatedBy() (Vector method), 227, 328
run_step() (PIDLateralController method), 237
run_step() (PIDLongitudinalController method), 237

S
Samplable (class in scenic.core.distributions), 160
sample() (ExternalSampler method), 171
sample() (Samplable method), 160
sampleAll() (Samplable static method), 160
sampleGiven() (ExternalParameter method), 171
sampleGiven() (Samplable method), 160
SamplingRequirement (class in

scenic.core.requirements), 202
scalarOperator() (in module scenic.core.vectors), 226

374 Index

Scenic

Scenario (class in scenic.core.scenarios), 204
scenario (CompileOptions attribute), 318
scenarioComplete (TerminationType attribute), 218
scenarioFromFile() (in module scenic), 92
scenarioFromFile() (in module

scenic.syntax.translator), 318
scenarioFromString() (in module scenic), 92
scenarioFromString() (in module

scenic.syntax.translator), 318
Scene (class in scenic.core.scenarios), 204
sceneFormatVersion() (Serializer class method), 209
sceneFromBytes() (Scenario method), 206
sceneToBytes() (Scenario method), 206
scenic.core

module, 157
scenic.core.distributions

module, 158
scenic.core.dynamics

module, 163
scenic.core.errors

module, 166
scenic.core.external_params

module, 169
scenic.core.geometry

module, 172
scenic.core.lazy_eval

module, 174
scenic.core.object_types

module, 177
scenic.core.propositions

module, 185
scenic.core.pruning

module, 186
scenic.core.regions

module, 188
scenic.core.requirements

module, 201
scenic.core.sample_checking

module, 203
scenic.core.scenarios

module, 203
scenic.core.serialization

module, 207
scenic.core.shapes

module, 210
scenic.core.simulators

module, 211
scenic.core.specifiers

module, 219
scenic.core.type_support

module, 220
scenic.core.utils

module, 224
scenic.core.vectors

module, 225
scenic.core.visibility

module, 228
scenic.core.workspaces

module, 230
scenic.domains

module, 231
scenic.domains.driving

module, 231
scenic.domains.driving.actions

module, 232
scenic.domains.driving.behaviors

module, 235
scenic.domains.driving.controllers

module, 236
scenic.domains.driving.model

module, 238
scenic.domains.driving.roads

module, 242
scenic.domains.driving.simulators

module, 260
scenic.domains.driving.workspace

module, 261
scenic.formats

module, 261
scenic.formats.opendrive

module, 261
scenic.formats.opendrive.workspace

module, 262
scenic.formats.opendrive.xodr_parser

module, 262
scenic.simulators

module, 264
scenic.simulators.carla

module, 265
scenic.simulators.carla.actions

module, 265
scenic.simulators.carla.behaviors

module, 266
scenic.simulators.carla.blueprints

module, 266
scenic.simulators.carla.misc

module, 269
scenic.simulators.carla.model

module, 272
scenic.simulators.carla.simulator

module, 275
scenic.simulators.gta

module, 276
scenic.simulators.gta.center_detection

module, 276
scenic.simulators.gta.img_modf

module, 277
scenic.simulators.gta.interface

Index 375

Scenic

module, 278
scenic.simulators.gta.map

module, 279
scenic.simulators.gta.messages

module, 279
scenic.simulators.gta.model

module, 280
scenic.simulators.lgsvl

module, 282
scenic.simulators.lgsvl.actions

module, 282
scenic.simulators.lgsvl.behaviors

module, 282
scenic.simulators.lgsvl.model

module, 283
scenic.simulators.lgsvl.simulator

module, 283
scenic.simulators.lgsvl.utils

module, 284
scenic.simulators.newtonian

module, 285
scenic.simulators.newtonian.driving_model

module, 285
scenic.simulators.newtonian.model

module, 286
scenic.simulators.newtonian.simulator

module, 286
scenic.simulators.utils

module, 287
scenic.simulators.utils.colors

module, 287
scenic.simulators.webots

module, 288
scenic.simulators.webots.actions

module, 289
scenic.simulators.webots.guideways

module, 289
scenic.simulators.webots.guideways.interface

module, 290
scenic.simulators.webots.guideways.intersection

module, 290
scenic.simulators.webots.guideways.model

module, 291
scenic.simulators.webots.model

module, 291
scenic.simulators.webots.road

module, 293
scenic.simulators.webots.road.car_models

module, 293
scenic.simulators.webots.road.interface

module, 294
scenic.simulators.webots.road.model

module, 295
scenic.simulators.webots.road.world

module, 297
scenic.simulators.webots.simulator

module, 297
scenic.simulators.webots.utils

module, 299
scenic.simulators.webots.WBTLexer

module, 300
scenic.simulators.webots.WBTParser

module, 300
scenic.simulators.webots.WBTVisitor

module, 300
scenic.simulators.webots.world_parser

module, 301
scenic.simulators.xplane

module, 302
scenic.simulators.xplane.model

module, 302
scenic.syntax

module, 302
scenic.syntax.ast

module, 303
scenic.syntax.compiler

module, 311
scenic.syntax.parser

module, 312
scenic.syntax.pygment

module, 314
scenic.syntax.relations

module, 316
scenic.syntax.translator

module, 317
scenic.syntax.veneer

module, 320
ScenicError, 168
ScenicGrammarLexer (class in scenic.syntax.pygment),

315
ScenicLexer (class in scenic.syntax.pygment), 314
ScenicParseError, 168
ScenicPropertyLexer (class in

scenic.syntax.pygment), 315
ScenicRequirementLexer (class in

scenic.syntax.pygment), 315
ScenicSnippetLexer (class in scenic.syntax.pygment),

315
ScenicSpecifierLexer (class in

scenic.syntax.pygment), 315
ScenicStyle (class in scenic.syntax.pygment), 315
ScenicSyntaxError, 168
scenicToJSON() (in module scenic.core.serialization),

208
scenicToSchematicCoords() (Workspace method),

230, 338
scenicToWebotsPosition() (in module

scenic.simulators.webots.road.interface),

376 Index

Scenic

295
scenicToWebotsRotation() (in module

scenic.simulators.webots.road.interface),
295

scheduleForAgents() (Simulation method), 215
sectionAt() (Lane method), 250
sectionAt() (Road method), 247
sections (Road attribute), 247
SectorRegion (class in scenic.core.regions), 198
SectorRegion (class in scenic.syntax.veneer), 336
SerializationError, 208
Serializer (class in scenic.core.serialization), 209
serializeValue() (Distribution method), 161
SetBrakeAction (class in

scenic.domains.driving.actions), 234
setDebuggingOptions() (in module scenic), 96
setDebuggingOptions() (in module

scenic.core.errors), 167
SetHandBrakeAction (class in

scenic.domains.driving.actions), 234
setLocalWorld() (in module

scenic.simulators.webots.road.world), 297
SetPositionAction (class in

scenic.domains.driving.actions), 233
SetReverseAction (class in

scenic.domains.driving.actions), 234
SetSpeedAction (class in

scenic.domains.driving.actions), 233
SetSteerAction (class in

scenic.domains.driving.actions), 234
SetThrottleAction (class in

scenic.domains.driving.actions), 233
SetTrafficLightAction (class in

scenic.simulators.carla.actions), 266
setup() (Simulation method), 215
SetVehicleLightStateAction (class in

scenic.simulators.carla.actions), 266
SetVelocityAction (class in

scenic.domains.driving.actions), 233
SetWalkingDirectionAction (class in

scenic.domains.driving.actions), 234
SetWalkingSpeedAction (class in

scenic.domains.driving.actions), 235
Shape (class in scenic.core.shapes), 210
Shape (class in scenic.syntax.veneer), 329
shiftedBy() (LaneSection method), 252
shiftLanes() (Road method), 248
Shoulder (class in scenic.domains.driving.roads), 254
shoulder (in module scenic.domains.driving.model),

239
shoulder (LaneGroup property), 249
shoulders (Network attribute), 257
show() (Network method), 260
show2D() (Scene method), 204

show2D() (Workspace method), 230, 337
show3D() (Scene method), 204
show3D() (Workspace method), 230, 337
showInternalBacktrace (in module

scenic.core.errors), 168
Sidewalk (class in scenic.domains.driving.roads), 253
sidewalk (in module scenic.domains.driving.model),

239
sidewalk (LaneGroup property), 249
sidewalkRegion (Road attribute), 247
sidewalks (Network attribute), 257
sidewalks (Road attribute), 247
Signal (class in scenic.domains.driving.roads), 255
Signal (class in scenic.formats.opendrive.xodr_parser),

264
signedDistanceTo() (PolylineRegion method), 199,

337
simulate() (Simulator method), 213
Simulation (class in scenic.core.simulators), 214
simulation() (in module scenic.syntax.veneer), 325
SimulationCreationError, 212
simulationFromBytes() (Scenario method), 206
SimulationResult (class in scenic.core.simulators),

218
simulationTerminationCondition (TerminationType

attribute), 218
simulationToBytes() (Scenario method), 206
Simulator (class in scenic.core.simulators), 213
SimulatorInterfaceWarning, 212
SliceDistribution (class in scenic.core.distributions),

162
slowerLane (LaneSection property), 252
sortedRequirements() (WeightedAcceptanceChecker

method), 203
Specifier (class in scenic.core.specifiers), 219
SpecifierError, 169
speedLimit (NetworkElement attribute), 244
sphericalCoordinates() (Vector method), 227, 328
SpheroidRegion (class in scenic.core.regions), 196
SpheroidRegion (class in scenic.syntax.veneer), 333
SpheroidShape (class in scenic.core.shapes), 211
SpheroidShape (class in scenic.syntax.veneer), 331
StarredDistribution (class in

scenic.core.distributions), 162
start (PolylineRegion property), 199, 337
startDynamicSimulation() (Object method), 182,

342
startLane (Maneuver attribute), 243
SteeringAction (class in

scenic.domains.driving.actions), 233
Steers (class in scenic.domains.driving.actions), 233
step() (Simulation method), 216
storeScenarioStateIn() (in module

scenic.syntax.translator), 319

Index 377

Scenic

STRAIGHT (ManeuverType attribute), 243
StuckBehaviorWarning, 164
stuckBehaviorWarningTimeout (in module

scenic.core.dynamics), 164
supportInterval() (Distribution method), 161
supportInterval() (in module

scenic.core.distributions), 159
surface (Object property), 183, 343
SurfaceCollisionTrimesh (class in

scenic.core.regions), 192

T
tableModels (in module

scenic.simulators.carla.blueprints), 268
tags (NetworkElement attribute), 245
tangent (EdgeData attribute), 277
Target (class in scenic.syntax.parser), 313
terminate_simulation_when() (in module

scenic.syntax.veneer), 325
terminate_when() (in module scenic.syntax.veneer),

325
terminatedByBehavior (TerminationType attribute),

218
terminatedByMonitor (TerminationType attribute),

218
TerminationType (class in scenic.core.simulators), 218
terminator (Modifier attribute), 348
Terrain (class in scenic.simulators.webots.model), 293
timeLimit (TerminationType attribute), 218
to_points() (Curve method), 263
toDistribution() (in module

scenic.core.distributions), 162
toHeading() (in module scenic.core.type_support), 223
toLazyValue() (in module scenic.core.lazy_eval), 176
tolerance (Network attribute), 257
toOrientation() (in module

scenic.core.type_support), 223
Top (class in scenic.syntax.ast), 309
Top() (in module scenic.syntax.veneer), 325
TopBackLeft (class in scenic.syntax.ast), 310
TopBackLeft() (in module scenic.syntax.veneer), 326
TopBackRight (class in scenic.syntax.ast), 310
TopBackRight() (in module scenic.syntax.veneer), 326
TopFrontLeft (class in scenic.syntax.ast), 310
TopFrontLeft() (in module scenic.syntax.veneer), 326
TopFrontRight (class in scenic.syntax.ast), 310
TopFrontRight() (in module scenic.syntax.veneer), 326
topLevelNamespace() (in module

scenic.syntax.translator), 319
topSurface (Object property), 183, 343
toScalar() (in module scenic.core.type_support), 223
toType() (in module scenic.core.type_support), 223
toTypes() (in module scenic.core.type_support), 223
toVector() (in module scenic.core.type_support), 223

trafficwarningModels (in module
scenic.simulators.carla.blueprints), 269

Transformer (class in scenic.syntax.compiler), 312
trashModels (in module

scenic.simulators.carla.blueprints), 268
triangulatePolygon() (in module

scenic.core.geometry), 174
TriangulationError, 174
truckModels (in module

scenic.simulators.carla.blueprints), 268
TruncatedNormal (class in scenic.core.distributions),

163
TruncatedNormal (class in scenic.syntax.veneer), 338
TryInterrupt (class in scenic.syntax.ast), 307
TupleDistribution (class in scenic.core.distributions),

162
TurnBehavior() (in module

scenic.domains.driving.behaviors), 236
type (Maneuver attribute), 243
type (Signal attribute), 256
TypecheckedDistribution (class in

scenic.core.type_support), 222
TypeChecker (class in scenic.core.type_support), 223
TypeEqualityChecker (class in

scenic.core.type_support), 223

U
U_TURN (ManeuverType attribute), 243
uid (NetworkElement attribute), 244
UnaryProposition (class in scenic.core.propositions),

186
underlyingFunction() (in module

scenic.core.distributions), 159
underlyingType() (in module

scenic.core.type_support), 222
unfreezeTrafficLights() (in module

scenic.simulators.carla.model), 275
unifierOfTypes() (in module

scenic.core.type_support), 222
Uniform() (in module scenic.core.distributions), 163
Uniform() (in module scenic.syntax.veneer), 338
uniformColor() (Color static method), 288
UniformDistribution (class in

scenic.core.distributions), 163
uniformPointIn() (Region static method), 192, 335
uniformPointInner() (Region method), 191, 334
unifyingType() (in module scenic.core.type_support),

222
union() (MeshVolumeRegion method), 195, 332
union() (PolygonalFootprintRegion method), 197
union() (Region method), 191, 335
unpacksDistributions() (in module

scenic.core.distributions), 159

378 Index

Scenic

updateMetrics() (WeightedAcceptanceChecker
method), 203

updateObjects() (Simulation method), 216

V
value (Modifier attribute), 348
valueFor() (ExternalSampler method), 171
valueInContext() (in module scenic.core.lazy_eval),

176
valuesHaveDiverged() (Simulation method), 216
Vector (class in scenic.core.vectors), 227
Vector (class in scenic.syntax.veneer), 327
vector() (in module scenic.simulators.carla.misc), 271
VectorDistribution (class in scenic.core.vectors), 225
vectorDistributionMethod() (in module

scenic.core.vectors), 226
VectorField (class in scenic.core.vectors), 227
VectorField (class in scenic.syntax.veneer), 329
Vectorlike (in module scenic.domains.driving.roads),

243
VectorMethodDistribution (class in

scenic.core.vectors), 226
vectorOperator() (in module scenic.core.vectors), 226
VectorOperatorDistribution (class in

scenic.core.vectors), 225
Vehicle (class in scenic.domains.driving.model), 241
Vehicle (class in scenic.simulators.carla.model), 274
VehicleType (class in scenic.domains.driving.roads),

243
vehicleTypes (NetworkElement attribute), 244
vendingMachineModels (in module

scenic.simulators.carla.blueprints), 268
verbosePrint() (in module scenic.syntax.veneer), 324
verbosityLevel (in module scenic.core.errors), 168
VerifaiDiscreteRange (class in

scenic.core.external_params), 172
VerifaiDiscreteRange (class in scenic.syntax.veneer),

339
VerifaiOptions (class in

scenic.core.external_params), 172
VerifaiOptions (class in scenic.syntax.veneer), 339
VerifaiParameter (class in

scenic.core.external_params), 172
VerifaiParameter (class in scenic.syntax.veneer), 339
VerifaiRange (class in scenic.core.external_params),

172
VerifaiRange (class in scenic.syntax.veneer), 339
VerifaiSampler (class in

scenic.core.external_params), 171
ViewRegion (class in scenic.core.regions), 200
violationMsg (SamplingRequirement property), 202
visibilityBound() (in module scenic.core.pruning),

188
Visible() (in module scenic.syntax.veneer), 325

VisibleFrom() (in module scenic.syntax.veneer), 345
VisibleFromOp() (in module scenic.syntax.veneer), 327
visibleRegion (Object property), 182, 343
visibleRegion (Object2D property), 184
visibleRegion (OrientedPoint property), 180, 341
visibleRegion (OrientedPoint2D property), 184
visibleRegion (Point property), 179, 340
visibleRegion (Point2D property), 184
VisibleSpec() (in module scenic.syntax.veneer), 345

W
walkerModels (in module

scenic.simulators.carla.blueprints), 269
WalkForwardBehavior() (in module

scenic.domains.driving.behaviors), 236
WalkingAction (class in

scenic.domains.driving.actions), 234
Walks (class in scenic.domains.driving.actions), 233
WebotsCoordinateSystem (class in

scenic.simulators.webots.utils), 299
WebotsObject (class in

scenic.simulators.webots.model), 292
WebotsSimulation (class in

scenic.simulators.webots.simulator), 298
WebotsSimulator (class in

scenic.simulators.webots.simulator), 298
webotsToScenicPosition() (in module

scenic.simulators.webots.road.interface),
295

webotsToScenicRotation() (in module
scenic.simulators.webots.road.interface),
295

WeightedAcceptanceChecker (class in
scenic.core.sample_checking), 203

With() (in module scenic.syntax.veneer), 344
withinDistanceToAnyCars() (in module

scenic.domains.driving.model), 241
withinDistanceToAnyObjs() (in module

scenic.domains.driving.model), 242
withinDistanceToObjsInLane() (in module

scenic.domains.driving.model), 242
withPrior() (VerifaiParameter static method), 172, 339
Workspace (class in scenic.core.workspaces), 230
Workspace (class in scenic.syntax.ast), 307
Workspace (class in scenic.syntax.veneer), 337
workspace() (in module scenic.syntax.veneer), 324
worldPath (in module

scenic.simulators.webots.road.world), 297
WriteFileAction (class in

scenic.simulators.webots.actions), 289
writeReplayHeader() (Serializer method), 209
writeScene() (Serializer method), 209
writeValue() (Serializer method), 209

Index 379

Scenic

Y
yaw (Orientation property), 226, 328

Z
zoomAround() (Workspace method), 230, 338

380 Index

	Table of Contents
	Getting Started with Scenic
	Installation
	Trying Some Examples
	Learning More

	Notes on Installing Scenic
	All Platforms
	Missing Python Version
	“setup.py” not found
	Dependency Conflicts
	Cannot Find Scenic
	Scene Schematics Don’t Appear (2D)
	Missing SDL
	Using a Local Scenic Version with VerifAI

	MacOS
	Installing python-fcl on Apple silicon

	Windows
	Using WSL
	Problems building Shapely

	What’s New in Scenic
	Scenic 3.x
	Scenic 3.0.0

	Scenic 2.x
	Scenic 2.1.0
	Scenic 2.0.0

	Scenic Fundamentals
	Objects, Geometry, and Specifiers
	Randomness and Regions
	Orientations in Depth
	Points, Oriented Points, and Classes
	Models and Simulators
	Specifiers in Depth
	Why Specifiers?
	Dependencies and Modifying Specifiers
	Specifier Priorities

	Declarative Hard and Soft Constraints
	Mutations
	A Worked Example
	Further Reading

	Dynamic Scenarios
	Agents, Actions, and Behaviors
	Interrupts
	Stateful Behaviors
	Requirements and Monitors
	Preconditions and Invariants
	Terminating the Scenario
	Trying Some Examples
	Further Reading

	Composing Scenarios
	Modular Scenarios
	Parallel and Sequential Composition
	Interrupts, Overriding, and Initial Scenarios
	Random Selection of Scenarios

	Syntax Guide
	Primitive Data Types
	Distributions
	Statements
	Compound Statements
	Simple Statements
	Dynamic Statements

	Objects
	Specifiers
	Operators
	Built-in Functions

	Language Reference
	General Notes on Syntax
	Keywords

	Data Types Reference
	Boolean
	Scalar
	Vector
	Heading
	Orientation
	Vector Field
	Region
	Shape

	Region Types Reference
	Abstract Regions
	Point Sets and Lines
	2D Regions
	3D Regions
	Niche Regions

	Distributions Reference
	Built-in Distributions
	Range(low, high)
	DiscreteRange(low, high)
	Normal(mean, stdDev)
	TruncatedNormal(mean, stdDev, low, high)
	Uniform(value, …)
	Discrete({value: weight, … })
	Uniform Distribution over a Region

	Defining Custom Distributions

	Statements Reference
	Compound Statements
	Class Definition
	Behavior Definition
	Monitor Definition
	Modular Scenario Definition
	Try-Interrupt Statement

	Simple Statements
	model name
	import module
	param name = value, …
	require boolean
	require[number] boolean
	require LTL formula
	require monitor monitor
	terminate when boolean
	terminate simulation when boolean
	terminate after scalar (seconds | steps)
	mutate identifier, … [by scalar]
	record [initial | final] value [as name]

	Dynamic Statements
	take action, …
	wait
	terminate
	terminate simulation
	do behavior/scenario, …
	do behavior/scenario, … until boolean
	do behavior/scenario for scalar (seconds | steps)
	do choose behavior/scenario, …
	do shuffle behavior/scenario, …
	abort
	override object specifier, …

	Objects and Classes Reference
	Instance Creation
	Built-in Classes
	Point
	OrientedPoint
	Object

	Specifiers Reference
	General Specifiers
	with property value

	Position Specifiers
	at vector
	in region
	contained in region
	on region
	offset by vector
	offset along direction by vector
	beyond vector by (vector | scalar) [from (vector | OrientedPoint)]
	visible [from (Point | OrientedPoint)]
	not visible [from (Point | OrientedPoint)]
	(left | right) of (vector) [by scalar]
	(left | right) of OrientedPoint [by scalar]
	(left | right) of Object [by scalar]
	(ahead of | behind) vector [by scalar]
	(ahead of | behind) OrientedPoint [by scalar]
	(ahead of | behind) Object [by scalar]
	(above | below) vector [by scalar]
	(above | below) OrientedPoint [by scalar]
	(above | below) Object [by scalar]
	following vectorField [from vector] for scalar

	Orientation Specifiers
	facing orientation
	facing vectorField
	facing (toward | away from) vector
	facing directly (toward | away from) vector
	apparently facing heading [from vector]

	Specifier Resolution

	Operators Reference
	Scalar Operators
	relative heading of heading [from heading]
	apparent heading of OrientedPoint [from vector]
	distance [from vector] to vector
	angle [from vector] to vector
	altitude [from vector] to vector

	Boolean Operators
	(Point | OrientedPoint) can see (vector | Object)
	(vector | Object) in region

	Orientation Operators
	scalar deg
	vectorField at vector
	(heading | vectorField) relative to (heading | vectorField)

	Vector Operators
	vector (relative to | offset by) vector
	vector offset along direction by vector

	Region Operators
	visible region
	not visible region
	region visible from (Point | OrientedPoint)
	region not visible from (Point | OrientedPoint)

	OrientedPoint Operators
	vector relative to OrientedPoint
	OrientedPoint offset by vector
	(front | back | left | right | top | bottom) of Object
	(front | back) (left | right) of Object
	(top | bottom) (front | back) (left | right) of Object

	Temporal Operators
	always condition
	eventually condition
	next condition
	condition until condition
	hypothesis implies conclusion

	Built-in Functions Reference
	Miscellaneous Python Functions
	filter
	resample
	localPath
	verbosePrint
	simulation

	Visibility System
	Visible Regions
	Visibility Checks

	Scene Generation
	Execution of Dynamic Scenarios

	Command-Line Options
	General Scenario Control
	Dynamic Simulations
	Debugging

	Using Scenic Programmatically
	Compiling Scenarios and Generating Scenes
	Running Dynamic Simulations
	Storing Scenes/Simulations for Later Use

	Developing Scenic
	Getting Started
	Running the Test Suite
	Debugging
	Building the Documentation

	Scenic Internals
	How Scenic is Compiled
	Phase 1: Scenic Parser
	Phase 2: Scenic Compiler
	Phase 3: AST Compilation
	Phase 4: Python Execution
	Phase 5: Scenario Construction
	Sampling and Executing Scenarios

	Guide to the Scenic Parser & Compiler
	Architecture & Terminology
	Scenic AST
	Scenic Grammar
	Scenic Parser
	Scenic Compiler

	Tutorial: Adding New Syntax
	Step 1: Add AST Nodes
	Step 2: Add Grammar
	Step 3: Write Parser Tests
	Step 4: Add Visitor to Compiler
	Step 5: Write Compiler Tests

	Scenic Grammar
	Scenic Modules
	scenic.core
	scenic.core.distributions
	Summary of Module Members
	Member Details

	scenic.core.dynamics
	Summary of Module Members
	Member Details

	scenic.core.errors
	Summary of Module Members
	Member Details

	scenic.core.external_params
	External Samplers in General
	Samplers from VerifAI
	Summary of Module Members
	Member Details

	scenic.core.geometry
	Summary of Module Members
	Member Details

	scenic.core.lazy_eval
	Summary of Module Members
	Member Details

	scenic.core.object_types
	Summary of Module Members
	Member Details

	scenic.core.propositions
	Summary of Module Members
	Member Details

	scenic.core.pruning
	Summary of Module Members
	Member Details

	scenic.core.regions
	Summary of Module Members
	Member Details

	scenic.core.requirements
	Summary of Module Members
	Member Details

	scenic.core.sample_checking
	Summary of Module Members
	Member Details

	scenic.core.scenarios
	Summary of Module Members
	Member Details

	scenic.core.serialization
	Summary of Module Members
	Member Details

	scenic.core.shapes
	Summary of Module Members
	Member Details

	scenic.core.simulators
	Summary of Module Members
	Member Details

	scenic.core.specifiers
	Summary of Module Members
	Member Details

	scenic.core.type_support
	Summary of Module Members
	Member Details

	scenic.core.utils
	Summary of Module Members
	Member Details

	scenic.core.vectors
	Summary of Module Members
	Member Details

	scenic.core.visibility
	Summary of Module Members
	Member Details

	scenic.core.workspaces
	Summary of Module Members
	Member Details

	scenic.domains
	scenic.domains.driving
	scenic.domains.driving.actions
	Summary of Module Members
	Member Details
	scenic.domains.driving.behaviors
	Summary of Module Members
	Member Details
	scenic.domains.driving.controllers
	Summary of Module Members
	Member Details
	scenic.domains.driving.model
	Summary of Module Members
	Member Details
	scenic.domains.driving.roads
	Summary of Module Members
	Member Details
	scenic.domains.driving.simulators
	Summary of Module Members
	Member Details
	scenic.domains.driving.workspace
	Summary of Module Members
	Member Details

	scenic.formats
	scenic.formats.opendrive
	scenic.formats.opendrive.workspace
	Summary of Module Members
	Member Details
	scenic.formats.opendrive.xodr_parser
	Summary of Module Members
	Member Details

	scenic.simulators
	scenic.simulators.carla
	scenic.simulators.carla.actions
	Summary of Module Members
	Member Details
	scenic.simulators.carla.behaviors
	scenic.simulators.carla.blueprints
	Summary of Module Members
	Member Details
	scenic.simulators.carla.misc
	Summary of Module Members
	Member Details
	scenic.simulators.carla.model
	Summary of Module Members
	Member Details
	scenic.simulators.carla.simulator
	Summary of Module Members
	Member Details

	scenic.simulators.gta
	scenic.simulators.gta.center_detection
	Summary of Module Members
	Member Details
	scenic.simulators.gta.img_modf
	Summary of Module Members
	Member Details
	scenic.simulators.gta.interface
	Summary of Module Members
	Member Details
	scenic.simulators.gta.map
	Summary of Module Members
	Member Details
	scenic.simulators.gta.messages
	Summary of Module Members
	Member Details
	scenic.simulators.gta.model
	Summary of Module Members
	Member Details

	scenic.simulators.lgsvl
	scenic.simulators.lgsvl.actions
	Summary of Module Members
	Member Details
	scenic.simulators.lgsvl.behaviors
	scenic.simulators.lgsvl.model
	Summary of Module Members
	Member Details
	scenic.simulators.lgsvl.simulator
	Summary of Module Members
	Member Details
	scenic.simulators.lgsvl.utils
	Summary of Module Members
	Member Details

	scenic.simulators.newtonian
	scenic.simulators.newtonian.driving_model
	Summary of Module Members
	Member Details
	scenic.simulators.newtonian.model
	scenic.simulators.newtonian.simulator
	Summary of Module Members
	Member Details

	scenic.simulators.utils
	scenic.simulators.utils.colors
	Summary of Module Members
	Member Details

	scenic.simulators.webots
	scenic.simulators.webots.actions
	Summary of Module Members
	Member Details
	scenic.simulators.webots.guideways
	scenic.simulators.webots.guideways.interface
	Summary of Module Members
	Member Details
	scenic.simulators.webots.guideways.intersection
	Summary of Module Members
	Member Details
	scenic.simulators.webots.guideways.model
	Summary of Module Members
	Member Details
	scenic.simulators.webots.model
	Summary of Module Members
	Member Details
	scenic.simulators.webots.road
	scenic.simulators.webots.road.car_models
	Summary of Module Members
	Member Details
	scenic.simulators.webots.road.interface
	Summary of Module Members
	Member Details
	scenic.simulators.webots.road.model
	Summary of Module Members
	Member Details
	scenic.simulators.webots.road.world
	Summary of Module Members
	Member Details
	scenic.simulators.webots.simulator
	Summary of Module Members
	Member Details
	scenic.simulators.webots.utils
	Summary of Module Members
	Member Details
	scenic.simulators.webots.WBTLexer
	Summary of Module Members
	Member Details
	scenic.simulators.webots.WBTParser
	Summary of Module Members
	Member Details
	scenic.simulators.webots.WBTVisitor
	Summary of Module Members
	Member Details
	scenic.simulators.webots.world_parser
	Summary of Module Members
	Member Details

	scenic.simulators.xplane
	scenic.simulators.xplane.model
	Summary of Module Members
	Member Details

	scenic.syntax
	scenic.syntax.ast
	Summary of Module Members
	Member Details

	scenic.syntax.compiler
	Summary of Module Members
	Member Details

	scenic.syntax.parser
	Summary of Module Members
	Member Details

	scenic.syntax.pygment
	Summary of Module Members
	Member Details

	scenic.syntax.relations
	Summary of Module Members
	Member Details

	scenic.syntax.translator
	Summary of Module Members
	Member Details

	scenic.syntax.veneer
	Summary of Module Members
	Member Details

	Summary of Module Members
	Member Details

	Scenic Libraries
	Simulator Interfaces
	Abstract Domains
	Driving Domain

	Supported Simulators
	Built-in Newtonian Simulator
	CARLA
	Grand Theft Auto V
	LGSVL
	Webots
	X-Plane

	Interfacing to New Simulators
	Using the Scenic API
	Defining a World Model

	Publications Using Scenic
	Main Papers
	Case Studies
	Other Papers Building on Scenic

	Credits

	Indices and Tables
	License
	Bibliography
	Python Module Index
	Index

