Scenic Grammar

This page gives the formal Parsing Expression Grammar (PEG) used to parse the Scenic language. It is in the format of the Pegen parser generator, and is based on the Python grammar from CPython (see Grammar/python.gram in the CPython repository). In the source code, the grammar can be found at src/scenic/syntax/scenic.gram.

# PEG grammar for Scenic
# Based on the Python grammar at https://github.com/we-like-parsers/pegen/blob/main/data/python.gram

@class ScenicParser

@subheader'''
import enum
import io
import itertools
import os
import sys
import token
from typing import (
    Any, Callable, Iterator, List, Literal, NoReturn, Sequence, Tuple, TypeVar, Union
)

from pegen.tokenizer import Tokenizer

import scenic.syntax.ast as s
from scenic.core.errors import ScenicParseError

# Singleton ast nodes, created once for efficiency
Load = ast.Load()
Store = ast.Store()
Del = ast.Del()

Node = TypeVar("Node")
FC = TypeVar("FC", ast.FunctionDef, ast.AsyncFunctionDef, ast.ClassDef)

EXPR_NAME_MAPPING = {
    ast.Attribute: "attribute",
    ast.Subscript: "subscript",
    ast.Starred: "starred",
    ast.Name: "name",
    ast.List: "list",
    ast.Tuple: "tuple",
    ast.Lambda: "lambda",
    ast.Call: "function call",
    ast.BoolOp: "expression",
    ast.BinOp: "expression",
    ast.UnaryOp: "expression",
    ast.GeneratorExp: "generator expression",
    ast.Yield: "yield expression",
    ast.YieldFrom: "yield expression",
    ast.Await: "await expression",
    ast.ListComp: "list comprehension",
    ast.SetComp: "set comprehension",
    ast.DictComp: "dict comprehension",
    ast.Dict: "dict literal",
    ast.Set: "set display",
    ast.JoinedStr: "f-string expression",
    ast.FormattedValue: "f-string expression",
    ast.Compare: "comparison",
    ast.IfExp: "conditional expression",
    ast.NamedExpr: "named expression",
}


def parse_file(
    path: str,
    py_version: Optional[tuple]=None,
    token_stream_factory: Optional[
        Callable[[Callable[[], str]], Iterator[tokenize.TokenInfo]]
    ] = None,
    verbose:bool = False,
) -> ast.Module:
    """Parse a file."""
    with open(path) as f:
        tok_stream = (
            token_stream_factory(f.readline)
            if token_stream_factory else
            tokenize.generate_tokens(f.readline)
        )
        tokenizer = Tokenizer(tok_stream, verbose=verbose, path=path)
        parser = ScenicParser(
            tokenizer,
            verbose=verbose,
            filename=os.path.basename(path),
            py_version=py_version
        )
        return parser.parse("file")


def parse_string(
    source: str,
    mode: Union[Literal["eval"], Literal["exec"]],
    py_version: Optional[tuple]=None,
    token_stream_factory: Optional[
        Callable[[Callable[[], str]], Iterator[tokenize.TokenInfo]]
    ] = None,
    verbose: bool = False,
    filename: str = "<unknown>",
) -> Any:
    """Parse a string."""
    tok_stream = (
        token_stream_factory(io.StringIO(source).readline)
        if token_stream_factory else
        tokenize.generate_tokens(io.StringIO(source).readline)
    )
    tokenizer = Tokenizer(tok_stream, verbose=verbose)
    parser = ScenicParser(tokenizer, verbose=verbose, py_version=py_version, filename=filename)
    return parser.parse(mode if mode == "eval" else "file")


class Target(enum.Enum):
    FOR_TARGETS = enum.auto()
    STAR_TARGETS = enum.auto()
    DEL_TARGETS = enum.auto()


class Parser(Parser):

    #: Name of the source file, used in error reports
    filename : str

    def __init__(self,
        tokenizer: Tokenizer, *,
        verbose: bool = False,
        filename: str = "<unknown>",
        py_version: Optional[tuple] = None,
    ) -> None:
        super().__init__(tokenizer, verbose=verbose)
        self.filename = filename
        self.py_version = min(py_version, sys.version_info) if py_version else sys.version_info

    def parse(self, rule: str, call_invalid_rules: bool = False) -> Optional[ast.AST]:
        self.call_invalid_rules = call_invalid_rules
        res = getattr(self, rule)()

        if res is None:

            # Grab the last token that was parsed in the first run to avoid
            # polluting a generic error reports with progress made by invalid rules.
            last_token = self._tokenizer.diagnose()

            if not call_invalid_rules:
                self.call_invalid_rules = True

                # Reset the parser cache to be able to restart parsing from the
                # beginning.
                self._reset(0)  # type: ignore
                self._cache.clear()

                res = getattr(self, rule)()

            self.raise_raw_syntax_error("invalid syntax", last_token.start, last_token.end)

        return res

    def check_version(self, min_version: Tuple[int, ...], error_msg: str, node: Node) -> Node:
        """Check that the python version is high enough for a rule to apply.

        """
        if self.py_version >= min_version:
            return node
        else:
            raise ScenicParseError(SyntaxError(
                f"{error_msg} is only supported in Python {min_version} and above."
            ))

    def raise_indentation_error(self, msg: str) -> None:
        """Raise an indentation error."""
        last_token = self._tokenizer.diagnose()
        args = (self.filename, last_token.start[0], last_token.start[1] + 1, last_token.line)
        if sys.version_info >= (3, 10):
            args += (last_token.end[0], last_token.end[1] + 1)
        raise ScenicParseError(IndentationError(msg, args))

    def get_expr_name(self, node) -> str:
        """Get a descriptive name for an expression."""
        # See https://github.com/python/cpython/blob/master/Parser/pegen.c#L161
        assert node is not None
        node_t = type(node)
        if node_t is ast.Constant:
            v = node.value
            if v is Ellipsis:
                return "ellipsis"
            elif v is None:
                return str(v)
            # Avoid treating 1 as True through == comparison
            elif v is True:
                return str(v)
            elif v is False:
                return str(v)
            else:
                return "literal"

        try:
            return EXPR_NAME_MAPPING[node_t]
        except KeyError:
            raise ValueError(
                f"unexpected expression in assignment {type(node).__name__} "
                f"(line {node.lineno})."
            )

    def get_invalid_target(self, target: Target, node: Optional[ast.AST]) -> Optional[ast.AST]:
        """Get the meaningful invalid target for different assignment type."""
        if node is None:
            return None

        # We only need to visit List and Tuple nodes recursively as those
        # are the only ones that can contain valid names in targets when
        # they are parsed as expressions. Any other kind of expression
        # that is a container (like Sets or Dicts) is directly invalid and
        # we do not need to visit it recursively.
        if isinstance(node, (ast.List, ast.Tuple)):
            for e in node.elts:
                if (inv := self.get_invalid_target(target, e)) is not None:
                    return inv
        elif isinstance(node, ast.Starred):
            if target is Target.DEL_TARGETS:
                return node
            return self.get_invalid_target(target, node.value)
        elif isinstance(node, ast.Compare):
            # This is needed, because the `a in b` in `for a in b` gets parsed
            # as a comparison, and so we need to search the left side of the comparison
            # for invalid targets.
            if target is Target.FOR_TARGETS:
                if isinstance(node.ops[0], ast.In):
                    return self.get_invalid_target(target, node.left)
                return None

            return node
        elif isinstance(node, (ast.Name, ast.Subscript, ast.Attribute)):
            return None
        else:
            return node

    def set_expr_context(self, node, context):
        """Set the context (Load, Store, Del) of an ast node."""
        node.ctx = context
        return node

    def ensure_real(self, number: ast.Constant) -> float:
        value = ast.literal_eval(number.string)
        if type(value) is complex:
            self.raise_syntax_error_known_location("real number required in complex literal", number)
        return value

    def ensure_imaginary(self, number: ast.Constant) -> complex:
        value = ast.literal_eval(number.string)
        if type(value) is not complex:
            self.raise_syntax_error_known_location("imaginary number required in complex literal", number)
        return value

    def check_fstring_conversion(self, mark: tokenize.TokenInfo, name: tokenize.TokenInfo) -> tokenize.TokenInfo:
        if mark.lineno != name.lineno or mark.col_offset != name.col_offset:
            self.raise_syntax_error_known_range(
                "f-string: conversion type must come right after the exclamanation mark",
                mark,
                name
            )

        s = name.string
        if len(s) > 1 or s not in ("s", "r", "a"):
            self.raise_syntax_error_known_location(
                f"f-string: invalid conversion character '{s}': expected 's', 'r', or 'a'",
                name,
            )

        return name

    def _concat_strings_in_constant(self, parts) -> Union[str, bytes]:
        s = ast.literal_eval(parts[0].string)
        for ss in parts[1:]:
            s += ast.literal_eval(ss.string)
        args = dict(
            value=s,
            lineno=parts[0].start[0],
            col_offset=parts[0].start[1],
            end_lineno=parts[-1].end[0],
            end_col_offset=parts[0].end[1],
        )
        if parts[0].string.startswith("u"):
            args["kind"] = "u"
        return ast.Constant(**args)


    def concatenate_strings(self, parts):
        """Concatenate multiple tokens and ast.JoinedStr"""
        # Get proper start and stop
        start = end = None
        if isinstance(parts[0], ast.JoinedStr):
            start = parts[0].lineno, parts[0].col_offset
        if isinstance(parts[-1], ast.JoinedStr):
            end = parts[-1].end_lineno, parts[-1].end_col_offset

        # Combine the different parts
        seen_joined = False
        values = []
        ss = []
        for p in parts:
            if isinstance(p, ast.JoinedStr):
                seen_joined = True
                if ss:
                    values.append(self._concat_strings_in_constant(ss))
                    ss.clear()
                values.extend(p.values)
            else:
                ss.append(p)

        if ss:
            values.append(self._concat_strings_in_constant(ss))

        consolidated = []
        for p in values:
            if consolidated and isinstance(consolidated[-1], ast.Constant) and isinstance(p, ast.Constant):
                consolidated[-1].value += p.value
                consolidated[-1].end_lineno = p.end_lineno
                consolidated[-1].end_col_offset = p.end_col_offset
            else:
                consolidated.append(p)

        if not seen_joined and len(values) == 1 and isinstance(values[0], ast.Constant):
            return values[0]
        else:
            return ast.JoinedStr(
                values=consolidated,
                lineno=start[0] if start else values[0].lineno,
                col_offset=start[1] if start else values[0].col_offset,
                end_lineno=end[0] if end else values[-1].end_lineno,
                end_col_offset=end[1] if end else values[-1].end_col_offset,
            )

    def generate_ast_for_string(self, tokens):
        """Generate AST nodes for strings."""
        err_args = None
        line_offset = tokens[0].start[0]
        line = line_offset
        col_offset = 0
        source = "(\\n"
        for t in tokens:
            n_line = t.start[0] - line
            if n_line:
                col_offset = 0
            source += """\\n""" * n_line + ' ' * (t.start[1] - col_offset) + t.string
            line, col_offset = t.end
        source += "\\n)"
        try:
            m = ast.parse(source)
        except SyntaxError as err:
            args = (err.filename, err.lineno + line_offset - 2, err.offset, err.text)
            if sys.version_info >= (3, 10):
                args += (err.end_lineno + line_offset - 2, err.end_offset)
            err_args = (err.msg, args)
            # Ensure we do not keep the frame alive longer than necessary
            # by explicitely deleting the error once we got what we needed out
            # of it
            del err

        # Avoid getting a triple nesting in the error report that does not
        # bring anything relevant to the traceback.
        if err_args is not None:
            raise ScenicParseError(SyntaxError(*err_args))

        node = m.body[0].value
        # Since we asked Python to parse an alterred source starting at line 2
        # we alter the lineno of the returned AST to recover the right line.
        # If the string start at line 1, tha AST says 2 so we need to decrement by 1
        # hence the -2.
        ast.increment_lineno(node, line_offset - 2)
        return node

    def extract_import_level(self, tokens: List[tokenize.TokenInfo]) -> int:
        """Extract the relative import level from the tokens preceding the module name.

        '.' count for one and '...' for 3.

        """
        level = 0
        for t in tokens:
            if t.string == ".":
                level += 1
            else:
                level += 3
        return level

    def set_decorators(self,
        target: FC,
        decorators: list
    ) -> FC:
        """Set the decorators on a function or class definition."""
        target.decorator_list = decorators
        return target

    def get_comparison_ops(self, pairs):
        return [op for op, _ in pairs]

    def get_comparators(self, pairs):
        return [comp for _, comp in pairs]

    def set_arg_type_comment(self, arg, type_comment):
        if type_comment or sys.version_info < (3, 9):
            arg.type_comment = type_comment
        return arg

    def make_arguments(self,
        pos_only: Optional[List[Tuple[ast.arg, None]]],
        pos_only_with_default: List[Tuple[ast.arg, Any]],
        param_no_default: Optional[List[Tuple[ast.arg, None]]],
        param_default: Optional[List[Tuple[ast.arg, Any]]],
        after_star: Optional[Tuple[Optional[ast.arg], List[Tuple[ast.arg, Any]], Optional[ast.arg]]]
    ) -> ast.arguments:
        """Build a function definition arguments."""
        defaults = (
            [d for _, d in pos_only_with_default if d is not None]
            if pos_only_with_default else
            []
        )
        defaults += (
            [d for _, d in param_default if d is not None]
            if param_default else
            []
        )

        pos_only = pos_only or pos_only_with_default

        # Because we need to combine pos only with and without default even
        # the version with no default is a tuple
        pos_only = [p for p, _ in pos_only]
        params = (param_no_default or []) + ([p for p, _ in param_default] if param_default else [])

        # If after_star is None, make a default tuple
        after_star = after_star or (None, [], None)

        return ast.arguments(
            posonlyargs=pos_only,
            args=params,
            defaults=defaults,
            vararg=after_star[0],
            kwonlyargs=[p for p, _ in after_star[1]],
            kw_defaults=[d for _, d in after_star[1]],
            kwarg=after_star[2]
        )

    def _build_syntax_error(
        self,
        message: str,
        start: Optional[Tuple[int, int]] = None,
        end: Optional[Tuple[int, int]] = None
    ) -> None:
        line_from_token = start is None and end is None
        if start is None or end is None:
            tok = self._tokenizer.diagnose()
            start = start or tok.start
            end = end or tok.end

        if line_from_token:
            line = tok.line
        else:
            # End is used only to get the proper text
            line = "\\n".join(
                self._tokenizer.get_lines(list(range(start[0], end[0] + 1)))
            )

        # tokenize.py index column offset from 0 while Cpython index column
        # offset at 1 when reporting SyntaxError, so we need to increment
        # the column offset when reporting the error.
        args = (self.filename, start[0], start[1] + 1, line)
        if sys.version_info >= (3, 10):
            args += (end[0], end[1] + 1)

        return ScenicParseError(SyntaxError(message, args))

    def raise_raw_syntax_error(
        self,
        message: str,
        start: Optional[Tuple[int, int]] = None,
        end: Optional[Tuple[int, int]] = None
    ) -> NoReturn:
        raise self._build_syntax_error(message, start, end)

    def make_syntax_error(self, message: str) -> None:
        return self._build_syntax_error(message)

    def expect_forced(self, res: Any, expectation: str) -> Optional[tokenize.TokenInfo]:
        if res is None:
            last_token = self._tokenizer.diagnose()
            end = last_token.start
            if sys.version_info >= (3, 12) or (sys.version_info >= (3, 11) and last_token.type != 4):  # i.e. not a \n
                end = last_token.end
            self.raise_raw_syntax_error(
                f"expected {expectation}", last_token.start, end
            )
        return res

    def raise_syntax_error(self, message: str) -> NoReturn:
        """Raise a syntax error."""
        tok = self._tokenizer.diagnose()
        raise self._build_syntax_error(message, tok.start, tok.end if sys.version_info >= (3, 12) or tok.type != 4 else tok.start)

    def raise_syntax_error_known_location(
        self, message: str, node: Union[ast.AST, tokenize.TokenInfo]
    ) -> NoReturn:
        """Raise a syntax error that occured at a given AST node."""
        if isinstance(node, tokenize.TokenInfo):
            start = node.start
            end = node.end
        else:
            start = node.lineno, node.col_offset
            end = node.end_lineno, node.end_col_offset

        raise self._build_syntax_error(message, start, end)

    def raise_syntax_error_known_range(
        self,
        message: str,
        start_node: Union[ast.AST, tokenize.TokenInfo],
        end_node: Union[ast.AST, tokenize.TokenInfo]
    ) -> NoReturn:
        if isinstance(start_node, tokenize.TokenInfo):
            start = start_node.start
        else:
            start = start_node.lineno, start_node.col_offset

        if isinstance(end_node, tokenize.TokenInfo):
            end = end_node.end
        else:
            end = end_node.end_lineno, end_node.end_col_offset

        raise self._build_syntax_error(message, start, end)

    def raise_syntax_error_starting_from(
        self,
        message: str,
        start_node: Union[ast.AST, tokenize.TokenInfo]
    ) -> NoReturn:
        if isinstance(start_node, tokenize.TokenInfo):
            start = start_node.start
        else:
            start = start_node.lineno, start_node.col_offset

        last_token = self._tokenizer.diagnose()

        raise self._build_syntax_error(message, start, last_token.start)

    def raise_syntax_error_invalid_target(
        self, target: Target, node: Optional[ast.AST]
    ) -> NoReturn:
        invalid_target = self.get_invalid_target(target, node)

        if invalid_target is None:
            return None

        if target in (Target.STAR_TARGETS, Target.FOR_TARGETS):
            msg = f"cannot assign to {self.get_expr_name(invalid_target)}"
        else:
            msg = f"cannot delete {self.get_expr_name(invalid_target)}"

        self.raise_syntax_error_known_location(msg, invalid_target)

    def raise_syntax_error_on_next_token(self, message: str) -> NoReturn:
        next_token = self._tokenizer.peek()
        raise self._build_syntax_error(message, next_token.start, next_token.end)

    # scenic helpers
    def extend_new_specifiers(self, node: s.New, specifiers: List[ast.AST]) -> s.New:
        node.specifiers.extend(specifiers)
        return node
'''


# rule for adding hard keywords
# scenic_hard_keyword:


# STARTING RULES
# ==============

start: file

file[ast.Module]: a=[statements] ENDMARKER { ast.Module(body=a or [], type_ignores=[]) }
interactive[ast.Interactive]: a=statement_newline { ast.Interactive(body=a) }
eval[ast.Expression]: a=expressions NEWLINE* ENDMARKER { ast.Expression(body=a) }
func_type[ast.FunctionType]: '(' a=[type_expressions] ')' '->' b=expression NEWLINE* ENDMARKER { ast.FunctionType(argtypes=a, returns=b) }
fstring[ast.Expr]: star_expressions

# GENERAL STATEMENTS
# ==================

statements[list]: a=statement+ { list(itertools.chain.from_iterable(a)) }

statement[list]: a=scenic_compound_stmt { [a] } | a=compound_stmt { [a] } | a=scenic_stmts { a } | a=simple_stmts { a }

statement_newline[list]:
    | a=compound_stmt NEWLINE { [a] }
    | simple_stmts
    | NEWLINE { [ast.Pass(LOCATIONS)] }
    | ENDMARKER { None }

simple_stmts[list]:
    | a=simple_stmt !';' NEWLINE { [a] } # Not needed, there for speedup
    | a=';'.simple_stmt+ [';'] NEWLINE { a }

scenic_stmts[list]:
    | a=scenic_stmt !';' NEWLINE { [a] } # Not needed, there for speedup
    | a=';'.scenic_stmt+ [';'] NEWLINE { a }

# NOTE: assignment MUST precede expression, else parsing a simple assignment
# will throw a SyntaxError.
simple_stmt (memo):
    | assignment
    | &"type" type_alias
    | e=star_expressions { ast.Expr(value=e, LOCATIONS) }
    | &'return' return_stmt
    | &('import' | 'from') import_stmt
    | &'raise' raise_stmt
    | 'pass' { ast.Pass(LOCATIONS) }
    | &'del' del_stmt
    | &'yield' yield_stmt
    | &'assert' assert_stmt
    | 'break' { ast.Break(LOCATIONS) }
    | 'continue' { ast.Continue(LOCATIONS) }
    | &'global' global_stmt
    | &'nonlocal' nonlocal_stmt

compound_stmt:
    | &('def' | '@' | 'async') function_def
    | &'if' if_stmt
    | &('class' | '@') class_def
    | &('with' | 'async') with_stmt
    | &('for' | 'async') for_stmt
    | &'try' try_stmt
    | &'while' while_stmt
    | match_stmt

scenic_stmt:
    | scenic_model_stmt
    | scenic_tracked_assignment
    | scenic_param_stmt
    | scenic_require_stmt
    | scenic_record_initial_stmt
    | scenic_record_final_stmt
    | scenic_record_stmt
    | scenic_mutate_stmt
    | scenic_terminate_simulation_when_stmt
    | scenic_terminate_when_stmt
    | scenic_terminate_after_stmt
    | scenic_take_stmt
    | scenic_wait_stmt
    | scenic_terminate_simulation_stmt
    | scenic_terminate_stmt
    | scenic_do_choose_stmt
    | scenic_do_shuffle_stmt
    | scenic_do_for_stmt
    | scenic_do_until_stmt
    | scenic_do_stmt
    | scenic_abort_stmt
    | scenic_simulator_stmt

scenic_compound_stmt:
    | scenic_tracked_assign_new_stmt
    | scenic_assign_new_stmt
    | scenic_expr_new_stmt
    | scenic_behavior_def
    | scenic_monitor_def
    | scenic_scenario_def
    | scenic_try_interrupt_stmt
    | scenic_override_stmt

# SIMPLE STATEMENTS
# =================

# NOTE: annotated_rhs may start with 'yield'; yield_expr must start with 'yield'
assignment:
    | a=NAME ':' b=expression c=['=' d=annotated_rhs { d }] {
        self.check_version(
            (3, 6),
            "Variable annotation syntax is",
            ast.AnnAssign(
                target=ast.Name(
                    id=a.string,
                    ctx=Store,
                    lineno=a.start[0],
                    col_offset=a.start[1],
                    end_lineno=a.end[0],
                    end_col_offset=a.end[1],
                ),
                annotation=b,
                value=c,
                simple=1,
                LOCATIONS,
            )
        ) }
    | a=('(' b=single_target ')' { b }
         | single_subscript_attribute_target) ':' b=expression c=['=' d=annotated_rhs { d }] {
        self.check_version(
            (3, 6),
            "Variable annotation syntax is",
            ast.AnnAssign(
                target=a,
                annotation=b,
                value=c,
                simple=0,
                LOCATIONS,
            )
        )
     }
    | a=(z=star_targets '=' { z })+ b=(yield_expr | star_expressions) !'=' tc=[TYPE_COMMENT] {
         ast.Assign(targets=a, value=b, type_comment=tc, LOCATIONS)
     }
    | a=single_target b=augassign ~ c=(yield_expr | star_expressions) {
        ast.AugAssign(target = a, op=b, value=c, LOCATIONS)
     }
    | invalid_assignment

annotated_rhs: yield_expr | star_expressions

augassign:
    | '+=' { ast.Add() }
    | '-=' { ast.Sub() }
    | '*=' { ast.Mult() }
    | '@=' { self.check_version((3, 5), "The '@' operator is", ast.MatMult()) }
    | '/=' { ast.Div() }
    | '%=' { ast.Mod() }
    | '&=' { ast.BitAnd() }
    | '|=' { ast.BitOr() }
    | '^=' { ast.BitXor() }
    | '<<=' { ast.LShift() }
    | '>>=' { ast.RShift() }
    | '**=' { ast.Pow() }
    | '//=' { ast.FloorDiv() }

return_stmt[ast.Return]:
    | 'return' a=[star_expressions] { ast.Return(value=a, LOCATIONS) }

raise_stmt[ast.Raise]:
    | 'raise' a=expression b=['from' z=expression { z }] { ast.Raise(exc=a, cause=b, LOCATIONS) }
    | 'raise' { ast.Raise(exc=None, cause=None, LOCATIONS) }

global_stmt[ast.Global]: 'global' a=','.NAME+ {
    ast.Global(names=[n.string for n in a], LOCATIONS)
}

nonlocal_stmt[ast.Nonlocal]: 'nonlocal' a=','.NAME+ {
    ast.Nonlocal(names=[n.string for n in a], LOCATIONS)
}

del_stmt[ast.Delete]:
    | 'del' a=del_targets &(';' | NEWLINE) { ast.Delete(targets=a, LOCATIONS) }
    | invalid_del_stmt

yield_stmt[ast.Expr]: y=yield_expr { ast.Expr(value=y, LOCATIONS) }

assert_stmt[ast.Assert]: 'assert' a=expression b=[',' z=expression { z }] {
    ast.Assert(test=a, msg=b, LOCATIONS)
}

import_stmt[ast.Import]:
    | invalid_import
    | import_name
    | import_from

# Import statements
# -----------------

import_name[ast.Import]: 'import' a=dotted_as_names { ast.Import(names=a, LOCATIONS) }

# note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from[ast.ImportFrom]:
    | 'from' a=('.' | '...')* b=dotted_name 'import' c=import_from_targets {
        ast.ImportFrom(module=b, names=c, level=self.extract_import_level(a), LOCATIONS)
     }
    | 'from' a=('.' | '...')+ 'import' b=import_from_targets {
        ast.ImportFrom(names=b, level=self.extract_import_level(a), LOCATIONS)
        if sys.version_info >= (3, 9) else
        ast.ImportFrom(module=None, names=b, level=self.extract_import_level(a), LOCATIONS)
     }
import_from_targets[List[ast.alias]]:
    | '(' a=import_from_as_names [','] ')' { a }
    | import_from_as_names !','
    | '*' { [ast.alias(name="*", asname=None, LOCATIONS)] }
    | invalid_import_from_targets
import_from_as_names[List[ast.alias]]:
    | a=','.import_from_as_name+ { a }
import_from_as_name[ast.alias]:
    | a=NAME b=['as' z=NAME { z.string }] { ast.alias(name=a.string, asname=b, LOCATIONS) }
dotted_as_names[List[ast.alias]]:
    | a=','.dotted_as_name+ { a }
dotted_as_name[ast.alias]:
    | a=dotted_name b=['as' z=NAME { z.string }] { ast.alias(name=a, asname=b, LOCATIONS) }
dotted_name[str]:
    | a=dotted_name '.' b=NAME { a + "." + b.string }
    | a=NAME { a.string }

# COMPOUND STATEMENTS
# ===================

# Common elements
# ---------------

block[list] (memo):
    | NEWLINE INDENT a=statements DEDENT { a }
    | simple_stmts
    | invalid_block

decorators: decorator+
decorator:
    | a=('@' f=dec_maybe_call NEWLINE { f }) { a }
    | a=('@' f=named_expression NEWLINE { f }) {
        self.check_version((3, 9), "Generic decorator are",  a)
     }
dec_maybe_call:
    | dn=dec_primary '(' z=[arguments] ')' {
        ast.Call(func=dn, args=z[0] if z else [], keywords=z[1] if z else [], LOCATIONS)
     }
    | dec_primary
dec_primary:
    | a=dec_primary '.' b=NAME { ast.Attribute(value=a, attr=b.string, ctx=Load, LOCATIONS) }
    | a=NAME { ast.Name(id=a.string, ctx=Load, LOCATIONS) }

# Class definitions
# -----------------

class_def[ast.ClassDef]:
    | a=decorators b=class_def_raw { self.set_decorators(b, a) }
    | class_def_raw

class_def_raw[ast.ClassDef]:
    | invalid_class_def_raw
    | 'class' a=NAME t=[type_params] b=['(' z=[arguments] ')' { z }] &&':' c=scenic_class_def_block {
        (
            ast.ClassDef(
                a.string,
                bases=b[0] if b else [],
                keywords=b[1] if b else [],
                body=c,
                decorator_list=[],
                type_params=t or [],
                LOCATIONS,
            )
            if sys.version_info >= (3, 12) else
            ast.ClassDef(
                a.string,
                bases=b[0] if b else [],
                keywords=b[1] if b else [],
                body=c,
                decorator_list=[],
                LOCATIONS,
            )
        )
     }

scenic_class_def_block:
    | NEWLINE INDENT a=scenic_class_statements DEDENT { a }
    | simple_stmts
    | invalid_block

scenic_class_statements[list]: a=scenic_class_statement+ { list(itertools.chain.from_iterable(a)) }

scenic_class_statement[list]:
    | a=scenic_class_property_stmt { [a] }
    | a=compound_stmt { [a] }
    | a=scenic_stmts { a }
    | a=simple_stmts { a }

scenic_class_property_stmt:
    # not a simple statement; reads NEWLINE
    | a=NAME b=['[' attrs=','.scenic_class_property_attribute+ ']' { attrs } ] ':' c=expression NEWLINE { 
        s.PropertyDef(
            property=a.string,
            attributes=b if b is not None else [],
            value=c,
            LOCATIONS,
        )
     }

# fail if `NAME [ <expr> ]` pattern is found at top level of class definition and
# <expr> is neither `additive` nor `dynamic`
scenic_class_property_attribute: &&(
      "additive" { s.Additive(LOCATIONS) }
    | "dynamic" { s.Dynamic(LOCATIONS) }
    | "final" { s.Final(LOCATIONS) }
)

# Multiline Specifiers
# --------------------
scenic_assign_new_stmt:
    | a=(z=star_targets '=' { z })+ b=(scenic_new_block) !'=' tc=[TYPE_COMMENT] {
         ast.Assign(targets=a, value=b, type_comment=tc, LOCATIONS)
     }

scenic_tracked_assign_new_stmt:
    | a=scenic_tracked_name '=' b=scenic_new_block { s.TrackedAssign(target=a, value=b, LOCATIONS) }

scenic_expr_new_stmt: a=scenic_new_block { ast.Expr(value=a, LOCATIONS) }

scenic_new_block:
    | a=scenic_new_expr ',' NEWLINE INDENT b=scenic_new_block_body DEDENT {
        self.extend_new_specifiers(a, b)
     }

scenic_new_block_body:
    # without trailing comma
    | b=(x=scenic_specifiers ',' NEWLINE { x })* c=scenic_specifiers NEWLINE {
         list(itertools.chain.from_iterable(b)) + c
     }
    # with trailing comma
    | b=(x=scenic_specifiers ',' NEWLINE { x })+ {
        list(itertools.chain.from_iterable(b))
     }


# Behavior
# --------

scenic_behavior_def:
    | "behavior" a=NAME '(' b=[params] ')' &&':' c=scenic_behavior_def_block {
        s.BehaviorDef(
            a.string,
            args=b or self.make_arguments(None, [], None, [], None),
            docstring=c[0],
            header=c[1],
            body=c[2],
            LOCATIONS,
        )
     }

scenic_behavior_def_block:
    # behavior definition must have at least one statement that is not a precondition/invariant definition
    | NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=[scenic_behavior_header] c=scenic_behavior_statements DEDENT { (a, b or [], c) }
    | invalid_block

scenic_behavior_statements[list]: a=scenic_behavior_statement+ { list(itertools.chain.from_iterable(a)) }

# statements available inside behavior (normal statements + dynamic statements - precondition/invariant)
scenic_behavior_statement[list]:
    | scenic_invalid_behavior_statement
    | a=statement { a }

scenic_invalid_behavior_statement:
    | a="invariant" ':' a=expression {
        self.raise_syntax_error_known_location("invariant can only be set at the beginning of behavior definitions", a) 
     }
    | a="precondition" ':' a=expression {
        self.raise_syntax_error_known_location("precondition can only be set at the beginning of behavior definitions", a) 
     }

scenic_behavior_header: a=(x=(scenic_precondition_stmt | scenic_invariant_stmt) NEWLINE { x })+ { a }

scenic_precondition_stmt:
    | "precondition" ':' a=expression { s.Precondition(value=a, LOCATIONS) }

scenic_invariant_stmt:
    | "invariant" ':' a=expression { s.Invariant(value=a, LOCATIONS) }


# Monitor
# -------

scenic_monitor_def:
    | invalid_monitor
    | "monitor" a=NAME '(' b=[params] ')' &&':' c=scenic_monitor_def_block {
        s.MonitorDef(
            a.string,
            args=b or self.make_arguments(None, [], None, [], None),
            docstring=c[0],
            body=c[1],
            LOCATIONS
        )
     }

invalid_monitor[NoReturn]:
    | "monitor" NAME a=':' {
            self.raise_syntax_error_known_location("2.0-style monitor must be converted to use parentheses and explicit require", a)
         }

scenic_monitor_def_block:
    | NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=scenic_monitor_statements DEDENT { (a, b) }

scenic_monitor_statements[list]: a=statement+ { list(itertools.chain.from_iterable(a)) }

# Modular Scenario
# ----------------

scenic_scenario_def:
    | "scenario" a=NAME b=['(' z=[params] ')' { z }] &&':' c=scenic_scenario_def_block {
        s.ScenarioDef(
            a.string,
            args=b or self.make_arguments(None, [], None, [], None),
            docstring=c[0],
            header=c[1],
            setup=c[2],
            compose=c[3],
            LOCATIONS,
        )
     }

# returns a four-tuple (docstring, header, setup block, compose block)
scenic_scenario_def_block:
    | NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=[scenic_behavior_header] c=[scenic_scenario_setup_block] d=[scenic_scenario_compose_block] DEDENT { (a, b or [], c or [], d or []) }
    | NEWLINE INDENT a=[x=STRING NEWLINE { x.string }] b=statements DEDENT { (a, [], b, []) }

scenic_scenario_setup_block:
    | "setup" &&':' b=block { b }

scenic_scenario_compose_block:
    | "compose" &&':' b=block { b }

# Override
# --------

scenic_override_stmt:
    # restricting `e` to `primary` rather than `expression` to disambiguate keywords that are both specifiers and operators (e.g. `at`, `offset by`)
    | "override" e=primary ss=scenic_specifiers NEWLINE { s.Override(target=e, specifiers=ss) }
    | "override" e=primary ss=scenic_specifiers ',' NEWLINE INDENT t=scenic_new_block_body DEDENT {
        s.Override(target=e, specifiers=ss + t)
     }

# Function definitions
# --------------------

function_def[Union[ast.FunctionDef, ast.AsyncFunctionDef]]:
    | d=decorators f=function_def_raw { self.set_decorators(f, d) }
    | f=function_def_raw {self.set_decorators(f, [])}

function_def_raw[Union[ast.FunctionDef, ast.AsyncFunctionDef]]:
    | invalid_def_raw
    | 'def' n=NAME t=[type_params] &&'(' params=[params] ')' a=['->' z=expression { z }] &&':' tc=[func_type_comment] b=block {
        (
            ast.FunctionDef(
                name=n.string,
                args=params or self.make_arguments(None, [], None, [], None),
                returns=a,
                body=b,
                type_comment=tc,
                type_params=t or [],
                LOCATIONS,
            ) if sys.version_info >= (3, 12) else
            ast.FunctionDef(
                name=n.string,
                args=params or self.make_arguments(None, [], None, [], None),
                returns=a,
                body=b,
                type_comment=tc,
                LOCATIONS,
            )
        )
     }
    | 'async' 'def' n=NAME t=[type_params] &&'(' params=[params] ')' a=['->' z=expression { z }] &&':' tc=[func_type_comment] b=block {
       (
            self.check_version(
                (3, 5),
                "Async functions are",
                ast.AsyncFunctionDef(
                    name=n.string,
                    args=params or self.make_arguments(None, [], None, [], None),
                    returns=a,
                    body=b,
                    type_comment=tc,
                    type_params=t or [],
                    LOCATIONS,
                )
            ) if sys.version_info >= (3, 12) else
            self.check_version(
                (3, 5),
                "Async functions are",
                ast.AsyncFunctionDef(
                    name=n.string,
                    args=params or self.make_arguments(None, [], None, [], None),
                    returns=a,
                    body=b,
                    type_comment=tc,
                    LOCATIONS,
                )
            )
       )
     }

# Function parameters
# -------------------

params:
    | invalid_parameters
    | parameters

parameters[ast.arguments]:
    | a=slash_no_default b=param_no_default* c=param_with_default* d=[star_etc] {
        self.check_version(
            (3, 8), "Positional only arguments are", self.make_arguments(a, [], b, c, d)
        )
     }
    | a=slash_with_default b=param_with_default* c=[star_etc] {
        self.check_version(
            (3, 8),
            "Positional only arguments are",
            self.make_arguments(None, a, None, b, c),
        )
     }
    | a=param_no_default+ b=param_with_default* c=[star_etc] {
        self.make_arguments(None, [], a, b, c)
     }
    | a=param_with_default+ b=[star_etc] {
        self.make_arguments(None, [], None, a, b)
     }
    | a=star_etc { self.make_arguments(None, [], None, None, a) }

# Some duplication here because we can't write (',' | &')'),
# which is because we don't support empty alternatives (yet).
#

slash_no_default[List[Tuple[ast.arg, None]]]:
    | a=param_no_default+ '/' ',' { [(p, None) for p in a] }
    | a=param_no_default+ '/' &')' { [(p, None) for p in a] }
slash_with_default[List[Tuple[ast.arg, Any]]]:
    | a=param_no_default* b=param_with_default+ '/' ',' { ([(p, None) for p in a] if a else []) + b }
    | a=param_no_default* b=param_with_default+ '/' &')' { ([(p, None) for p in a] if a else []) + b }

star_etc[Tuple[Optional[ast.arg], List[Tuple[ast.arg, Any]], Optional[ast.arg]]]:
    | invalid_star_etc
    | '*' a=param_no_default b=param_maybe_default* c=[kwds] { (a, b, c) }
    | '*' a=param_no_default_star_annotation b=param_maybe_default* c=[kwds] { (a, b, c) }
    | '*' ',' b=param_maybe_default+ c=[kwds] { (None, b, c) }
    | a=kwds { (None, [], a) }

kwds[ast.arg]:
    | invalid_kwds
    | '**' a=param_no_default { a }

# One parameter.  This *includes* a following comma and type comment.
#
# There are three styles:
# - No default
# - With default
# - Maybe with default
#
# There are two alternative forms of each, to deal with type comments:
# - Ends in a comma followed by an optional type comment
# - No comma, optional type comment, must be followed by close paren
# The latter form is for a final parameter without trailing comma.
#

param_no_default[ast.arg]:
    | a=param ',' tc=TYPE_COMMENT? { self.set_arg_type_comment(a, tc) }
    | a=param tc=TYPE_COMMENT? &')' { self.set_arg_type_comment(a, tc) }
param_no_default_star_annotation[ast.arg]:
    | a=param_star_annotation ',' tc=TYPE_COMMENT? { self.set_arg_type_comment(a, tc) }
    | a=param_star_annotation tc=TYPE_COMMENT? &')' { self.set_arg_type_comment(a, tc) }
param_with_default[Tuple[ast.arg, Any]]:
    | a=param c=default ',' tc=TYPE_COMMENT? { (self.set_arg_type_comment(a, tc), c) }
    | a=param c=default tc=TYPE_COMMENT? &')' { (self.set_arg_type_comment(a, tc), c) }
param_maybe_default[Tuple[ast.arg, Any]]:
    | a=param c=default? ',' tc=TYPE_COMMENT? { (self.set_arg_type_comment(a, tc), c) }
    | a=param c=default? tc=TYPE_COMMENT? &')' { (self.set_arg_type_comment(a, tc), c) }
param: a=NAME b=annotation? { ast.arg(arg=a.string, annotation=b, LOCATIONS) }
param_star_annotation: a=NAME b=star_annotation {
    ast.arg(arg=a.string, annotations=b, LOCATIONS)
 }
annotation: ':' a=expression { a }
star_annotation: ':' a=star_expression { a }
default: '=' a=expression { a } | invalid_default

# If statement
# ------------

if_stmt[ast.If]:
    | invalid_if_stmt
    | 'if' a=named_expression ':' b=block c=elif_stmt { ast.If(test=a, body=b, orelse=c or [], LOCATIONS) }
    | 'if' a=named_expression ':' b=block c=[else_block] { ast.If(test=a, body=b, orelse=c or [], LOCATIONS) }
elif_stmt[List[ast.If]]:
    | invalid_elif_stmt
    | 'elif' a=named_expression ':' b=block c=elif_stmt { [ast.If(test=a, body=b, orelse=c, LOCATIONS)] }
    | 'elif' a=named_expression ':' b=block c=[else_block] { [ast.If(test=a, body=b, orelse=c or [], LOCATIONS)] }
else_block[list]:
    | invalid_else_stmt
    | 'else' &&':' b=block { b }

# While statement
# ---------------

while_stmt[ast.While]:
    | invalid_while_stmt
    | 'while' a=named_expression ':' b=block c=[else_block] {
        ast.While(test=a, body=b, orelse=c or [], LOCATIONS)
     }

# For statement
# -------------

for_stmt[Union[ast.For, ast.AsyncFor]]:
    | invalid_for_stmt
    | 'for' t=star_targets 'in' ~ ex=star_expressions &&':' tc=[TYPE_COMMENT] b=block el=[else_block] {
        ast.For(target=t, iter=ex, body=b, orelse=el or [], type_comment=tc, LOCATIONS) }
    | 'async' 'for' t=star_targets 'in' ~ ex=star_expressions ':' tc=[TYPE_COMMENT] b=block el=[else_block] {
        self.check_version(
            (3, 5),
            "Async for loops are",
            ast.AsyncFor(target=t, iter=ex, body=b, orelse=el or [], type_comment=tc, LOCATIONS)) }
    | invalid_for_target

# With statement
# --------------

with_stmt[Union[ast.With, ast.AsyncWith]]:
    | invalid_with_stmt_indent
    | 'with' '(' a=','.with_item+ ','? ')' ':' b=block {
        self.check_version(
           (3, 9),
           "Parenthesized with items",
            ast.With(items=a, body=b, LOCATIONS)
        )
     }
    | 'with' a=','.with_item+ ':' tc=[TYPE_COMMENT] b=block {
        ast.With(items=a, body=b, type_comment=tc, LOCATIONS)
     }
    | 'async' 'with' '(' a=','.with_item+ ','? ')' ':' b=block {
       self.check_version(
           (3, 9),
           "Parenthesized with items",
           ast.AsyncWith(items=a, body=b, LOCATIONS)
        )
     }
    | 'async' 'with' a=','.with_item+ ':' tc=[TYPE_COMMENT] b=block {
       self.check_version(
           (3, 5),
           "Async with statements are",
           ast.AsyncWith(items=a, body=b, type_comment=tc, LOCATIONS)
        )
     }
    | invalid_with_stmt

with_item[ast.withitem]:
    | e=expression 'as' t=star_target &(',' | ')' | ':') {
        ast.withitem(context_expr=e, optional_vars=t)
     }
    | invalid_with_item
    | e=expression { ast.withitem(context_expr=e, optional_vars=None) }

# Try statement
# -------------

try_stmt[ast.Try]:
    | invalid_try_stmt
    | 'try' &&':' b=block f=finally_block {
        ast.Try(body=b, handlers=[], orelse=[], finalbody=f, LOCATIONS)
     }
    | 'try' &&':' b=block ex=except_block+ el=[else_block] f=[finally_block] {
        ast.Try(body=b, handlers=ex, orelse=el or [], finalbody=f or [], LOCATIONS)
     }
    | 'try' &&':' b=block ex=except_star_block+ el=[else_block] f=[finally_block] {
        self.check_version(
            (3, 11),
            "Exception groups are",
            (
                ast.TryStar(body=b, handlers=ex, orelse=el or [], finalbody=f or [], LOCATIONS)
                if sys.version_info >= (3, 11)
                else None
            )
        )
     }

scenic_try_interrupt_stmt[s.TryInterrupt]:
    | 'try' &&':' b=block iw=interrupt_when_block+ ex=except_block* el=[else_block] f=[finally_block] {
        s.TryInterrupt(
            body=b,
            interrupt_when_handlers=iw,
            except_handlers=ex,
            orelse=el or [],
            finalbody=f or [],
            LOCATIONS,
        )
     }

# Interrupt statement
# -------------------

interrupt_when_block:
    | "interrupt" "when" e=expression &&':' b=block { s.InterruptWhenHandler(cond=e, body=b, LOCATIONS) }

# Except statement
# ----------------

except_block[ast.ExceptHandler]:
    | invalid_except_stmt_indent
    | 'except' e=expression t=['as' z=NAME { z.string }] ':' b=block {
        ast.ExceptHandler(type=e, name=t, body=b, LOCATIONS) }
    | 'except' ':' b=block { ast.ExceptHandler(type=None, name=None, body=b, LOCATIONS) }
    | invalid_except_stmt
except_star_block[ast.ExceptHandler]:
    | invalid_except_star_stmt_indent
    | 'except' '*' e=expression t=['as' z=NAME { z.string }] ':' b=block {
        ast.ExceptHandler(type=e, name=t, body=b, LOCATIONS)
     }
    | invalid_except_stmt
finally_block[list]:
    | invalid_finally_stmt
    | 'finally' &&':' a=block { a }

# Match statement
# ---------------

# We cannot do version checks here since the production will occur after any other
# production which will have failed since the ast module does not have the right nodes.
match_stmt["ast.Match"]:
    | "match" subject=subject_expr ':' NEWLINE INDENT cases=case_block+ DEDENT {
        ast.Match(subject=subject, cases=cases, LOCATIONS)
     }
    | invalid_match_stmt

# Version checking here allows to avoid tracking down every single possible production
subject_expr:
    | value=star_named_expression ',' values=star_named_expressions? {
        self.check_version(
            (3, 10),
            "Pattern matching is",
            ast.Tuple(elts=[value] + (values or []), ctx=Load, LOCATIONS)
        )
     }
    | e=named_expression { self.check_version((3, 10), "Pattern matching is", e)}

case_block["ast.match_case"]:
    | invalid_case_block
    | "case" pattern=patterns guard=guard? ':' body=block {
        ast.match_case(pattern=pattern, guard=guard, body=body)
     }

guard: 'if' guard=named_expression { guard }

patterns:
    | patterns=open_sequence_pattern {
        ast.MatchSequence(patterns=patterns, LOCATIONS)
     }
    | pattern

pattern:
    | as_pattern
    | or_pattern

as_pattern["ast.MatchAs"]:
    | pattern=or_pattern 'as' target=pattern_capture_target {
        ast.MatchAs(pattern=pattern, name=target, LOCATIONS)
     }
    | invalid_as_pattern

or_pattern["ast.MatchOr"]:
    | patterns='|'.closed_pattern+ {
        ast.MatchOr(patterns=patterns, LOCATIONS) if len(patterns) > 1 else patterns[0]
     }

closed_pattern:
    | literal_pattern
    | capture_pattern
    | wildcard_pattern
    | value_pattern
    | group_pattern
    | sequence_pattern
    | mapping_pattern
    | class_pattern

# Literal patterns are used for equality and identity constraints
literal_pattern:
    | value=signed_number !('+' | '-') { ast.MatchValue(value=value, LOCATIONS) }
    | value=complex_number { ast.MatchValue(value=value, LOCATIONS) }
    | value=strings { ast.MatchValue(value=value, LOCATIONS) }
    | 'None' { ast.MatchSingleton(value=None, LOCATIONS) }
    | 'True' { ast.MatchSingleton(value=True, LOCATIONS) }
    | 'False' { ast.MatchSingleton(value=False, LOCATIONS) }

# Literal expressions are used to restrict permitted mapping pattern keys
literal_expr:
    | signed_number !('+' | '-')
    | complex_number
    | strings
    | 'None' { ast.Constant(value=None, LOCATIONS) }
    | 'True' { ast.Constant(value=True, LOCATIONS) }
    | 'False' { ast.Constant(value=False, LOCATIONS) }

complex_number:
    | real=signed_real_number '+' imag=imaginary_number {
        ast.BinOp(left=real, op=ast.Add(), right=imag, LOCATIONS)
     }
    | real=signed_real_number '-' imag=imaginary_number  {
        ast.BinOp(left=real, op=ast.Sub(), right=imag, LOCATIONS)
     }

signed_number:
    | a=NUMBER { ast.Constant(value=ast.literal_eval(a.string), LOCATIONS) }
    | '-' a=NUMBER {
        ast.UnaryOp(
            op=ast.USub(),
            operand=ast.Constant(
                value=ast.literal_eval(a.string),
                lineno=a.start[0],
                col_offset=a.start[1],
                end_lineno=a.end[0],
                end_col_offset=a.end[1]
            ),
            LOCATIONS,
        )
     }

signed_real_number:
    | real_number
    | '-' real=real_number { ast.UnaryOp(op=ast.USub(), operand=real, LOCATIONS) }

real_number[ast.Constant]:
    | real=NUMBER { ast.Constant(value=self.ensure_real(real), LOCATIONS) }

imaginary_number[ast.Constant]:
    | imag=NUMBER { ast.Constant(value=self.ensure_imaginary(imag), LOCATIONS) }

capture_pattern:
    | target=pattern_capture_target {
        ast.MatchAs(pattern=None, name=target, LOCATIONS)
     }

pattern_capture_target[str]:
    | !"_" name=NAME !('.' | '(' | '=') { name.string }

wildcard_pattern["ast.MatchAs"]:
    | "_" { ast.MatchAs(pattern=None, target=None, LOCATIONS) }

value_pattern["ast.MatchValue"]:
    | attr=attr !('.' | '(' | '=') { ast.MatchValue(value=attr, LOCATIONS) }

attr[ast.Attribute]:
    | value=name_or_attr '.' attr=NAME {
        ast.Attribute(value=value, attr=attr.string, ctx=Load, LOCATIONS)
     }

name_or_attr:
    | attr
    | name=NAME { ast.Name(id=name.string, ctx=Load, LOCATIONS) }

group_pattern:
    | '(' pattern=pattern ')' { pattern }

sequence_pattern["ast.MatchSequence"]:
    | '[' patterns=maybe_sequence_pattern? ']' { ast.MatchSequence(patterns=patterns or [], LOCATIONS) }
    | '(' patterns=open_sequence_pattern? ')' { ast.MatchSequence(patterns=patterns or [], LOCATIONS) }

open_sequence_pattern:
    | pattern=maybe_star_pattern ',' patterns=maybe_sequence_pattern? {
        [pattern] + (patterns or [])
     }

maybe_sequence_pattern:
    | patterns=','.maybe_star_pattern+ ','? { patterns }

maybe_star_pattern:
    | star_pattern
    | pattern

star_pattern:
    | '*' target=pattern_capture_target { ast.MatchStar(name=target, LOCATIONS) }
    | '*' wildcard_pattern { ast.MatchStar(target=None, LOCATIONS) }

mapping_pattern:
    | '{' '}' { ast.MatchMapping(keys=[], patterns=[], rest=None, LOCATIONS) }
    | '{' rest=double_star_pattern ','? '}' {
        ast.MatchMapping(keys=[], patterns=[], rest=rest, LOCATIONS) }
    | '{' items=items_pattern ',' rest=double_star_pattern ','? '}' {
        ast.MatchMapping(
            keys=[k for k,_ in items],
            patterns=[p for _, p in items],
            rest=rest,
            LOCATIONS,
        )
     }
    | '{' items=items_pattern ','? '}' {
        ast.MatchMapping(
            keys=[k for k,_ in items],
            patterns=[p for _, p in items],
            rest=None,
            LOCATIONS,
        )
     }

items_pattern:
    | ','.key_value_pattern+

key_value_pattern:
    | key=(literal_expr | attr) ':' pattern=pattern { (key, pattern) }

double_star_pattern:
    | '**' target=pattern_capture_target { target }

class_pattern["ast.MatchClass"]:
    | cls=name_or_attr '(' ')' {
        ast.MatchClass(cls=cls, patterns=[], kwd_attrs=[], kwd_patterns=[], LOCATIONS)
     }
    | cls=name_or_attr '(' patterns=positional_patterns ','? ')' {
        ast.MatchClass(cls=cls, patterns=patterns, kwd_attrs=[], kwd_patterns=[], LOCATIONS)
     }
    | cls=name_or_attr '(' keywords=keyword_patterns ','? ')' {
        ast.MatchClass(
            cls=cls,
            patterns=[],
            kwd_attrs=[k for k, _ in keywords],
            kwd_patterns=[p for _, p in keywords],
            LOCATIONS,
        )
     }
    | cls=name_or_attr '(' patterns=positional_patterns ',' keywords=keyword_patterns ','? ')' {
        ast.MatchClass(
            cls=cls,
            patterns=patterns,
            kwd_attrs=[k for k, _ in keywords],
            kwd_patterns=[p for _, p in keywords],
            LOCATIONS,
        )
     }
    | invalid_class_pattern

positional_patterns:
    | args=','.pattern+ { args }

keyword_patterns:
    | ','.keyword_pattern+

keyword_pattern:
    | arg=NAME '=' value=pattern { (arg.string, value) }

# Type statement
# ---------------

type_alias["ast.TypeAlias"]:
    | "type" n=NAME t=[type_params] '=' b=expression {
        self.check_version(
            (3, 12),
            "Type statement is",
            (
                ast.TypeAlias(
                    name=ast.Name(
                        id=n.string,
                        ctx=Store,
                        lineno=n.start[0],
                        col_offset=n.start[1],
                        end_lineno=n.end[0],
                        end_col_offset=n.end[1],
                    ),
                    type_params=t or [],
                    value=b,
                    LOCATIONS
                )
                if sys.version_info >= (3, 12)
                else None
            )
        )
     }

# Type parameter declaration
# --------------------------

type_params[list]: '[' t=type_param_seq  ']' {
    self.check_version(
        (3, 12),
        "Type parameter lists are",
        t
    )
 }

type_param_seq: a=','.type_param+ [','] { a }

type_param (memo):
    | a=NAME b=[type_param_bound] {
        ast.TypeVar(name=a.string, bound=b, LOCATIONS)
        if sys.version_info >= (3, 12)
        else object()
     }
    | '*' a=NAME colon=":" e=expression {
        self.raise_syntax_error_starting_from(
            "cannot use constraints with TypeVarTuple"
            if isinstance(e, ast.Tuple)
            else "cannot use bound with TypeVarTuple",
            colon
        )
     }
    | '*' a=NAME {
        ast.TypeVarTuple(name=a.string, LOCATIONS)
        if sys.version_info >= (3, 12)
        else object()
     }
    | '**' a=NAME colon=":" e=expression {
        self.raise_syntax_error_starting_from(
            "cannot use constraints with ParamSpec"
            if isinstance(e, ast.Tuple)
            else "cannot use bound with ParamSpec",
            colon
        )
     }
    | '**' a=NAME {
        ast.ParamSpec(name=a.string, LOCATIONS)
        if sys.version_info >= (3, 12)
        else object()
     }

type_param_bound: ":" e=expression { e }

# EXPRESSIONS
# -----------

expressions:
    | a=expression b=(',' c=expression { c })+ [','] {
        ast.Tuple(elts=[a] + b, ctx=Load, LOCATIONS) }
    | a=expression ',' { ast.Tuple(elts=[a], ctx=Load, LOCATIONS) }
    | expression

expression (memo):
    | invalid_scenic_instance_creation
    | invalid_expression
    | invalid_legacy_expression
    | a=disjunction 'if' b=disjunction 'else' c=disjunction {
        ast.IfExp(body=a, test=b, orelse=c, LOCATIONS)
     }
    | disjunction
    | lambdef

scenic_temporal_expression (memo):
    | invalid_expression
    | invalid_legacy_expression
    | a=scenic_until 'if' b=scenic_until 'else' c=scenic_until {
        ast.IfExp(body=a, test=b, orelse=c, LOCATIONS)
     }
    | scenic_until
    | lambdef

yield_expr:
    | 'yield' 'from' a=expression { ast.YieldFrom(value=a, LOCATIONS) }
    | 'yield' a=[star_expressions] { ast.Yield(value=a, LOCATIONS) }

star_expressions:
    | a=star_expression b=(',' c=star_expression { c })+ [','] {
        ast.Tuple(elts=[a] + b, ctx=Load, LOCATIONS) }
    | a=star_expression ',' { ast.Tuple(elts=[a], ctx=Load, LOCATIONS) }
    | star_expression

star_expression (memo):
    | '*' a=bitwise_or { ast.Starred(value=a, ctx=Load, LOCATIONS) }
    | expression

star_named_expressions: a=','.star_named_expression+ [','] { a }

star_named_expression:
    | '*' a=bitwise_or { ast.Starred(value=a, ctx=Load, LOCATIONS) }
    | named_expression

assignment_expression:
    | a=NAME ':=' ~ b=expression {
        self.check_version(
            (3, 8),
            "The ':=' operator is",
            ast.NamedExpr(
                target=ast.Name(
                    id=a.string,
                    ctx=Store,
                    lineno=a.start[0],
                    col_offset=a.start[1],
                    end_lineno=a.end[0],
                    end_col_offset=a.end[1]
                ),
                value=b,
                LOCATIONS,
            )
        )
     }

named_expression:
    | assignment_expression
    | invalid_named_expression
    | a=expression !':=' { a }

scenic_until (memo):
    | invalid_scenic_until
    | a=scenic_above_until 'until' b=scenic_above_until { s.UntilOp(a, b, LOCATIONS) }
    | scenic_above_until

scenic_above_until (memo):  # anything with precedence above "until"
    | scenic_temporal_prefix
    | scenic_implication

scenic_temporal_prefix (memo):
    | "next" e=scenic_above_until { s.Next(e, LOCATIONS) }
    | "eventually" e=scenic_above_until { s.Eventually(e, LOCATIONS) }
    | "always" e=scenic_above_until { s.Always(e, LOCATIONS) }

scenic_implication (memo):
    | invalid_scenic_implication
    # exclude implication on RHS to disallow "A implies B implies C"
    | a=scenic_temporal_disjunction "implies" b=(scenic_temporal_prefix | scenic_temporal_disjunction) { s.ImpliesOp(a, b, LOCATIONS) }
    | scenic_temporal_disjunction

disjunction (memo):
    | a=conjunction b=('or' c=conjunction { c })+ { ast.BoolOp(op=ast.Or(), values=[a] + b, LOCATIONS) }
    | conjunction

scenic_temporal_disjunction (memo):
    | a=scenic_temporal_conjunction b=('or' c=(scenic_temporal_prefix | scenic_temporal_conjunction) { c })+ { ast.BoolOp(op=ast.Or(), values=[a] + b, LOCATIONS) }
    | scenic_temporal_conjunction

conjunction (memo):
    | a=inversion b=('and' c=inversion { c })+ { ast.BoolOp(op=ast.And(), values=[a] + b, LOCATIONS) }
    | inversion

scenic_temporal_conjunction (memo):
    | a=scenic_temporal_inversion b=('and' c=(scenic_temporal_prefix | scenic_temporal_inversion) { c })+ { ast.BoolOp(op=ast.And(), values=[a] + b, LOCATIONS) }
    | scenic_temporal_inversion

inversion (memo):
    # [SCENIC NOTE]: Fail `not visible <inversion>` to be handled later
    | 'not' !("visible" inversion) a=inversion { ast.UnaryOp(op=ast.Not(), operand=a, LOCATIONS) }
    | comparison

scenic_temporal_inversion (memo):
    # Fail `not visible <inversion>` to be handled later
    | 'not' !("visible" scenic_temporal_inversion) a=(scenic_temporal_prefix | scenic_temporal_inversion) { ast.UnaryOp(op=ast.Not(), operand=a, LOCATIONS) }
    | scenic_temporal_group
    | comparison

# Parsing temporal operators only inside "require" would require duplicating
# the entire rule hierarchy for expressions, since for example "always(X)" is a
# valid function call in ordinary Python but should be a temporal operator
# inside require. Instead, we only duplicate the boolean operators (above) and
# add the following rule which allows the introduction of parentheses without
# traversing all the way down to `atom`; the rule looks ahead for a binary
# temporal operator or the end of the parent expression in order to prevent
# matching expressions like "(X) > 5", which should be parsed by `comparison`
# instead. Invalid code like "(always(X)) > 5" is parsed as an ordinary
# expression (with a call to the "always" function) and caught in the compiler.
scenic_temporal_group: '(' a=scenic_temporal_expression ')' &('until' | 'or' | 'and' | ')' | ';' | NEWLINE) { a }

# Scenic instance creation
# ------------------------
scenic_new_expr: 'new' n=NAME ss=[scenic_specifiers] { s.New(className=n.string, specifiers=ss, LOCATIONS) }
scenic_specifiers: ss=','.scenic_specifier+ { ss }
scenic_specifier:
    | scenic_valid_specifier
    | invalid_scenic_specifier
scenic_valid_specifier:
    | 'with' p=NAME v=expression { s.WithSpecifier(prop=p.string, value=v, LOCATIONS) }
    | 'at' position=expression { s.AtSpecifier(position=position, LOCATIONS) }
    | "offset" 'by' o=expression { s.OffsetBySpecifier(offset=o, LOCATIONS) }
    | "offset" "along" d=expression 'by' o=expression { s.OffsetAlongSpecifier(direction=d, offset=o, LOCATIONS) }
    | direction=scenic_specifier_position_direction position=expression distance=['by' e=expression { e }] {
        s.DirectionOfSpecifier(direction=direction, position=position, distance=distance, LOCATIONS)
     }
    | "beyond" v=expression 'by' o=expression b=['from' a=expression {a}] { s.BeyondSpecifier(position=v, offset=o, base=b) }
    | "visible" b=['from' r=expression { r }] { s.VisibleSpecifier(base=b, LOCATIONS) }
    | 'not' "visible" b=['from' r=expression { r }] { s.NotVisibleSpecifier(base=b, LOCATIONS) }
    | 'in' r=expression { s.InSpecifier(region=r, LOCATIONS) }
    | 'on' r=expression { s.OnSpecifier(region=r, LOCATIONS) }
    | "contained" 'in' r=expression { s.ContainedInSpecifier(region=r, LOCATIONS) }
    | "following" f=expression b=['from' e=expression {e}] 'for' d=expression {
        s.FollowingSpecifier(field=f, distance=d, base=b, LOCATIONS)
     }
    | "facing" "toward" p=expression { s.FacingTowardSpecifier(position=p, LOCATIONS) }
    | "facing" "away" "from" p=expression { s.FacingAwayFromSpecifier(position=p, LOCATIONS) }
    | "facing" "directly" "toward" p=expression { s.FacingDirectlyTowardSpecifier(position=p, LOCATIONS) }
    | "facing" "directly" "away" "from" p=expression { s.FacingDirectlyAwayFromSpecifier(position=p, LOCATIONS) }
    | "facing" h=expression { s.FacingSpecifier(heading=h, LOCATIONS) }
    | "apparently" "facing" h=expression v=['from' a=expression { a }] {
        s.ApparentlyFacingSpecifier(heading=h, base=v, LOCATIONS)
     }

scenic_specifier_position_direction:
    | "left" "of" { s.LeftOf(LOCATIONS) }
    | "right" "of" { s.RightOf(LOCATIONS) }
    | "ahead" "of" { s.AheadOf(LOCATIONS) }
    | "behind" { s.Behind(LOCATIONS) }
    | "above" {s.Above(LOCATIONS)}
    | "below" {s.Below(LOCATIONS)}

# Comparisons operators
# ---------------------

comparison:
    | a=bitwise_or b=compare_op_bitwise_or_pair+ {
        ast.Compare(left=a, ops=self.get_comparison_ops(b), comparators=self.get_comparators(b), LOCATIONS)
     }
    | bitwise_or

# Make a tuple of operator and comparator
compare_op_bitwise_or_pair:
    | eq_bitwise_or
    | noteq_bitwise_or
    | lte_bitwise_or
    | lt_bitwise_or
    | gte_bitwise_or
    | gt_bitwise_or
    | notin_bitwise_or
    | in_bitwise_or
    | isnot_bitwise_or
    | is_bitwise_or

eq_bitwise_or: '==' a=bitwise_or { (ast.Eq(), a) }
# Do not support the Barry as BDFL <> for not eq
noteq_bitwise_or[tuple]:
    | '!=' a=bitwise_or { (ast.NotEq(), a) }
lte_bitwise_or: '<=' a=bitwise_or { (ast.LtE(), a) }
lt_bitwise_or: '<' a=bitwise_or { (ast.Lt(), a) }
gte_bitwise_or: '>=' a=bitwise_or { (ast.GtE(), a) }
gt_bitwise_or: '>' a=bitwise_or { (ast.Gt(), a) }
notin_bitwise_or: 'not' 'in' a=bitwise_or { (ast.NotIn(), a) }
in_bitwise_or: 'in' a=bitwise_or { (ast.In(), a) }
isnot_bitwise_or: 'is' 'not' a=bitwise_or { (ast.IsNot(), a) }
is_bitwise_or: 'is' a=bitwise_or { (ast.Is(), a) }

# Logical operators
# -----------------

bitwise_or:
    | scenic_visible_from
    | scenic_not_visible_from
    | scenic_can_see
    | scenic_intersects
    | a=bitwise_or '|' b=bitwise_xor { ast.BinOp(left=a, op=ast.BitOr(), right=b, LOCATIONS) }
    | bitwise_xor

scenic_visible_from: a=bitwise_or "visible" 'from' b=bitwise_xor { s.VisibleFromOp(region=a, base=b, LOCATIONS) }

scenic_not_visible_from: a=bitwise_or "not" "visible" 'from' b=bitwise_xor { s.NotVisibleFromOp(region=a, base=b, LOCATIONS) }

scenic_can_see: a=bitwise_or "can" "see" b=bitwise_xor { s.CanSeeOp(left=a, right=b, LOCATIONS) }

scenic_intersects: a=bitwise_or "intersects" b=bitwise_xor { s.IntersectsOp(left=a, right=b, LOCATIONS) }

bitwise_xor:
    | scenic_offset_along
    | a=bitwise_xor '^' b=bitwise_and { ast.BinOp(left=a, op=ast.BitXor(), right=b, LOCATIONS) }
    | bitwise_and

scenic_offset_along: a=bitwise_xor "offset" "along" b=bitwise_xor 'by' c=bitwise_and { s.OffsetAlongOp(base=a, direction=b, offset=c, LOCATIONS) }

bitwise_and:
    | scenic_relative_to
    | a=bitwise_and '&' b=shift_expr { ast.BinOp(left=a, op=ast.BitAnd(), right=b, LOCATIONS) }
    | shift_expr

scenic_relative_to: a=bitwise_and ("relative" 'to' | "offset" 'by') b=shift_expr { s.RelativeToOp(left=a, right=b, LOCATIONS) }

shift_expr:
    | scenic_at
    | a=shift_expr '<<' b=sum { ast.BinOp(left=a, op=ast.LShift(), right=b, LOCATIONS) }
    | a=shift_expr '>>' b=sum { ast.BinOp(left=a, op=ast.RShift(), right=b, LOCATIONS) }
    | scenic_prefix_operators

scenic_at: a=shift_expr 'at' b=sum { s.FieldAtOp(left=a, right=b, LOCATIONS) }

# Scenic prefix operators
# -----------------------
scenic_prefix_operators:
    # relative position of
    | "relative" "position" "of" e1=expression 'from' e2=scenic_prefix_operators { s.RelativePositionOp(target=e1, base=e2, LOCATIONS) }
    | "relative" "position" "of" e1=scenic_prefix_operators { s.RelativePositionOp(target=e1, LOCATIONS) }
    # relative heading of
    | "relative" "heading" "of" e1=expression 'from' e2=scenic_prefix_operators { s.RelativeHeadingOp(target=e1, base=e2, LOCATIONS) }
    | "relative" "heading" "of" e1=scenic_prefix_operators { s.RelativeHeadingOp(target=e1, LOCATIONS) }
    # apparent heading of
    | "apparent" "heading" "of" e1=expression 'from' e2=scenic_prefix_operators { s.ApparentHeadingOp(target=e1, base=e2, LOCATIONS) }
    | "apparent" "heading" "of" e1=scenic_prefix_operators { s.ApparentHeadingOp(target=e1, LOCATIONS) }
    # distance from/to
    | &"distance" scenic_distance_from_op
    # distance past
    | "distance" "past" e1=expression 'of' e2=scenic_prefix_operators { s.DistancePastOp(target=e1, base=e2, LOCATIONS) }
    | "distance" "past" e1=scenic_prefix_operators { s.DistancePastOp(target=e1, LOCATIONS) }
    # angle from/to
    | &"angle" scenic_angle_from_op
    # altitude from/to
    | &"altitude" scenic_altitude_from_op
    | "follow" e1=expression 'from' e2=expression 'for' e3=scenic_prefix_operators { s.FollowOp(target=e1, base=e2, distance=e3, LOCATIONS) }
    | "visible" e=scenic_prefix_operators { s.VisibleOp(region=e, LOCATIONS) }
    | 'not' "visible" e=scenic_prefix_operators { s.NotVisibleOp(region=e, LOCATIONS) }
    | p=scenic_position_of_op_position 'of' e=scenic_prefix_operators { s.PositionOfOp(position=p, target=e, LOCATIONS) }
    | sum

scenic_distance_from_op:
    | "distance" 'from' e1=expression 'to' e2=scenic_prefix_operators { s.DistanceFromOp(target=e1, base=e2, LOCATIONS) }
    | "distance" 'to' e1=expression 'from' e2=scenic_prefix_operators { s.DistanceFromOp(target=e1, base=e2, LOCATIONS) }
    | "distance" ('to'|'from') e1=scenic_prefix_operators { s.DistanceFromOp(target=e1, LOCATIONS) }

scenic_angle_from_op:
    | "angle" 'from' e1=expression 'to' e2=scenic_prefix_operators { s.AngleFromOp(base=e1, target=e2, LOCATIONS) }
    | "angle" 'to' e1=expression 'from' e2=scenic_prefix_operators { s.AngleFromOp(target=e1, base=e2, LOCATIONS) }
    | "angle" 'to' e1=scenic_prefix_operators { s.AngleFromOp(target=e1, LOCATIONS) }
    | "angle" 'from' e1=scenic_prefix_operators { s.AngleFromOp(base=e1, LOCATIONS) }

scenic_altitude_from_op:
    | "altitude" 'from' e1=expression 'to' e2=scenic_prefix_operators { s.AltitudeFromOp(base=e1, target=e2, LOCATIONS) }
    | "altitude" 'to' e1=expression 'from' e2=scenic_prefix_operators { s.AltitudeFromOp(target=e1, base=e2, LOCATIONS) }
    | "altitude" 'to' e1=scenic_prefix_operators { s.AltitudeFromOp(target=e1, LOCATIONS) }
    | "altitude" 'from' e1=scenic_prefix_operators { s.AltitudeFromOp(base=e1, LOCATIONS) }

scenic_position_of_op_position:
    | "top" "front" "left" { s.TopFrontLeft(LOCATIONS) }
    | "top" "front" "right" { s.TopFrontRight(LOCATIONS) }
    | "top" "back" "left" { s.TopBackLeft(LOCATIONS) }
    | "top" "back" "right" { s.TopBackRight(LOCATIONS) }
    | "bottom" "front" "left" { s.BottomFrontLeft(LOCATIONS) }
    | "bottom" "front" "right" { s.BottomFrontRight(LOCATIONS) }
    | "bottom" "back" "left" { s.BottomBackLeft(LOCATIONS) }
    | "bottom" "back" "right" { s.BottomBackRight(LOCATIONS) }
    | "front" "left" { s.FrontLeft(LOCATIONS) }
    | "front" "right" { s.FrontRight(LOCATIONS) }
    | "back" "left" { s.BackLeft(LOCATIONS) }
    | "back" "right" { s.BackRight(LOCATIONS) }
    | "front" { s.Front(LOCATIONS) }
    | "back" { s.Back(LOCATIONS) }
    | "left" { s.Left(LOCATIONS) }
    | "right" { s.Right(LOCATIONS) }
    | "top" { s.Top(LOCATIONS) }
    | "bottom" { s.Bottom(LOCATIONS) }

# Arithmetic operators
# --------------------

sum:
    | a=sum '+' b=term { ast.BinOp(left=a, op=ast.Add(), right=b, LOCATIONS) }
    | a=sum '-' b=term { ast.BinOp(left=a, op=ast.Sub(), right=b, LOCATIONS) }
    | term

term:
    | scenic_vector
    | scenic_deg
    | a=term '*' b=factor { ast.BinOp(left=a, op=ast.Mult(), right=b, LOCATIONS) }
    | a=term '/' b=factor { ast.BinOp(left=a, op=ast.Div(), right=b, LOCATIONS) }
    | a=term '//' b=factor { ast.BinOp(left=a, op=ast.FloorDiv(), right=b, LOCATIONS) }
    | a=term '%' b=factor { ast.BinOp(left=a, op=ast.Mod(), right=b, LOCATIONS) }
    | a=term '@' b=factor {
        self.check_version((3, 5), "The '@' operator is", ast.BinOp(left=a, op=ast.MatMult(), right=b, LOCATIONS))
     }
    | factor

scenic_vector: a=term '@' b=factor { s.VectorOp(left=a, right=b, LOCATIONS) }
scenic_deg: a=term "deg" { s.DegOp(operand=a, LOCATIONS) }

factor (memo):
    | '+' a=factor { ast.UnaryOp(op=ast.UAdd(), operand=a, LOCATIONS) }
    | '-' a=factor { ast.UnaryOp(op=ast.USub(), operand=a, LOCATIONS) }
    | '~' a=factor { ast.UnaryOp(op=ast.Invert(), operand=a, LOCATIONS) }
    | power

power:
    | a=await_primary '**' b=factor { ast.BinOp(left=a, op=ast.Pow(), right=b, LOCATIONS) }
    | scenic_new

scenic_new:
    | scenic_new_expr
    | await_primary

# Primary elements
# ----------------

# Primary elements are things like "obj.something.something", "obj[something]", "obj(something)", "obj" ...

await_primary (memo):
    | 'await' a=primary { self.check_version((3, 5), "Await expressions are", ast.Await(a, LOCATIONS)) }
    | primary

primary:
    | a=primary '.' b=NAME { ast.Attribute(value=a, attr=b.string, ctx=Load, LOCATIONS) }
    | a=primary b=genexp { ast.Call(func=a, args=[b], keywords=[], LOCATIONS) }
    | a=primary '(' b=[arguments] ')' {
        ast.Call(
            func=a,
            args=b[0] if b else [],
            keywords=b[1] if b else [],
            LOCATIONS,
        )
     }
    | a=primary '[' b=slices ']' { ast.Subscript(value=a, slice=b, ctx=Load, LOCATIONS) }
    | atom

slices:
    | a=slice !',' { a }
    | a=','.(slice | starred_expression)+ [','] {
        ast.Tuple(elts=a, ctx=Load, LOCATIONS)
        if sys.version_info >= (3, 9) else
        (
            ast.ExtSlice(dims=a, LOCATIONS)
            if any(isinstance(e, ast.Slice) for e in a) else
            ast.Index(value=ast.Tuple(elts=[e.value for e in a], ctx=Load, LOCATIONS), LOCATIONS)
        )
     }

slice:
    | a=[expression] ':' b=[expression] c=[':' d=[expression] { d }] {
        ast.Slice(lower=a, upper=b, step=c, LOCATIONS)
     }
    | a=named_expression {
        a
        if sys.version_info >= (3, 9) or isinstance(a, ast.Slice) else
        ast.Index(
            value=a,
            lineno=a.lineno,
            col_offset=a.col_offset,
            end_lineno=a.end_lineno,
            end_col_offset=a.end_col_offset
        )
     }

atom:
    | "initial" "scenario" { s.InitialScenario(LOCATIONS) }
    | a=NAME { ast.Name(id=a.string, ctx=Load, LOCATIONS) }
    | 'True' {
        ast.Constant(value=True, LOCATIONS)
        if sys.version_info >= (3, 9) else
        ast.Constant(value=True, kind=None, LOCATIONS)
     }
    | 'False' {
        ast.Constant(value=False, LOCATIONS)
        if sys.version_info >= (3, 9) else
        ast.Constant(value=False, kind=None, LOCATIONS)
     }
    | 'None' {
        ast.Constant(value=None, LOCATIONS)
        if sys.version_info >= (3, 9) else
        ast.Constant(value=None, kind=None, LOCATIONS)
     }
    | &(STRING|FSTRING_START) strings
    | a=NUMBER {
        ast.Constant(value=ast.literal_eval(a.string), LOCATIONS)
        if sys.version_info >= (3, 9) else
        ast.Constant(value=ast.literal_eval(a.string), kind=None, LOCATIONS)
     }
    | &'(' (tuple | group | genexp)
    | &'[' (list | listcomp)
    | &'{' (dict | set | dictcomp | setcomp)
    | '...' {
        ast.Constant(value=Ellipsis, LOCATIONS)
        if sys.version_info >= (3, 9) else
        ast.Constant(value=Ellipsis, kind=None, LOCATIONS)
     }

group:
    | '(' a=(yield_expr | named_expression) ')' { a }
    | invalid_group


# Lambda functions
# ----------------

lambdef:
    | 'lambda' a=[lambda_params] ':' b=expression {
        ast.Lambda(args=a or self.make_arguments(None, [], None, [], (None, [], None)), body=b, LOCATIONS)
     }

lambda_params:
    | invalid_lambda_parameters
    | lambda_parameters

# lambda_parameters etc. duplicates parameters but without annotations
# or type comments, and if there's no comma after a parameter, we expect
# a colon, not a close parenthesis.  (For more, see parameters above.)
#
lambda_parameters[ast.arguments]:
    | a=lambda_slash_no_default b=lambda_param_no_default* c=lambda_param_with_default* d=[lambda_star_etc] {
        self.make_arguments(a, [], b, c, d)
     }
    | a=lambda_slash_with_default b=lambda_param_with_default* c=[lambda_star_etc] {
        self.make_arguments(None, a, None, b, c)
     }
    | a=lambda_param_no_default+ b=lambda_param_with_default* c=[lambda_star_etc] {
        self.make_arguments(None, [], a, b, c)
     }
    | a=lambda_param_with_default+ b=[lambda_star_etc] {
        self.make_arguments(None, [], None, a, b)
     }
    | a=lambda_star_etc { self.make_arguments(None, [], None, [], a) }

lambda_slash_no_default[List[Tuple[ast.arg, None]]]:
    | a=lambda_param_no_default+ '/' ',' { [(p, None) for p in a] }
    | a=lambda_param_no_default+ '/' &':' { [(p, None) for p in a] }

lambda_slash_with_default[List[Tuple[ast.arg, Any]]]:
    | a=lambda_param_no_default* b=lambda_param_with_default+ '/' ',' { ([(p, None) for p in a] if a else []) + b }
    | a=lambda_param_no_default* b=lambda_param_with_default+ '/' &':' { ([(p, None) for p in a] if a else []) + b }

lambda_star_etc[Tuple[Optional[ast.arg], List[Tuple[ast.arg, Any]], Optional[ast.arg]]]:
    | invalid_lambda_star_etc
    | '*' a=lambda_param_no_default b=lambda_param_maybe_default* c=[lambda_kwds] {
       (a, b, c) }
    | '*' ',' b=lambda_param_maybe_default+ c=[lambda_kwds] {
        (None, b, c) }
    | a=lambda_kwds { (None, [], a) }

lambda_kwds[ast.arg]:
    | invalid_lambda_kwds
    | '**' a=lambda_param_no_default { a }

lambda_param_no_default[ast.arg]:
    | a=lambda_param ',' { a }
    | a=lambda_param &':' { a }

lambda_param_with_default[Tuple[ast.arg, Any]]:
    | a=lambda_param c=default ',' { (a, c) }
    | a=lambda_param c=default &':' { (a, c) }
lambda_param_maybe_default[Tuple[ast.arg, Any]]:
    | a=lambda_param c=default? ',' { (a, c) }
    | a=lambda_param c=default? &':' { (a, c) }
lambda_param[ast.arg]: a=NAME {
    ast.arg(arg=a.string, annotation=None, LOCATIONS)
    if sys.version_info >= (3, 9) else
    ast.arg(arg=a.string, annotation=None, type_comment=None, LOCATIONS)
}

# SCENIC STATEMENTS
# =================

scenic_model_stmt:
    | "model" a=dotted_name { s.Model(name=a, LOCATIONS) }

scenic_tracked_assignment:
    | a=scenic_tracked_name '=' b=expression { s.TrackedAssign(target=a, value=b, LOCATIONS) }
scenic_tracked_name:
    | "ego" { s.Ego(LOCATIONS) }
    | "workspace" { s.Workspace(LOCATIONS) }

scenic_param_stmt:
    | "param" elts=(','.scenic_param_stmt_param+) { s.Param(elts=elts, LOCATIONS) }
scenic_param_stmt_param: name=scenic_param_stmt_id '=' e=expression { s.parameter(name, e, LOCATIONS) }
scenic_param_stmt_id:
    | a=NAME { a.string }
    | a=STRING { a.string[1:-1] } # strip quotes

scenic_require_stmt:
    | 'require' "monitor" e=expression n=['as' scenic_require_stmt_name] {
        s.RequireMonitor(monitor=e, name=n, LOCATIONS)
     }
    | invalid_scenic_require_prob
    | 'require' p=['[' a=NUMBER ']' { float(a.string) }] e=scenic_temporal_expression n=['as' a=scenic_require_stmt_name { a }] {
        s.Require(cond=e, prob=p, name=n, LOCATIONS)
     }
scenic_require_stmt_name:
    | a=(NAME | NUMBER) { a.string }
    | a=STRING { a.string[1:-1] }

scenic_record_stmt:
    | "record" e=expression n=['as' a=scenic_require_stmt_name { a }] {
        s.Record(value=e, name=n, LOCATIONS)
     }

scenic_record_initial_stmt:
    | "record" "initial" e=expression n=['as' a=scenic_require_stmt_name { a }] {
        s.RecordInitial(value=e, name=n, LOCATIONS)
     }

scenic_record_final_stmt:
    | "record" "final" e=expression n=['as' a=scenic_require_stmt_name { a }] {
        s.RecordFinal(value=e, name=n, LOCATIONS)
     }

scenic_mutate_stmt:
    | "mutate" elts=[(','.scenic_mutate_stmt_id+)] scale=['by' x=expression {x}] {
        s.Mutate(elts=elts if elts is not None else [], scale=scale, LOCATIONS)
     }
scenic_mutate_stmt_id: a=NAME { ast.Name(id=a.string, ctx=Load, LOCATIONS) }

scenic_abort_stmt: "abort" { s.Abort(LOCATIONS) }

scenic_take_stmt: "take" elts=(','.expression+) { s.Take(elts=elts, LOCATIONS) }

scenic_wait_stmt: "wait" { s.Wait(LOCATIONS) }

scenic_terminate_simulation_when_stmt: "terminate" "simulation" "when" v=expression n=['as' a=scenic_require_stmt_name { a }] { s.TerminateSimulationWhen(v, name=n, LOCATIONS) }

scenic_terminate_when_stmt: "terminate" "when" v=expression n=['as' a=scenic_require_stmt_name { a }] { s.TerminateWhen(v, name=n, LOCATIONS) }

scenic_terminate_after_stmt: "terminate" "after" v=scenic_dynamic_duration { s.TerminateAfter(v, LOCATIONS) }

scenic_terminate_simulation_stmt: "terminate" "simulation" { s.TerminateSimulation(LOCATIONS) }

scenic_terminate_stmt: "terminate" { s.Terminate(LOCATIONS) }

scenic_do_choose_stmt: 'do' "choose" e=(','.expression+) { s.DoChoose(e, LOCATIONS) }

scenic_do_shuffle_stmt: 'do' "shuffle" e=(','.expression+) { s.DoShuffle(e, LOCATIONS) }

scenic_do_for_stmt: 'do' e=(','.expression+) 'for' u=scenic_dynamic_duration { s.DoFor(elts=e, duration=u, LOCATIONS) }
scenic_dynamic_duration:
    | v=expression "seconds" { s.Seconds(v, LOCATIONS) }
    | v=expression "steps" { s.Steps(v, LOCATIONS) }
    | invalid_scenic_dynamic_duration

# FIXME: Is this the right way to resolve ambiguity in `do A until B until X`?
scenic_do_until_stmt: 'do' e=(','.disjunction+) 'until' cond=expression { s.DoUntil(elts=e, cond=cond, LOCATIONS) }

scenic_do_stmt: 'do' e=(','.expression+) { s.Do(elts=e, LOCATIONS) }

scenic_simulator_stmt: "simulator" e=expression { s.Simulator(value=e, LOCATIONS) }

# LITERALS
# ========

fstring_mid:
    | fstring_replacement_field
    | t=FSTRING_MIDDLE { ast.Constant(value=t.string, LOCATIONS) }
fstring_replacement_field:
    | '{' a=(yield_expr | star_expressions) debug_expr="="? conversion=[fstring_conversion] format=[fstring_full_format_spec] rbrace='}' {
        ast.FormattedValue(
            value=a,
            conversion=(
                conversion.decode()[0]
                if conversion else
                (b'r'[0] if debug_expr else -1)
            ),
            format_spec=format,
            LOCATIONS
        )
     }
    | invalid_replacement_field
fstring_conversion[int]:
    | conv_token="!" conv=NAME { self.check_fstring_conversion(conv_token, conv) }
fstring_full_format_spec:
    | ':' spec=fstring_format_spec* {
        ast.JoinedStr(
            values=spec if spec and (len(spec) > 1 or spec[0].value) else [],
            LOCATIONS,
        )
     }
fstring_format_spec:
    | t=FSTRING_MIDDLE { ast.Constant(value=t.string, LOCATIONS) }
    | fstring_replacement_field
fstring:
    | a=FSTRING_START b=fstring_mid* c=FSTRING_END {
        ast.JoinedStr(values=b, LOCATIONS)
     }

strings (memo): a=(fstring|STRING)+ {
    self.concatenate_strings(a) if sys.version_info >= (3, 12) else self.generate_ast_for_string(a)
 }


list[ast.List]:
    | '[' a=[star_named_expressions] ']' { ast.List(elts=a or [], ctx=Load, LOCATIONS) }
    | a='**' expression '=' b=expression {
        self.raise_syntax_error_known_range(
            "cannot assign to keyword argument unpacking", a, b
        )
     }


tuple[ast.Tuple]:
    | '(' a=[y=star_named_expression ',' z=[star_named_expressions] { [y] + (z or []) } ] ')' {
        ast.Tuple(elts=a or [], ctx=Load, LOCATIONS)
     }

set[ast.Set]: '{' a=star_named_expressions '}' { ast.Set(elts=a, LOCATIONS) }

# Dicts
# -----

dict[ast.Dict]:
    | '{' a=[double_starred_kvpairs] '}' {
        ast.Dict(keys=[kv[0] for kv in (a or [])], values=[kv[1] for kv in (a or [])], LOCATIONS)
     }
    | '{' invalid_double_starred_kvpairs '}'

double_starred_kvpairs[list]: a=','.double_starred_kvpair+ [','] { a }

double_starred_kvpair:
    | '**' a=bitwise_or { (None, a) }
    | kvpair

kvpair[tuple]: a=expression ':' b=expression { (a, b) }

# Comprehensions & Generators
# ---------------------------

for_if_clauses[List[ast.comprehension]]:
    | a=for_if_clause+ { a }

for_if_clause[ast.comprehension]:
    | 'async' 'for' a=star_targets 'in' ~ b=disjunction c=('if' z=disjunction { z })* {
        self.check_version(
            (3, 6),
            "Async comprehensions are",
            ast.comprehension(target=a, iter=b, ifs=c, is_async=1)
        )
     }
    | 'for' a=star_targets 'in' ~ b=disjunction c=('if' z=disjunction { z })* {
       ast.comprehension(target=a, iter=b, ifs=c, is_async=0) }
    | invalid_for_target

listcomp[ast.ListComp]:
    | '[' a=named_expression b=for_if_clauses ']' { ast.ListComp(elt=a, generators=b, LOCATIONS) }
    | invalid_comprehension

setcomp[ast.SetComp]:
    | '{' a=named_expression b=for_if_clauses '}' { ast.SetComp(elt=a, generators=b, LOCATIONS) }
    | invalid_comprehension

genexp[ast.GeneratorExp]:
    | '(' a=( assignment_expression | expression !':=') b=for_if_clauses ')' {
        ast.GeneratorExp(elt=a, generators=b, LOCATIONS)
     }
    | invalid_comprehension

dictcomp[ast.DictComp]:
    | '{' a=kvpair b=for_if_clauses '}' { ast.DictComp(key=a[0], value=a[1], generators=b, LOCATIONS) }
    | invalid_dict_comprehension

# FUNCTION CALL ARGUMENTS
# =======================

arguments[Tuple[list, list]] (memo):
    | a=args [','] &')' { a }
    | invalid_arguments

args[Tuple[list, list]]:
    | a=','.(starred_expression | ( assignment_expression | expression !':=') !'=')+ b=[',' k=kwargs {k}] {
        (a + ([e for e in b if isinstance(e, ast.Starred)] if b else []),
         ([e for e in b if not isinstance(e, ast.Starred)] if b else [])
        )
     }
    | a=kwargs {
        ([e for e in a if isinstance(e, ast.Starred)],
         [e for e in a if not isinstance(e, ast.Starred)])
    }

kwargs[list]:
    | a=','.kwarg_or_starred+ ',' b=','.kwarg_or_double_starred+ { a + b }
    | ','.kwarg_or_starred+
    | ','.kwarg_or_double_starred+

starred_expression:
    | invalid_starred_expression
    | '*' a=expression { ast.Starred(value=a, ctx=Load, LOCATIONS) }

kwarg_or_starred:
    | invalid_kwarg
    | a=NAME '=' b=expression { ast.keyword(arg=a.string, value=b, LOCATIONS) }
    | a=starred_expression { a }

kwarg_or_double_starred:
    | invalid_kwarg
    | a=NAME '=' b=expression { ast.keyword(arg=a.string, value=b, LOCATIONS) }   # XXX Unreachable
    | '**' a=expression { ast.keyword(arg=None, value=a, LOCATIONS) }

# ASSIGNMENT TARGETS
# ==================

# Generic targets
# ---------------

# NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:
    | a=star_target !',' { a }
    | a=star_target b=(',' c=star_target { c })* [','] {
        ast.Tuple(elts=[a] + b, ctx=Store, LOCATIONS)
     }

star_targets_list_seq[list]: a=','.star_target+ [','] { a }

star_targets_tuple_seq[list]:
    | a=star_target b=(',' c=star_target { c })+ [','] { [a] + b }
    | a=star_target ',' { [a] }

star_target (memo):
    | '*' a=(!'*' star_target) {
        ast.Starred(value=self.set_expr_context(a, Store), ctx=Store, LOCATIONS)
     }
    | target_with_star_atom

target_with_star_atom (memo):
    | a=t_primary '.' b=NAME !t_lookahead { ast.Attribute(value=a, attr=b.string, ctx=Store, LOCATIONS) }
    | a=t_primary '[' b=slices ']' !t_lookahead { ast.Subscript(value=a, slice=b, ctx=Store, LOCATIONS) }
    | star_atom

star_atom:
    | a=NAME { ast.Name(id=a.string, ctx=Store, LOCATIONS) }
    | '(' a=target_with_star_atom ')' { self.set_expr_context(a, Store) }
    | '(' a=[star_targets_tuple_seq] ')' { ast.Tuple(elts=a, ctx=Store, LOCATIONS) }
    | '[' a=[star_targets_list_seq] ']' {  ast.List(elts=a, ctx=Store, LOCATIONS) }

single_target:
    | single_subscript_attribute_target
    | a=NAME { ast.Name(id=a.string, ctx=Store, LOCATIONS) }
    | '(' a=single_target ')' { a }

single_subscript_attribute_target:
    | a=t_primary '.' b=NAME !t_lookahead { ast.Attribute(value=a, attr=b.string, ctx=Store, LOCATIONS) }
    | a=t_primary '[' b=slices ']' !t_lookahead { ast.Subscript(value=a, slice=b, ctx=Store, LOCATIONS) }


t_primary:
    | a=t_primary '.' b=NAME &t_lookahead { ast.Attribute(value=a, attr=b.string, ctx=Load, LOCATIONS) }
    | a=t_primary '[' b=slices ']' &t_lookahead { ast.Subscript(value=a, slice=b, ctx=Load, LOCATIONS) }
    | a=t_primary b=genexp &t_lookahead { ast.Call(func=a, args=[b], keywords=[], LOCATIONS) }
    | a=t_primary '(' b=[arguments] ')' &t_lookahead {
        ast.Call(
            func=a,
            args=b[0] if b else [],
            keywords=b[1] if b else [],
            LOCATIONS,
        )
     }
    | a=atom &t_lookahead { a }

t_lookahead: '(' | '[' | '.'

# Targets for del statements
# --------------------------

del_targets: a=','.del_target+ [','] { a }

del_target (memo):
    | a=t_primary '.' b=NAME !t_lookahead { ast.Attribute(value=a, attr=b.string, ctx=Del, LOCATIONS) }
    | a=t_primary '[' b=slices ']' !t_lookahead { ast.Subscript(value=a, slice=b, ctx=Del, LOCATIONS) }
    | del_t_atom

del_t_atom:
    | a=NAME { ast.Name(id=a.string, ctx=Del, LOCATIONS) }
    | '(' a=del_target ')' { self.set_expr_context(a, Del) }
    | '(' a=[del_targets] ')' { ast.Tuple(elts=a, ctx=Del, LOCATIONS) }
    | '[' a=[del_targets] ']' { ast.List(elts=a, ctx=Del, LOCATIONS) }


# TYPING ELEMENTS
# ---------------

# type_expressions allow */** but ignore them
type_expressions[list]:
    | a=','.expression+ ',' '*' b=expression ',' '**' c=expression { a + [b, c] }
    | a=','.expression+ ',' '*' b=expression { a + [b] }
    | a=','.expression+ ',' '**' b=expression { a + [b] }
    | '*' a=expression ',' '**' b=expression { [a, b] }
    | '*' a=expression { [a] }
    | '**' a=expression { [a] }
    | a=','.expression+ {a}

func_type_comment:
    | NEWLINE t=TYPE_COMMENT &(NEWLINE INDENT) { t.string }  # Must be followed by indented block
    | invalid_double_type_comments
    | TYPE_COMMENT

# ========================= END OF THE GRAMMAR ===========================



# ========================= START OF INVALID RULES =======================

# From here on, there are rules for invalid syntax with specialised error messages
invalid_arguments[NoReturn]:
    | a=args ',' '*' {
        self.raise_syntax_error_known_location(
            "iterable argument unpacking follows keyword argument unpacking",
            a[1][-1] if a[1] else a[0][-1],
        )
     }
    | a=expression b=for_if_clauses ',' [args | expression for_if_clauses] {
        self.raise_syntax_error_known_range(
            "Generator expression must be parenthesized",
            a,
            (b[-1].ifs[-1] if b[-1].ifs else b[-1].iter)
        )
     }
    | a=NAME b='=' expression for_if_clauses {
        self.raise_syntax_error_known_range(
            "invalid syntax. Maybe you meant '==' or ':=' instead of '='?", a, b
        )
     }
    | (args ',')? a=NAME b='=' &(',' | ')') {
        self.raise_syntax_error_known_range("expected argument value expression", a, b)
     }
    | a=args b=for_if_clauses {
        self.raise_syntax_error_known_range(
            "Generator expression must be parenthesized",
            a[0][-1],
            (b[-1].ifs[-1] if b[-1].ifs else b[-1].iter),
        ) if len(a[0]) > 1 else None
     }
    | args ',' a=expression b=for_if_clauses {
        self.raise_syntax_error_known_range(
            "Generator expression must be parenthesized",
            a,
            (b[-1].ifs[-1] if b[-1].ifs else b[-1].iter),
        )
     }
    | a=args ',' args {
        self.raise_syntax_error(
            "positional argument follows keyword argument unpacking"
            if a[1][-1].arg is None else
            "positional argument follows keyword argument",
        )
     }
invalid_kwarg[NoReturn]:
    | a=('True'|'False'|'None') b='=' {
        self.raise_syntax_error_known_range(f"cannot assign to {a.string}", a, b)
     }
    | a=NAME b='=' expression for_if_clauses {
        self.raise_syntax_error_known_range(
            "invalid syntax. Maybe you meant '==' or ':=' instead of '='?", a, b
        )
     }
    | !(NAME '=') a=expression b='=' {
        self.raise_syntax_error_known_range(
            "expression cannot contain assignment, perhaps you meant \"==\"?", a, b,
        )
     }

invalid_scenic_instance_creation[NoReturn]:
    | n=NAME s=scenic_valid_specifier {
        self.raise_syntax_error_known_range("invalid syntax. Perhaps you forgot 'new'?", n, s)
    }
invalid_scenic_specifier[NoReturn]:
    | n=NAME {
        self.raise_syntax_error_known_location("invalid specifier.", n)
    }

expression_without_invalid[ast.AST]:
    | a=disjunction 'if' b=disjunction 'else' c=expression { ast.IfExp(body=b, test=a, orelse=c, LOCATIONS) }
    | disjunction
    | lambdef
invalid_legacy_expression:
    | a=NAME !'(' b=star_expressions {
        self.raise_syntax_error_known_range(
            f"Missing parentheses in call to '{a.string}' . Did you mean {a.string}(...)?", a, b,
        ) if a.string in ("exec", "print") else
        None
     }
invalid_expression[NoReturn]:
    # !(NAME STRING) is not matched so we don't show this error with some invalid string prefixes like: kf"dsfsdf"
    # Soft keywords need to also be ignored because they can be parsed as NAME NAME
    # Soft keywords can follow a disjunction to support expressions like `3 steps`
    | !(NAME STRING | SOFT_KEYWORD) a=disjunction !SOFT_KEYWORD b=expression_without_invalid {
        (
            self.raise_syntax_error_known_range("invalid syntax. Perhaps you forgot a comma?", a, b)
            if not isinstance(a, ast.Name) or a.id not in ("print", "exec")
            else None
        )
     }
    | a=disjunction 'if' b=disjunction !('else'|':') {
        self.raise_syntax_error_known_range("expected 'else' after 'if' expression", a, b)
     }
    | a='lambda' [lambda_params] b=':' &(FSTRING_MIDDLE | fstring_replacement_field)  {
        self.raise_syntax_error_known_range(
            "f-string: lambda expressions are not allowed without parentheses", a, b
        )
     }
invalid_named_expression[NoReturn]:
    | a=expression ':=' expression {
        self.raise_syntax_error_known_location(
            f"cannot use assignment expressions with {self.get_expr_name(a)}", a
        )
     }
    # Use in_raw_rule
    | a=NAME '=' b=bitwise_or !('='|':=') {
        (
            None
            if self.in_recursive_rule else
            self.raise_syntax_error_known_range(
                "invalid syntax. Maybe you meant '==' or ':=' instead of '='?", a, b
            )
        )
     }
    | !(list|tuple|genexp|'True'|'None'|'False') a=bitwise_or b='=' bitwise_or !('='|':=') {
        (
            None
            if self.in_recursive_rule else
            self.raise_syntax_error_known_location(
                f"cannot assign to {self.get_expr_name(a)} here. Maybe you meant '==' instead of '='?", a
            )
        )
     }

invalid_scenic_until[NoReturn]:
    | a=scenic_temporal_disjunction 'until' scenic_implication {
        self.raise_syntax_error_known_location(
            f"`until` must take exactly two operands", a
        )
     }

invalid_scenic_implication[NoReturn]:
    | a=scenic_until "implies" scenic_implication {
        self.raise_syntax_error_known_location(
            f"`implies` must take exactly two operands", a
        )
     }

invalid_scenic_require_prob[NoReturn]:
    | 'require' '[' !(NUMBER ']') p=expression ']' scenic_temporal_expression ['as' scenic_require_stmt_name] {
        self.raise_syntax_error_known_location(
            f"'require' probability must be a constant", p
        )
     }

invalid_scenic_dynamic_duration[NoReturn]: e=expression {
    self.raise_syntax_error_known_location(
        "duration must specify a unit (seconds or steps)", e
    )
}

invalid_assignment[NoReturn]:
    | a=invalid_ann_assign_target ':' expression {
        self.raise_syntax_error_known_location(
            f"only single target (not {self.get_expr_name(a)}) can be annotated", a
        )
     }
    | a=star_named_expression ',' star_named_expressions* ':' expression {
        self.raise_syntax_error_known_location("only single target (not tuple) can be annotated", a) }
    | a=expression ':' expression {
        self.raise_syntax_error_known_location("illegal target for annotation", a) }
    | (star_targets '=')* a=star_expressions '=' {
        self.raise_syntax_error_invalid_target(Target.STAR_TARGETS, a)
     }
    | (star_targets '=')* a=yield_expr '=' {
        self.raise_syntax_error_known_location("assignment to yield expression not possible", a)
     }
    | a=star_expressions augassign (yield_expr | star_expressions) {
        self.raise_syntax_error_known_location(
            f"'{self.get_expr_name(a)}' is an illegal expression for augmented assignment", a
        )
     }
invalid_ann_assign_target[ast.AST]:
    | a=list { a }
    | a=tuple { a }
    | '(' a=invalid_ann_assign_target ')' { a }
invalid_del_stmt[NoReturn]:
    | 'del' a=star_expressions {
        self.raise_syntax_error_invalid_target(Target.DEL_TARGETS, a)
     }
invalid_block[NoReturn]:
    | NEWLINE !INDENT { self.raise_indentation_error("expected an indented block") }
invalid_comprehension[NoReturn]:
    | ('[' | '(' | '{') a=starred_expression for_if_clauses {
        self.raise_syntax_error_known_location("iterable unpacking cannot be used in comprehension", a)
     }
    | ('[' | '{') a=star_named_expression ',' b=star_named_expressions for_if_clauses {
        self.raise_syntax_error_known_range(
            "did you forget parentheses around the comprehension target?", a, b[-1]
        )
     }
    | ('[' | '{') a=star_named_expression b=',' for_if_clauses {
        self.raise_syntax_error_known_range(
            "did you forget parentheses around the comprehension target?", a, b
        )
     }
invalid_dict_comprehension[NoReturn]:
    | '{' a='**' bitwise_or for_if_clauses '}' {
        self.raise_syntax_error_known_location("dict unpacking cannot be used in dict comprehension", a)
     }
invalid_parameters[NoReturn]:
    | a="/" ',' {
        self.raise_syntax_error_known_location("at least one argument must precede /", a)
     }
    | (slash_no_default | slash_with_default) param_maybe_default* a='/' {
        self.raise_syntax_error_known_location("/ may appear only once", a)
     }
    | slash_no_default? param_no_default* invalid_parameters_helper a=param_no_default {
        self.raise_syntax_error_known_location(
            "parameter without a default follows parameter with a default", a
        )
     }
    | param_no_default* a='(' param_no_default+ ','? b=')' {
        self.raise_syntax_error_known_range(
            "Function parameters cannot be parenthesized", a, b
        )
     }
    | (slash_no_default | slash_with_default)? param_maybe_default* '*' (',' | param_no_default) param_maybe_default* a='/' {
        self.raise_syntax_error_known_location("/ must be ahead of *", a)
     }
    | param_maybe_default+ '/' a='*' {
        self.raise_syntax_error_known_location("expected comma between / and *", a)
     }
invalid_default:
    | a='=' &(')'|',') {
        self.raise_syntax_error_known_location("expected default value expression", a)
     }
invalid_star_etc:
    | a='*' (')' | ',' (')' | '**')) {
        self.raise_syntax_error_known_location("named arguments must follow bare *", a)
     }
    | '*' ',' TYPE_COMMENT { self.raise_syntax_error("bare * has associated type comment") }
    | '*' param a='=' {
        self.raise_syntax_error_known_location("var-positional argument cannot have default value", a)
     }
    | '*' (param_no_default | ',') param_maybe_default* a='*' (param_no_default | ',') {
        self.raise_syntax_error_known_location("* argument may appear only once", a)
     }
invalid_kwds:
    | '**' param a='=' {
        self.raise_syntax_error_known_location("var-keyword argument cannot have default value", a)
     }
    | '**' param ',' a=param {
        self.raise_syntax_error_known_location("arguments cannot follow var-keyword argument", a)
     }
    | '**' param ',' a=('*'|'**'|'/') {
        self.raise_syntax_error_known_location("arguments cannot follow var-keyword argument", a)
     }
invalid_parameters_helper: # This is only there to avoid type errors
    | a=slash_with_default { [a] }
    | a=param_with_default+
invalid_lambda_parameters[NoReturn]:
    | a="/" ',' {
        self.raise_syntax_error_known_location("at least one argument must precede /", a)
     }
    | (lambda_slash_no_default | lambda_slash_with_default) lambda_param_maybe_default* a='/' {
        self.raise_syntax_error_known_location("/ may appear only once", a)
     }
    | lambda_slash_no_default? lambda_param_no_default* invalid_lambda_parameters_helper a=lambda_param_no_default {
        self.raise_syntax_error_known_location(
            "parameter without a default follows parameter with a default", a
        )
     }
    | lambda_param_no_default* a='(' ','.lambda_param+ ','? b=')' {
        self.raise_syntax_error_known_range(
            "Lambda expression parameters cannot be parenthesized", a, b
        )
     }
    | (lambda_slash_no_default | lambda_slash_with_default)? lambda_param_maybe_default* '*' (',' | lambda_param_no_default) lambda_param_maybe_default* a='/' {
        self.raise_syntax_error_known_location("/ must be ahead of *", a)
     }
    | lambda_param_maybe_default+ '/' a='*' {
        self.raise_syntax_error_known_location("expected comma between / and *", a)
     }
invalid_lambda_parameters_helper[NoReturn]:
    | a=lambda_slash_with_default { [a] }
    | a=lambda_param_with_default+
invalid_lambda_star_etc[NoReturn]:
    | '*' (':' | ',' (':' | '**')) {
        self.raise_syntax_error("named arguments must follow bare *")
     }
    | '*' lambda_param a='=' {
        self.raise_syntax_error_known_location("var-positional argument cannot have default value", a)
     }
    | '*' (lambda_param_no_default | ',') lambda_param_maybe_default* a='*' (lambda_param_no_default | ',') {
        self.raise_syntax_error_known_location("* argument may appear only once", a)
     }
invalid_lambda_kwds:
    | '**' lambda_param a='=' {
        self.raise_syntax_error_known_location("var-keyword argument cannot have default value", a)
     }
    | '**' lambda_param ',' a=lambda_param {
        self.raise_syntax_error_known_location("arguments cannot follow var-keyword argument", a)
     }
    | '**' lambda_param ',' a=('*'|'**'|'/') {
        self.raise_syntax_error_known_location("arguments cannot follow var-keyword argument", a)
     }
invalid_double_type_comments[NoReturn]:
    | TYPE_COMMENT NEWLINE TYPE_COMMENT NEWLINE INDENT {
        self.raise_syntax_error("Cannot have two type comments on def")
     }
invalid_with_item[NoReturn]:
    | expression 'as' a=expression &(',' | ')' | ':') {
        self.raise_syntax_error_invalid_target(Target.STAR_TARGETS, a)
     }

invalid_for_target[NoReturn]:
    | 'async'? 'for' a=star_expressions {
        self.raise_syntax_error_invalid_target(Target.FOR_TARGETS, a)
     }

invalid_group[NoReturn]:
    | '(' a=starred_expression ')' {
        self.raise_syntax_error_known_location("cannot use starred expression here", a)
     }
    | '(' a='**' expression ')' {
        self.raise_syntax_error_known_location("cannot use double starred expression here", a)
     }
invalid_import:
    | a='import' ','.dotted_name+ 'from' dotted_name {
        self.raise_syntax_error_starting_from(
            "Did you mean to use 'from ... import ...' instead?", a
        )
     }
invalid_import_from_targets[NoReturn]:
    | import_from_as_names ',' NEWLINE {
        self.raise_syntax_error("trailing comma not allowed without surrounding parentheses")
     }

invalid_with_stmt[None]:
    | ['async'] 'with' ','.(expression ['as' star_target])+ &&':' { UNREACHABLE }
    | ['async'] 'with' '(' ','.(expressions ['as' star_target])+ ','? ')' &&':' { UNREACHABLE }
invalid_with_stmt_indent[NoReturn]:
    | ['async'] a='with' ','.(expression ['as' star_target])+ ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'with' statement on line {a.start[0]}"
        )
     }
    | ['async'] a='with' '(' ','.(expressions ['as' star_target])+ ','? ')' ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'with' statement on line {a.start[0]}"
        )
     }

invalid_try_stmt[NoReturn]:
    | a='try' ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'try' statement on line {a.start[0]}",
        )
     }
    | 'try' ':' block !('except' | 'finally') {
        self.raise_syntax_error("expected 'except' or 'finally' block")
     }
    | 'try' ':' block* except_block+ a='except' b='*' expression ['as' NAME] ':' {
        self.raise_syntax_error_known_range(
            "cannot have both 'except' and 'except*' on the same 'try'", a, b
        )
     }
    | 'try' ':' block* except_star_block+ a='except' [expression ['as' NAME]] ':' {
        self.raise_syntax_error_known_location(
            "cannot have both 'except' and 'except*' on the same 'try'", a
        )
     }
invalid_except_stmt[None]:
    | 'except' '*'? a=expression ',' expressions ['as' NAME ] ':' {
        self.raise_syntax_error_starting_from("multiple exception types must be parenthesized", a)
     }
    | a='except' '*'? expression ['as' NAME ] NEWLINE { self.raise_syntax_error("expected ':'") }
    | a='except' '*'? NEWLINE { self.raise_syntax_error("expected ':'") }
    | a='except' '*' (NEWLINE | ':') {
        self.raise_syntax_error("expected one or more exception types")
     }
invalid_finally_stmt[NoReturn]:
    | a='finally' ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'finally' statement on line {a.start[0]}"
        )
     }
invalid_except_stmt_indent[NoReturn]:
    | a='except' expression ['as' NAME ] ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'except' statement on line {a.start[0]}"
        )
     }
    | a='except' ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'except' statement on line {a.start[0]}"
        )
     }
invalid_except_star_stmt_indent:
    | a='except' '*' expression ['as' NAME ] ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'except*' statement on line {a.start[0]}"
        )
     }
invalid_match_stmt[NoReturn]:
    | "match" subject_expr !':' {
        self.check_version(
            (3, 10),
            "Pattern matching is",
            self.raise_syntax_error("expected ':'")
        )
     }
    | a="match" subject=subject_expr ':' NEWLINE !INDENT {
        self.check_version(
            (3, 10),
            "Pattern matching is",
            self.raise_indentation_error(
                f"expected an indented block after 'match' statement on line {a.start[0]}"
            )
        )
     }
invalid_case_block[NoReturn]:
    | "case" patterns guard? !':' { self.raise_syntax_error("expected ':'") }
    | a="case" patterns guard? ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'case' statement on line {a.start[0]}"
        )
     }
invalid_as_pattern[NoReturn]:
    | or_pattern 'as' a="_" {
        self.raise_syntax_error_known_location("cannot use '_' as a target", a)
     }
    | or_pattern 'as' !NAME a=expression {
        self.raise_syntax_error_known_location("invalid pattern target", a)
     }
invalid_class_pattern[NoReturn]:
    | name_or_attr '(' a=invalid_class_argument_pattern  {
        self.raise_syntax_error_known_range(
            "positional patterns follow keyword patterns", a[0], a[-1]
        )
     }
invalid_class_argument_pattern[list]:
    | [positional_patterns ','] keyword_patterns ',' a=positional_patterns { a }
invalid_if_stmt[NoReturn]:
    | 'if' named_expression NEWLINE { self.raise_syntax_error("expected ':'") }
    | a='if' a=named_expression ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'if' statement on line {a.start[0]}"
        )
     }
invalid_elif_stmt[NoReturn]:
    | 'elif' named_expression NEWLINE { self.raise_syntax_error("expected ':'") }
    | a='elif' named_expression ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'elif' statement on line {a.start[0]}"
        )
     }
invalid_else_stmt[NoReturn]:
    | a='else' ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'else' statement on line {a.start[0]}"
        )
     }
invalid_while_stmt[NoReturn]:
    | 'while' named_expression NEWLINE { self.raise_syntax_error("expected ':'") }
    | a='while' named_expression ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'while' statement on line {a.start[0]}"
        )
     }
invalid_for_stmt[NoReturn]:
    | [ASYNC] 'for' star_targets 'in' star_expressions NEWLINE { self.raise_syntax_error("expected ':'") }
    | ['async'] a='for' star_targets 'in' star_expressions ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after 'for' statement on line {a.start[0]}"
        )
     }
invalid_def_raw[NoReturn]:
    | ['async'] a='def' NAME  [type_params] '(' [params] ')' ['->' expression] ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after function definition on line {a.start[0]}"
        )
     }
invalid_class_def_raw[NoReturn]:
    | 'class' NAME [type_params] ['(' [arguments] ')'] NEWLINE { self.raise_syntax_error("expected ':'") }
    | a='class' NAME  [type_params] ['(' [arguments] ')'] ':' NEWLINE !INDENT {
        self.raise_indentation_error(
            f"expected an indented block after class definition on line {a.start[0]}"
        )
     }

invalid_double_starred_kvpairs[None]:
    | ','.double_starred_kvpair+ ',' invalid_kvpair
    | expression ':' a='*' bitwise_or {
        self.raise_syntax_error_starting_from("cannot use a starred expression in a dictionary value", a)
     }
    | expression a=':' &('}'|',') {
        self.raise_syntax_error_known_location("expression expected after dictionary key and ':'", a)
     }
invalid_kvpair[None]:
    | a=expression !(':') {
        self.raise_raw_syntax_error(
            "':' expected after dictionary key",
            (a.lineno, a.col_offset),
            (a.end_lineno, a.end_col_offset)
        )
     }
    | expression ':' a='*' bitwise_or {
        self.raise_syntax_error_starting_from("cannot use a starred expression in a dictionary value", a)
     }
    | expression a=':' &('}'|',') {
        self.raise_syntax_error_known_location(
            "expression expected after dictionary key and ':'", a
        )
     }
    | expression a=':' {
        self.raise_syntax_error_known_location("expression expected after dictionary key and ':'", a)
     }
invalid_starred_expression:
    | a='*' expression '=' b=expression {
        self.raise_syntax_error_known_range(
            "cannot assign to iterable argument unpacking", a, b
        )
     }
invalid_replacement_field:
    | '{' a='=' { self.raise_syntax_error_known_location("f-string: valid expression required before '='", a) }
    | '{' a='!' { self.raise_syntax_error_known_location("f-string: valid expression required before '!'", a) }
    | '{' a=':' { self.raise_syntax_error_known_location("f-string: valid expression required before ':'", a) }
    | '{' a='}' { self.raise_syntax_error_known_location("f-string: valid expression required before '}'", a) }
    | '{' !(yield_expr | star_expressions) {
        self.raise_syntax_error_on_next_token(
            "f-string: expecting a valid expression after '{'"
        )
     }
    | '{' (yield_expr | star_expressions) !('=' | '!' | ':' | '}') {
        self.raise_syntax_error_on_next_token("f-string: expecting '=', or '!', or ':', or '}'") }
    | '{' (yield_expr | star_expressions) '=' !('!' | ':' | '}') {
       self.raise_syntax_error_on_next_token("f-string: expecting '!', or ':', or '}'")
     }
    | '{' (yield_expr | star_expressions) '='? invalid_conversion_character
    | '{' (yield_expr | star_expressions) '='? ['!' NAME] !(':' | '}') {
        self.raise_syntax_error_on_next_token("f-string: expecting ':' or '}'")
     }
    | '{' (yield_expr | star_expressions) '='? ['!' NAME] ':' fstring_format_spec* !'}' {
        self.raise_syntax_error_on_next_token("f-string: expecting '}', or format specs")
     }
    | '{' (yield_expr | star_expressions) '='? ['!' NAME] !'}' {
        self.raise_syntax_error_on_next_token("f-string: expecting '}'")
     }

invalid_conversion_character:
    | '!' &(':' | '}') { self.raise_syntax_error_on_next_token("f-string: missing conversion character") }
    | '!' !NAME { self.raise_syntax_error_on_next_token("f-string: invalid conversion character") }